首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using genomic in situ hybidization, among the common wheat cultivars produced in West Siberia (Siberian Research Institute of Agriculture, Omsk) with the involvement of the winter wheat cultivar Kavkaz carrying the wheat-rye 1RS.1BL translocation we identified three cultivars with this translocation: Omskaya 29, Omskaya 37, and Omskaya 38. The protein and crude gluten contents in the grain of these cultivars are equal to or exceed the levels observed in cultivars without the wheat-rye translocation. The common wheat cultivars carrying the wheat-rye translocation were evaluated in terms of resistance of plants reaching wax ripeness to leaf rust and powdery mildew in the natural field conditions. The cultivars Omskaya 37 and Omskaya 38 displayed a high field resistance to leaf rust and were resistant to a variable extent to powdery mildew. The cultivar Omskaya 29 was susceptible to leaf rust and powdery mildew pathogens. Importance of the selection direction and the role of the genetic background in developing common wheat cultivars carrying the wheat-rye translocation is discussed.  相似文献   

2.
Wheat stem rust caused by Puccinia graminis f. sp. tritici can cause devastating yield losses in wheat. Over the past several decades, stem rust has been controlled worldwide through the use of genetic resistance. Stem rust race TTKSK (Ug99), first detected in Uganda in 1998, threatens global wheat production because of its unique virulence combination. As the majority of the currently grown cultivars and advanced breeding lines are susceptible to race TTKSK, sources of resistance need to be identified and characterized to facilitate their use in agriculture. South Dakota breeding line SD 1691 displayed resistance to race TTKSK in the international wheat stem rust nursery in Njoro, Kenya. Seedling screening of progeny derived from SD 1691 crossed to susceptible LMPG-6 indicated that a single resistance gene was present. Allelism and race-specificity tests indicated the stem rust resistance gene in SD 1691 was Sr28. The chromosome arm location of Sr28 was previously demonstrated to be 2BL. We identified molecular markers linked to Sr28 and validated this linkage in two additional populations. Common spring wheat cultivars in the central United States displayed allelic diversity for markers flanking Sr28. These markers could be used to select for Sr28 in breeding populations and for combining Sr28 with other stem rust resistance genes.  相似文献   

3.
小麦叶锈病是影响小麦产量的最主要病害之一,CIMMYT品系19HRWSN-76高抗小麦叶锈病,以该品系与感病品系郑州5389杂交得到F2群体,利用叶锈菌生理小种FHJP对F2群体接菌鉴定,结果显示群体的抗感比例符合3∶1的理论比值,推测19HR WSN-76的抗叶锈性由一对显型基因控制,暂命名为Lr HR76。利用分子标记技术和分离群体分组分析法对F2群体进行分子标记检测,位于3DL的SSR标记barc71与该抗病基因连锁,遗传距离为3.0 c M。  相似文献   

4.
The effect of immune modulators based on chitosan, vanillin, and salicylic acid on wheat resistance to brown rust (Puccinia recondita) and dark brown spot (Cochliobolus sativus) was studied. It has been established that chitosan and modified salicylic acid increases the resistance of wheat to both pathogens, whereas chitosan containing vanillin effectively induces resistance only to the hemibiotroph of C. sativus. The molar ratio of vanillin and salicylic acid (1: 1–1: 2) in hybrid immune modulators was determined to obtain high inducing activity with respect to the biotroph of P. recondita and the hemibiotroph of C. sativus. When a relationship between wheat and hemibiotroph C. sativus forms, a direct relationship is observed between the activity of antioxidant enzymes and the intensification of disease development.  相似文献   

5.
Stripe rust (or yellow rust), caused by the fungus Puccinia striiformis f. sp. tritici (Pst), is one of the most important foliar diseases of wheat. Characterization and utilization of novel resistant genes is the most effective, economic and environmentally friendly approach to controlling the disease. Wheat line LM168-1, which was derived from a cross between common wheat Chuannong 16 and Milan, has good adult-plant resistance to stripe rust, based on field tests over several years. To elucidate the genetic basis of resistance, LM168-1 was crossed with susceptible variety SY95-71. Parents and F1, F2, BC1 and F2:3 progenies were tested in 2009–2011 in a field inoculated with the predominant races of Pst in China. The genetic analysis showed that resistance to stripe rust in LM168-1 was controlled by a single recessive gene, temporarily designated yrLM168. Simple sequence repeat (SSR), resistance gene analog polymorphism (RGAP) and target region amplification polymorphism (TRAP) techniques were used to identify molecular markers linked to the resistance locus. Finally, a linkage group consisting of two SSR, four RGAP and five TRAP markers was constructed for yrLM168 with 102 F2 plants. The closest markers R1 and R2 flanked the resistance gene locus at 2.4 and 2.4 cM, respectively. Furthermore, two SSR markers Xwmc59 and Xwmc145 assigned the gene to chromosome 6A. Because yrLM168 confers high-level resistance to the predominant races of Pst in China, it should be useful in stripe rust resistance breeding programs. The closely linked markers can be used for rapidly transferring yrLM168 to wheat breeding populations.  相似文献   

6.
Wheat leaf rust caused by Puccinia triticina   总被引:1,自引:0,他引:1  
Leaf rust, caused by Puccinia triticina, is the most common rust disease of wheat. The fungus is an obligate parasite capable of producing infectious urediniospores as long as infected leaf tissue remains alive. Urediniospores can be wind‐disseminated and infect host plants hundreds of kilometres from their source plant, which can result in wheat leaf rust epidemics on a continental scale. This review summarizes current knowledge of the P. triticina/wheat interaction with emphasis on the infection process, molecular aspects of pathogenicity, rust resistance genes in wheat, genetics of the host parasite interaction, and the population biology of P. triticina. Taxonomy: Puccinia triticina Eriks.: kingdom Fungi, phylum Basidiomycota, class Urediniomycetes, order Uredinales, family Pucciniaceae, genus Puccinia. Host range: Telial/uredinial (primary) hosts: common wheat (Triticum aestivum L.), durum wheat (T. turgidum L. var. durum), cultivated emmer wheat (T. dicoccon) and wild emmer wheat (T. dicoccoides), Aegilops speltoides, goatgrass (Ae. cylindrica), and triticale (X Triticosecale). Pycnial/aecial (alternative) hosts: Thalictrum speciosissimum (= T. flavum glaucum) and Isopyrum fumaroides. Identification: Leaf rust is characterized by the uredinial stage. Uredinia are up to 1.5 mm in diameter, erumpent, round to ovoid, with orange to brown uredinia that are scattered on both the upper and the lower leaf surfaces of the primary host. Uredinia produce urediniospores that are sub‐globoid, average 20 µm in diameter and are orange–brown, with up to eight germ pores scattered in thick, echinulate walls. Disease symptoms: Wheat varieties that are fully susceptible have large uredinia without causing chlorosis or necrosis in the host tissues. Resistant wheat varieties are characterized by various responses from small hypersensitive flecks to small to moderate size uredinia that may be surrounded by chlorotic and/or necrotic zones. Useful website: USDA Cereal Disease Laboratory: http://www.ars.usda.gov/mwa/cdl  相似文献   

7.
Wheat (Triticum aestivum L.) stem rust caused by Puccinia graminis f. sp. tritici is one of the main diseases of wheat worldwide. Wheat mutant line D51, which was derived from the highly susceptible cultivar L6239, shows resistance to the prevailing races 21C3CPH, 21C3CKH, and 21C3CTR of P. graminis f. sp. tritici in China. In this study, we used the cDNA-AFLP technology to identify the genes that are likely involved in the stem rust resistance. EcoRI/MseI selective primers were used to generate approximately 1920 DNA fragments. Seventy five differentially transcribed fragments (3.91%) were identified by comparing the samples of 21C3CPH infected D51 with infected L6239 or uninfected D51. Eleven amplified cDNA fragments were sequenced. Eight showed significant similarity to known genes, including TaLr1 (leaf rust resistance gene), wlm24 (wheat powdery mildew resistance gene), stress response genes and ESTs of environment stress of tall fescue. These identified genes are involved in plant defense response and stem rust resistance and need further research to determine their usefulness in breeding new resistance cultivars.  相似文献   

8.
Pollen analysis identified domestic Zea mays (corn, maize), Phaseolus vulgaris (kidney bean), Helianthus annuus (sunflower) and Cucurbita pepo (squash) accompanied by spores of fungi, many of which cause crop diseases, such as Ustilago maydis (=U. zeae, corn smut), Puccinia sorghi (corn rust), Uromyces appendiculatus (bean rust) and Puccinia graminis (wheat rust). Spores were most abundant in two intervals, ca. a.d. 1300 to ca. 1500 when prehistoric Iroquoian agriculture flourished near the lake and since 1830, when historic Triticum aestivum (wheat) agriculture began. In addition to dispersal by wind, Branta canadensis (Canada goose) also transported fungal spores to the lake via their dung. Spores of fungi that parasitize crop plants may be more abundant than pollen of their host plants and therefore spores may more readily indicate ancient agriculture.  相似文献   

9.
Wheat cultivar Xingzi 9104 (XZ) possesses adult plant resistance (APR) to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). In this study, histological and cytological experiments were conducted to elucidate the mechanisms of APR in XZ. The results of leaf inoculation experiments indicated that APR was initiated at the tillering stage, gradually increased as the plant aged and highly expressed after boot stage. The histology and oxidative burst in infected leaves of plants at seedling, tillering and boot stages were examined using light microscopic and histochemical methods. Subcellular changes in the host–pathogen interactions during the seedling and boot stages were analyzed by transmission electron microscopy. The results showed that haustorium formation was retarded in the adult plants and that the differentiation of secondary intercellular hyphae was significantly inhibited, which decreased the development of microcolonies in the adult plants, especially in plants of boot stage. The expression of APR to stipe rust during wheat development was clearly associated with extensive hypersensitive cell death of host cells and localized production of reactive oxygen species, which coincided with the restriction of fungal growth in infection sites in adult plants. At the same time, cell wall-related resistance in adult plants prevented ingression of haustorial mother cells into plant cells. Haustorium encasement was coincident with malformation or death of haustoria. The results provide useful information for further determination of mechanisms of wheat APR to stripe rust. Key message The expression of APR to stipe rust in wheat cultivar Xingzi 9104 (XZ) was clearly associated with extensive hypersensitive cell death of host cells and the localized production of reactive oxygen species.  相似文献   

10.
Leaf rust (Puccinia triticina Eriks.), stripe rust (Puccinia striiformis f. tritici Eriks.) and stem rust (Puccinia graminis f. sp. tritici) cause major production losses in durum wheat (Triticum turgidum L. var. durum). The objective of this research was to identify and map leaf, stripe and stem rust resistance loci from the French cultivar Sachem and Canadian cultivar Strongfield. A doubled haploid population from Sachem/Strongfield and parents were phenotyped for seedling reaction to leaf rust races BBG/BN and BBG/BP and adult plant response was determined in three field rust nurseries near El Batan, Obregon and Toluca, Mexico. Stripe rust response was recorded in 2009 and 2011 nurseries near Toluca and near Njoro, Kenya in 2010. Response to stem rust was recorded in field nurseries near Njoro, Kenya, in 2010 and 2011. Sachem was resistant to leaf, stripe and stem rust. A major leaf rust quantitative trait locus (QTL) was identified on chromosome 7B at Xgwm146 in Sachem. In the same region on 7B, a stripe rust QTL was identified in Strongfield. Leaf and stripe rust QTL around DArT marker wPt3451 were identified on chromosome 1B. On chromosome 2B, a significant leaf rust QTL was detected conferred by Strongfield, and at the same QTL, a Yr gene derived from Sachem conferred resistance. Significant stem rust resistance QTL were detected on chromosome 4B. Consistent interactions among loci for resistance to each rust type across nurseries were detected, especially for leaf rust QTL on 7B. Sachem and Strongfield offer useful sources of rust resistance genes for durum rust breeding.  相似文献   

11.
Use of genetic diversity from related wild and domesticated species has made a significant contribution to improving wheat productivity. Synthetic hexaploid wheats (SHWs) exhibit natural genetic variation for resistance and/or tolerance to biotic and abiotic stresses. Stripe rust caused by (Puccinia striiformis f. sp. tritici; Pst), is an important disease of wheat worldwide. To characterise loci conferring resistance to stripe rust in SHWs, we conducted a genome-wide association study (GWAS) with a panel of 181 SHWs using the wheat 9K SNP iSelect array. The SHWs were evaluated for their response to the prevailing races of Pst at the seedling and adult plant stages, the latter in replicated field trials at two sites in Ethiopia in 2011. About 28% of the SHWs exhibited immunity at the seedling stage while 56% and 83% were resistant to Pst at the adult plant stage at Meraro and Arsi Robe, respectively. A total of 27 SNPs in nine genomic regions (1BS, 2AS, 2BL, 3BL, 3DL, 5A, 5BL, 6DS and 7A) were linked with resistance to Pst at the seedling stage, while 38 SNPs on 18 genomic regions were associated with resistance at the adult plant stage. Six genomic regions were commonly detected at both locations using a mixed linear model corrected for population structure, kinship relatedness and adjusted for false discovery rate (FDR). The loci on chromosome regions 1AS, 3DL, 6DS and 7AL appeared to be novel QTL; our results confirm that resynthesized wheat involving its progenitor species is a rich source of new stripe (yellow) rust resistance that may be useful in choosing SHWs and incorporating diverse yellow rust (YR) resistance loci into locally adapted wheat cultivars.  相似文献   

12.
Stripe rust (yellow rust) caused by Puccinia striiformis f. sp. tritici has been an important disease of wheat in the Indian subcontinent since 1786. Currently, it prevails across all the wheat growing areas from north to south in the country. Due to the favourable weather conditions, the northern uplands have been historically hit by the severe disease epidemics. These epidemics caused significant losses to national wheat production. Acquisition of broader virulence pattern by the pathogen poses a serious threat to national agriculture. Although the deployed national wheat varieties have adequate resistance, these are developed around few major genes and are vulnerable to the new evolving strains of the pathogen. Utilisation of race non-specific durable resistance and seedling resistance via gene pyramiding, based on the current virulence scenario of the pathogen should provide sustainable control. This review focuses on the national milestones that recognise the economic significance of the disease and current status of stripe rust and its management in Pakistan.  相似文献   

13.
Stripe rust (caused by Puccinia striiformis) occurs annually in most wheat-growing areas of the world. Thinopyrum ponticum has provided novel rust resistance genes to protect wheat from this fungal disease. Wheat – Th. ponticum partial amphiploid line 7430 and a substitution line X005 developed from crosses between wheat and 7430 were resistant to stripe rust isolates from China. Genomic in situ hybridization (GISH) analysis using Pseudoroegneria spicata genomic DNA as a probe demonstrated that the partial amphiploid line 7430 contained ten Js and six J genome chromosomes, and line X005 had a pair of Js-chromosomes. Giemsa-C banding further revealed that both lines 7430 and X005 were absent of wheat chromosomes 6B. The EST based PCR confirmed that the introduced Js chromosomes belonging to linkage group 6, indicating that line X005 was a 6Js/6B substitution line. Both resistance observation and sequence characterized amplified region (SCAR) markers displayed that the introduced chromosomes 6Js were responsible for the stripe rust resistances. Therefore, lines 7430 and X005 can be used as a donor in wheat breeding for stripe rust resistance.  相似文献   

14.
Leaf (brown) and stripe (yellow) rusts, caused by Puccinia triticina and Puccinia striiformis, respectively, are fungal diseases of wheat (Triticum aestivum) that cause significant yield losses annually in many wheat-growing regions of the world. The objectives of our study were to characterize genetic loci associated with resistance to leaf and stripe rusts using molecular markers in a population derived from a cross between the rust-susceptible cultivar 'Avocet S' and the resistant cultivar 'Pavon76'. Using bulked segregant analysis and partial linkage mapping with AFLPs, SSRs and RFLPs, we identified 6 independent loci that contributed to slow rusting or adult plant resistance (APR) to the 2 rust diseases. Using marker information available from existing linkage maps, we have identified additional markers associated with resistance to these 2 diseases and established several linkage groups in the 'Avocet S' x 'Pavon76' population. The putative loci identified on chromosomes 1BL, 4BL, and 6AL influenced resistance to both stripe and leaf rust. The loci on chromosomes 3BS and 6BL had significant effects only on stripe rust, whereas another locus, characterized by AFLP markers, had minor effects on leaf rust only. Data derived from Interval mapping indicated that the loci identified explained 53% of the total phenotypic variation (R2) for stripe rust and 57% for leaf rust averaged across 3 sets of field data. A single chromosome recombinant line population segregating for chromosome 1B was used to map Lr46/Yr29 as a single Mendelian locus. Characterization of slow-rusting genes for leaf and stripe rust in improved wheat germplasm would enable wheat breeders to combine these additional loci with known slow-rusting loci to generate wheat cultivars with higher levels of slow-rusting resistance.  相似文献   

15.
Stem rust caused by Puccinia graminis f. sp. tritici was historically one of the most destructive diseases of wheat worldwide. The evolution and rapid migration of race TTKSK (Ug99) and derivatives, first detected in Uganda in 1999, are of international concern due to the virulence of these races to widely used stem rust resistance genes. In attempts to identify quantitative trait loci (QTL) linked with resistance to stem rust race Ug99, 95 recombinant inbred lines that were developed from a cross between two durum wheat varieties, Kristal and Sebatel, were evaluated for reaction to stem rust. Seven field trials at two locations were carried out in main and off seasons. In addition to the natural infection, the nursery was also artificially inoculated with urediniospores of stem rust race Ug99 and a mixture of locally collected stem rust urediniospores. A genetic map was constructed based on 207 simple sequence repeat (SSR) and two sequence tagged site loci. Using composite interval mapping, nine QTL for resistance to stem rust were identified on chromosomes 1AL, 2AS, 3BS, 4BL, 5BL, 6AL 7A, 7AL and 7BL. These results suggest that durum wheat resistance to stem rust is oligogenic and that there is potential to identify previously uncharacterized resistance genes with minor effects. The SSR markers that are closely linked to the QTL can be used for marker-assisted selection for stem rust resistance in durum wheat.  相似文献   

16.
山东省12个主栽小麦品种(系)抗叶锈性分析   总被引:1,自引:0,他引:1  
本研究旨在明确山东省12个小麦主栽品种(系)抗叶锈性及抗叶锈基因,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据。利用2015年采自山东省的5个小麦叶锈菌流行小种的混合小种对这些材料进行苗期抗性鉴定,然后选用15个小麦叶锈菌生理小种对这些品种(系)进行苗期基因推导,并利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对其进行抗叶锈基因分子检测。结果显示,山东省12个主栽小麦品种(系)苗期对该省2015年的5个小麦叶锈菌混合流行小种均表现高度感病。通过基因推导与分子检测发现,济南17含有Lr16,矮抗58和山农20含有Lr26,其余济麦系列、烟农系列、良星系列等9个品种(系)均未检测到所供试标记片段。此外,本研究还对山东省3个非主栽品种进行了检测,结果发现,中麦175含有抗叶锈基因Lr1和Lr37,含有成株抗性基因;皖麦38只检测到Lr26,济麦20未检测到所供试标记片段。综合以上结果,山东省主栽小麦品种(系)所含抗叶锈基因丰富度较低,尤其不含有对我国小麦叶锈菌流行小种有效的抗锈基因,应该引起高度重视,今后育种工作应注重引入其他抗叶锈基因,提高抗叶锈性。  相似文献   

17.
Thirty-seven wheat cultivars originating from seven European countries were examined by using sequence tagged site (STS) markers for seven Lr (leaf rust = brown rust) resistance genes against the fungal pathogen of wheat Puccinia recondita f. sp. tritici (Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37). Additionally, 22 accessions with various Lr genes from two germplasm collections were tested. A Scar (sequence-characterized amplified region) marker for Lr24 and a CAPS (Cleaved Amplified Polymorphic Sequence) marker for Lr47 were also used to identify those genes in the wheat accessions. Each marker amplified one specific DNA fragment. Three Lr gene markers were identified in wheat cultivars (Lr10, Lr26 and Lr37). Another four markers (Lr9, Lr19, Lr24 and Lr47) were found in breeding lines carrying leaf rust resistance genes. The results were compared with leaf rust resistance gene postulations made in previous studies, based on multipathotype testing. Markers for Lr10, Lr26 and Lr37 may be useful in marker-assisted breeding.  相似文献   

18.
中国小麦条锈菌转主寄主小檗的鉴定   总被引:4,自引:0,他引:4  
用萌发的小麦条锈菌冬孢子接种采自陕西省境内的陕西小檗、少齿小檗和长穗小檗,3种小檗均产生了性孢子器和锈孢子器。用人工接种小麦条锈菌冬孢子在陕西小檗上产生的锈孢子器接种小麦铭贤169产生了典型的条锈菌夏孢子堆症状。特异性PCR和DNA序列分析表明,人工接种产生于小檗上的锈孢子、接种锈孢子于小麦上产生的夏孢子堆与小麦条锈菌DNA的ITS区序列完全一致。更为重要的是,用采自田间受锈菌侵染的小檗叶片产生的锈孢子接种小麦铭贤169,经培养在小麦铭贤169叶片上产生了典型的条锈病症状。从而证实,在自然条件下,在中国,小檗不仅可作为小麦条锈菌的转主寄主,而且小麦条锈菌可在小檗上完成其有性繁殖过程。这一发现对进一步揭示我国小麦条锈菌高度的群体遗传多样性与毒性变异机理、完善小麦条锈病的防治策略具有十分重要的理论和实际意义。  相似文献   

19.
The wheat crop remains vulnerable to all three rust diseases (leaf rust, stem rust and yellow rust) caused by Puccinia spp. according to the prevalence of the pathogen in different wheat-growing areas worldwide. Stripe rust or yellow rust caused by Puccinia striiformis f. sp. tritici is the most significant rust pathogen which prefers cool, moist areas and highlands. The pathogen is recognised as responsible for huge production losses in wheat. Genetic variation in pathogen makes its control difficult. Therefore, resistance against all the races of the pathogen known as durable or race-non-specific resistance is preferred. The present study was carried out to identify durable resistance against stripe rust in selected wheat cultivars from Pakistan through seedling testing, field evaluation at adult stage, morphological marker studies and marker-assisted selection. Results revealed that 4% of the cultivars were resistant at the seedling stage while the rest were susceptible or intermediate. To confirm their field resistance, the same cultivars were evaluated under field conditions at Cereal Crops Research Institute Pirsabak (located in Khyber Pakhtunkhwa, KP) a hot spot of stripe rust in Pakistan. Observations exhibited that at the adult stage 4% of the cultivars were resistant, 70% intermediate or moderately resistant while the others were highly susceptible. Leaf tip necrosis was observed in 30% of the cultivars. Wheat cultivars showing susceptibility at the seedling stage were highly to moderately resistant at adult stage showing durable resistance. For further validation, morphological markers were also observed in cultivars indicating the presence of Yr18/Lr34 gene. Eleven cultivars (C-518, Mexipak, Kohinoor-83, Faisalabad-83, Zardana-93, Shahkar-95, Moomal-2002, Wattan-94, Pasban-90, Kiran-95, and Haider-2000) were identified, having durable or race non-specific resistance against stripe rust. These cultivars can further be utilised in wheat breeding programmes for deploying durable resistance to attain long lasting control against stripe rust.  相似文献   

20.
Stem rust (Puccinia graminis f. sp. tritici) is responsible for major production losses in hexaploid wheat (Triticum aestivum L.) around the world. The spread of stem rust race Ug99 and variants is a threat to worldwide wheat production and efforts are ongoing to identify and incorporate resistance. The objectives of this research were to identify quantitative trait loci (QTL) and to study their epistatic interactions for stem rust resistance in a population derived from the Canadian wheat cultivars AC Cadillac and Carberry. A doubled haploid (DH) population was developed and genotyped with DArT® and SSR markers. The parents and DH lines were phenotyped for stem rust severity and infection response to Ug99 and variant races in 2009, 2010 and 2011 in field rust nurseries near Njoro, Kenya, and to North American races in 2011 and 2012 near Swift Current, SK, Canada. Seedling infection type to race TTKSK was assessed in a bio-containment facility in 2009 and 2012 near Morden, MB. Eight QTL for stem rust resistance and three QTL for pseudo-black chaff on nine wheat chromosomes were identified. The phenotypic variance (PV) explained by the stem rust resistance QTL ranged from 2.4 to 48.8 %. AC Cadillac contributed stem rust resistance QTL on chromosomes 2B, 3B, 5B, 6D, 7B and 7D. Carberry contributed resistance QTL on 4B and 5A. Epistatic interactions were observed between loci on 4B and 5B, 4B and 7B, 6D and 3B, 6D and 5B, and 6D and 7B. The stem rust resistance locus on 6D interacted synergistically with 5B to improve the disease resistance through both crossover and non-crossover interactions depending on the environment. Results from this study will assist in planning breeding for stem rust resistance by maximizing QTL main effects and epistatic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号