首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Although exercise can prevent progression to T2D among people with prediabetes, little is known about fatigue during exercise in people with prediabetes compared to T2D. The purpose of the study was to compare the magnitude and mechanisms of fatigability of the ankle dorsiflexor muscles between people with prediabetes and T2D. Ten people with prediabetes (6 females, 51.7 ± 6.9 years) and fourteen with T2D (6 females, 52.6 ± 6.2 years) who were matched for age, body mass index and physical activity performed an intermittent (6 s contraction: 4 s relaxation) fatiguing task at 75% maximal voluntary contraction (MVC) with the dorsiflexors. Electrical stimulation was used to assess contractile properties of the dorsiflexor muscles before and after the fatiguing task. People with prediabetes had a longer time-to-task failure, i.e. greater fatigue resistance (7.9 ± 5.1 vs. 4.9 ± 2.5 min, P = 0.04), and slower rate of decline of the (potentiated) twitch amplitude (6.5 ± 3.1 vs. 16.5 ± 11.7%·min−1, P = 0.03) than people with T2D. Shorter time-to-task failure (i.e. greater fatigability) was associated with greater baseline MVC torque (r2 = 0.21, P = 0.02) and faster rate of decline of twitch amplitude (r2 = 0.39, P = 0.04). The ankle dorsiflexor muscles of males and females with prediabetes were more fatigue resistant than people with T2D, and fatigability was associated with contractile mechanisms.  相似文献   

2.

Background

The GCK gene encodes hexokinase 4, which catalyzes the first step in most glucose metabolism pathways. The purpose of our study is to assess the contribution of GCK methylation to type 2 diabetes (T2D).

Methods and results

GCK methylation was evaluated in 48 T2D cases and 48 age- and gender-matched controls using the bisulphite pyrosequencing technology. Among the four CpG sites in the methylation assay, CpG4 and the other three CpGs (CpG1-3) were not in high correlation (r < 0.5). Significantly elevated methylation levels of GCK CpG4 methylation were observed in T2D patients than in the healthy controls (P = 0.004). A breakdown analysis by gender indicated that the association between CpG4 methylation and T2D was specific to males (P = 0.002). It is intriguing that another significant male-specific association was also found between GCK CpG4 methylation and total cholesterol (TC) concentration (r = 0.304, P = 0.036).

Conclusion

Our results showed that elevated GCK CpG4 methylation might suggest a risk of T2D in Chinese males. Gender disparity in GCK CpG4 methylation might provide a clue to elaborate the pathogenesis of T2D.  相似文献   

3.

Aims

L-selectin belongs to selectin family of adhesion molecule and participates in the generation and development of type 2 diabetes (T2D). In this study, we evaluated the relationship between the P213S polymorphism of L-selectin gene and T2D and insulin resistance in the Chinese population.

Methods

We genotyped P213S polymorphism in 801 patients with T2D and 834 healthy controls in the Chinese population using polymerase chain reaction–ligase detection reaction (PCR–LDR) technique. Plasma glucose, insulin, lipid, blood urea nitrogen, creatinine and uric acid levels were measured by biochemical technique.

Results

The frequency of 213PP genotype and P allele of the L-selectin gene in patients with T2D was significantly higher than that in controls (P = 0.007; P = 0.019, respectively). The relative risk of allele P suffered from T2D was 1.191 times higher than that of allele S. Moreover, the levels of FPG and HOMA-IR of PP and PS genotype carriers were significantly higher than those of SS genotype carriers in the T2D group (P < 0.05).

Conclusion

These findings indicated that the P213S polymorphism of L‐selectin gene may contribute to susceptibility to T2D and insulin resistance in the Chinese population, and P allele appears to be a risk factor for T2D.  相似文献   

4.
ObjectivesZinc may play a role in the development of type 2 diabetes (T2D), because it is involved in antioxidant and anti-inflammatory activities. However, the role of zinc in the etiology of T2D has been poorly investigated. This study was conducted to study the association of serum zinc on T2D risk in middle-aged and older Finnish men.MethodsThis was a 20-year prospective follow-up study on 2220 Finnish men from the Kuopio Ischaemic Heart Disease Risk Factor Study (KIHD) who were 42 to 60 years old at baseline in 1984–1989. The main outcome was incident T2D. Serum zinc, body mass index (BMI), fasting blood glucose (FBG), serum insulin, C-reactive protein (CRP) and, in a subset of 751 participants, insulin-like growth factor-binding protein-1 (IGFBP-1), were measured. Also, the homeostatic model assessment (HOMA) was used to quantify insulin resistance (HOMA-IR), beta-cell function (HOMA-β) and insulin sensitivity (HOMA-IS).ResultsAt baseline, serum zinc was associated with higher BMI, serum insulin, HOMA-IR, HOMA-β and IGFBP-1 and lower HOMA-IS. During the average follow-up of 19.3 years, 416 men developed T2D. Men in the highest quartile of serum zinc had 60% higher risk (95% CI 20–113%; P-trend < 0.001) for incident T2D compared with the men in the lowest quartile, after multivariate adjustments. This association was attenuated after adjustment for BMI (HR = 1.39, 95% CI 1.04–1.85; P-trend = 0.013) or HOMA-IS (HR = 1.38, 95% CI 1.04–1.83; P-trend = 0.015), whereas adjustment for the other factors had only modest impact on the association.ConclusionHigher serum zinc was associated with higher risk of T2D; effects of zinc on BMI and insulin sensitivity may partly explain the association. Further prospective studies are warranted to confirm our results and explore potential mechanisms.  相似文献   

5.
Classically activated macrophages produce nitric oxide (NO), which is a potent microbicidal agent. NO production is catalyzed by inducible nitric oxide synthase (iNOS), which uses arginine as substrate producing NO and citruline. However, it has been demonstrated that NO production is inhibited after macrophage infection of Toxoplasma gondii, the agent of toxoplasmosis, due to iNOS degradation. Three possible iNOS degradation pathways have been described in activated macrophages: proteasome, calpain and lysosomal. To identify the iNOS degradation pathway after T. gondii infection, J774-A1 macrophage cell line was activated with lipopolysaccharide and interferon-gamma for 24 h, treated with the following inhibitors, lactacystin (proteasome), calpeptin (calpain), or concanamycin A (lysosomal), and infected with the parasite. NO production and iNOS expression were evaluated after 2 and 6 h of infection. iNOS was degraded in J774-A1 macrophages infected with T. gondii. However, treatment with lactacystin maintained iNOS expression in J774-A1 macrophages infected for 2 h by T. gondii, and after 6 h iNOS was localized in aggresomes. iNOS was degraded after parasite infection of J774-A1 macrophages treated with calpeptin or concanamycin A. NO production confirmed iNOS expression profiles. These results indicate that T. gondii infection of J774-A1 macrophages caused iNOS degradation by the proteasome pathway.  相似文献   

6.
7.
Type 2 diabetes mellitus (T2DM) is associated with a high production of reactive oxygen species, which may cause oxidative DNA damage. High levels of genomic damage have been associated with renal failure and hemodialysis. However, no information is available in the literature concerning the levels of DNA damage in T2DM individuals who are dependent on hemodialysis. This study used the comet assay to assess the levels of DNA damage before, immediately after and 48 h after the hemodialysis session in 25 patients with T2DM and in a group of 20 healthy individuals, selected according to mean age, sex and smoking habit. Our results showed increased levels of DNA damage in hemodialysis-dependent T2DM individuals (12.36 ± 8.04) when compared with healthy individuals (7.35 ± 7.41) (p = 0.014). Damage levels increased immediately after the hemodialysis session (19.76 ± 12.40) (p = 0.04), which suggests a possible action of pro-oxidative factors related to the therapy, with a genotoxic effect on cells. Results obtained 48 h after hemodialysis (6.44 ± 5.99) evidenced damage removal (p = 0.001), which may be suggestive of DNA repair.  相似文献   

8.
Type 2 Diabetes (T2D) is characterized by alteration in the circulatory levels of key inflammatory proteins, where our body strives to eliminate the perturbing factor through inflammation as a final resort to restore homeostasis. Plasma proteins play a crucial role to orchestrate this immune response. Over the past two decades, rigorous genetic efforts taken to comprehend T2D physiology have been partially successful and have left behind a dearth of knowledge of its causality. Here, we have investigated how the reported genetic variants of T2D are associated with circulatory levels of key plasma proteins. We identified 99 T2D genetic variants that serve as strong pQTL (protein Quantitative Trait Loci) for 72 plasma proteins, of which 4 proteins namely Small nuclear ribonucleoprotein F [SNRPF] (p = 2.99 × 10−14), Platelet endothelial cell adhesion molecule [PECAM1] (p = 1.9 × 10−45), Trypsin-2 [PRSS2] (p = 7.6 × 10−43) and Trypsin-3 [PRSS3] (p = 5.7 × 10−8) were previously not reported for association to T2D. The genes that encode these 72 proteins were observed to be highly expressed in at least one of the four T2D relevant tissues - liver, pancreas, adipose and whole blood. Comparative analysis of interactions of the studied proteins amongst these four tissues revealed distinct molecular connectivity. Assessment of biological function by gene-set enrichment highlighted innate immune system as the lead process enacted by the identified proteins (FDR q = 3.7 × 10−16). To validate the findings, we analyzed Coronary Artery Disease (CAD) and Rheumatoid Arthritis (RA) individually and as expected, we observed innate immune system as a top enriched pathway for RA but not for CAD. Our study illuminates strong regulation of plasma proteome by the established genetic variants of T2D.  相似文献   

9.
10.
11.
Aims/Hypothesis: It was the aim to investigate the hypothesis that the new C1q/TNF-family member CTRP-3 (C1q/TNF-related protein-3) acts anti-inflammatory in human monocytes from healthy controls and patients with type 2 diabetes mellitus (T2D). Methods: Monocytes were isolated from 20 healthy controls and 30 patients with T2D. IL-6 and TNF concentrations were measured by ELISA. CTRP-3 was expressed in insect cells and used for stimulation experiments. Results: Basal IL-6 and TNF were not different in control and in T2D monocytes. LPS-stimulation (1 μg/ml) significantly (p < 0.001) increased IL-6 and TNF in the supernatants of control and in T2D monocytes to a similar extent. CTRP-3 (1 μg/ml) significantly (p = 0.03) inhibited LPS-induced IL-6 in control monocytes but not in T2D monocytes. TNF upon co-stimulation with LPS and CTRP-3 was significantly (p = 0.012) lower in control than in T2D monocytes. LPS-induced TNF concentration was significantly and positively correlated with serum total cholesterol and LDL cholesterol in T2D patients. Conclusions: CTRP-3 inhibits LPS-induced IL-6 and TNF release. This anti-inflammatory effect is lost in T2D. Serum cholesterol concentration affects the pro-inflammatory potential of LPS to induce TNF release from T2D monocytes in the presence or absence of CTRP-3. CTRP-3 might partly account for the pro-inflammatory state in T2D.  相似文献   

12.
Diabetes mellitus is an ill-famed metabolic disorder with varied repercussions including delayed fracture healing. Wnt/β-catenin axis is known to play a tight pivotal role in the bone healing process. Substance P (SubP) is a neuropeptide with established positive modulatory functions in fracture healing and associated neuronal milieu. In this study, we performed local delivery of recombinant adenovirus of Dickkopf-1 (DKK1) into the fracture site to understand the antagonizing the role of DKK1 against substance P. Rats were segregated into 4 groups: (i) Fractured non-diabetic rats; (ii) Fractured T1D rats; T1D was provoked by using STZ 50 mg/kg for 5 consecutive days; (iii) Fractured T1D + SubP (50 mg/ml/Kg; i.p.; 30 min prior to fracture procedure); (iv) Fractured T1D + SubP + Ad-DKK1. Bone radiographs were taken using a Faxitron X-ray machine and the residual gap size was measured using an electric caliper. Western blotting was also performed to determine the protein expression levels of osteogenic markers (RUNX2, OSTX and OSTC) bone resorption markers (OPG, RANKL and RANK) and also Wnt-signalling markers (β-catenin, LRP5 and GSK-3β). We observed that SubP promoted osteogenesis (as indicated by RUNX2, OSTX and OSTC upregulation) and mitigated the bone resorption (as indicated by optimized OPG/RANKL/RANK axis) via activated Wnt signalling (manifested by upmodulated β-catenin and LRP5, with downmodulated GSK-3β levels. Activation of endogenous SubP or administration of exogenous mimics might counter-protect the fractured bone against the deforming effects of T1D.  相似文献   

13.
Helminth infection induces production of a large amount of immunoglobulin E (IgE) to nonhelminth antigens. Although such “irrelevant” IgE is a major proportion of total IgE in the host, its biological significance remains unclear. Therefore, I examined protective activity against Trichinella spiralis in mice with high levels of IgE by repeated injections of anti-dansyl IgE monoclonal antibody or Nippostrongylus brasiliensis infection. Injected anti-dansyl IgE occupied IgE receptors on mast cells in naive mice. Protective activity against T. spiralis, determined with number of muscle larvae 5 weeks after infection, was impaired in mice treated with anti-dansyl IgE. The impaired protection was found in mice treated with anti-dansy IgE 7 and 14 days after infection, but not 21 and 28 days after infection, indicating that IgE-dependent protection operates at an early stage after infection. In the next experiments, mice were infected with N. brasiliensis 4 weeks before T. spiralis infection to obtain high levels of IgE. The protective activity against T. spiralis was decreased by N. brasiliensis infection. On the other hand, protection against T. spiralis was comparable in IgE-deficient SJA/9 mice and in anti-IgE-treated BALB/c mice with or without N. brasiliensis infection, suggesting that impairment of protection is dependent on IgE. These results indicate that the high levels of irrelevant IgE are beneficial for helminths and, alternatively, that anti-helminth IgE antibodies are protective for hosts. In addition, the impaired protection was found in IgE high-responder mice but not in low-responder mice, suggesting that protection against T. spiralis is controlled by IgE responsiveness in the host.  相似文献   

14.

Background

CHI3LI encoding the inflammatory glycoprotein YKL-40 is located on chromosome 1q32.1. YKL-40 is involved in inflammatory processes and patients with Type 2 Diabetes (T2D) have elevated circulating YKL-40 levels which correlate with their level of insulin resistance. Interestingly, it has been reported that rs10399931 (−329 G/A) of CHI3LI contributes to the inter-individual plasma YKL-40 levels in patients with sarcoidosis, and that rs4950928 (−131 C/G) is a susceptibility polymorphism for asthma and a decline in lung function. We hypothesized that single nucleotide polymorphisms (SNPs) or haplotypes thereof the CHI3LI locus might influence risk of T2D. The aim of the present study was to investigate the putative association between SNPs and haplotype blocks of CHI3LI and T2D and T2D related quantitative traits.

Methods/Principal Findings

Eleven SNPs of CHI3LI were genotyped in 6514 individuals from the Inter99 cohort and 2924 individuals from the outpatient clinic at Steno Diabetes Center. In cas-control studies a total of 2345 T2D patients and 5302 individuals with a normal glucose tolerance test were examined.We found no association between rs10399931 (OR, 0.98 (CI, 0.88–1.10), p = 0.76), rs4950928 (0.98 (0.87–1.10), p = 0.68) or any of the other SNPs with T2D. Similarly, we found no significant association between any of the 11 tgSNPs and T2D related quantitative traits, all p>0.14. None of the identified haplotype blocks of CHI3LI showed any association with T2D, all p>0.16.

Conclusions/Significance

None of the examined SNPs or haplotype blocks of CHI3LI showed any association with T2D or T2D related quantitative traits. Estimates of insulin resistance and dysregulated glucose homeostasis in T2D do not seem to be accounted for by the examined variations of CHI3LI.  相似文献   

15.
Inhibitory receptors and activating receptor expressed on decidual natural killer (dNK) cells are generally believed to be important in abnormal pregnancy outcomes and induced adverse pregnancy. However, if Toxoplasma gondii (T. gondii) infection induced abnormal pregnancy was related to dNK cells changes is not clear. In this study, we used human dNK cells co-cultured with human extravillous cytotrophoblast (EVT) cells following YFP-Toxoplasma gondii (YFP-T. gondii) infection in vitro and established animal pregnant infection model. Levels of inhibitory receptors KIR2DL4 and ILT-2, their ligand HLA-G, and activating receptor NKG2D in human decidua, and NKG2A and its ligand Qa-1 and NKG2D in mice uterine were analyzed by real-time PCR and flow cytometry with levels of NKG2D significantly higher than those of KIR2DL4 and ILT-2 in vitro and in invo. The level of NKG2D was positively correlated with cytotoxic activity of dNK cells in vitro. Numbers of abnormal pregnancies were significantly greater in the infected group than in the control group. This result demonstrated that the increased NKG2D expression and imbalance between inhibitory receptors of dNK cells and HLA-G may contribute to abnormal pregnancy outcomes observed upon maternal infection with T. gondii.  相似文献   

16.

Background

Glycated albumin (GA) has been increasingly used as a reliable index for short-term glycemic monitoring, and is inversely associated with β-cell function. Because the pathophysiologic nature of type 2 diabetes (T2D) is characterized by progressive decline in insulin secretion, the aim was to determine whether GA levels were affected by diabetes duration in subjects with T2D.

Methods

To minimize the effect of glucose variability on GA, subjects with stably maintained HbA1c levels of <0.5% fluctuation across 6 months of measurements were included. Patients with newly diagnosed T2D (n = 1059) and with duration>1 year (n = 781) were recruited and categorized as New-T2D and Old-T2D, respectively. Biochemical, glycemic, and C-peptide parameters were measured.

Results

GA levels were significantly elevated in HbA1c-matched Old-T2D subjects compared to New-T2D subjects. Duration of diabetes was positively correlated with GA, whereas a negative relationship was found with C-peptide increment (ΔC-peptide). Among insulin secretory indices, dynamic parameters such as ΔC-peptide were inversely related to GA (r = −0.42, p<0.001). Multiple linear regression analyses showed that duration of diabetes was associated with GA (standardized β coefficient [STDβ] = 0.05, p<0.001), but not with HbA1c (STDβ = 0.04, p<0.095). This association disappeared after additional adjustment with ΔC-peptide (STDβ = 0.02, p = 0.372), suggesting that β-cell function might be a linking factor of close relationship between duration of diabetes and GA values.

Conclusions

The present study showed that GA levels were significantly increased in subjects with longer duration T2D and with decreased insulin secretory function. Additional caution should be taken when interpreting GA values to assess glycemic control status in these individuals.  相似文献   

17.

Background

Type 1 diabetes mellitus (T1DM) is recognized as a T-cell-mediated autoimmune disease. Vitamin D compounds are known to suppress T-cell activation by binding to vitamin D receptor (VDR); and thus, VDR gene polymorphisms may be related to T-cell-mediated autoimmune diseases. The aim of this study was to investigate the association between vitamin D status and VDR gene polymorphisms and T1DM.

Materials and methods

One hundred and twenty patients with T1DM and one hundred and twenty controls were enrolled in the study. VDR gene BsmI, FokI, ApaI and TaqI polymorphisms were determined using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Serum 25-hydroxyvitamin D (25(OH)D) was determined using ELISA.

Result

Serum 25(OH)D levels revealed a vitamin D deficiency or insufficiency in 75% of the patients. The mean levels of vitamin D were significantly lower in patients as compared to their controls (P = < 0.001). VDR BsmI Bb and bb genotypes and VDR FokI Ff and ff genotypes were associated with increased risk of T1DM (OR = 2.3, 95% CI = 1.3–4.2, P = 0.005; OR = 2.2, 95% CI = 1.1–4.7, P = 0.04; OR = 1.8, 95% CI = 1.03–3.04, P = 0.04; OR = 4.03, 95% CI = 1.2–13.1, P = 0.01 respectively), while the VDR ApaI and TaqI polymorphisms were not.

Conclusion

Our study indicated that vitamin D deficiency and VDR BsmI and FokI polymorphisms were associated with T1DM in Egyptian children.  相似文献   

18.

Background

Apelin is an adipokine that plays a role in the regulation of glucose homeostasis and in obesity. The relationship between apelin serum concentration and dysmetabolic conditions such as type 2 diabetes (T2D) is still controversial. Aims of our study are: 1) determine the circulating levels of apelin in a large cohort of Italian subjects with T2D, T1D and in non-diabetic controls; 2) identify putative metabolic determinants of modified apelin concentrations, in order to search possible mechanism of apelin control; 3) investigate changes in apelin levels in response to sharp modifications of glucose/insulin metabolism in T2D obese subjects before and 3 days after bariatric surgery.

Methods

We recruited 369 subjects, 119 with T2D, 113 with T1D and 137 non-diabetic controls. All subjects underwent a complete clinical examination, including anthropometric and laboratory measurements. Serum apelin levels were determined by EIA (immunoenzyme assay).

Results

Patients with T2D had significantly higher serum apelin levels compared to controls (1.23±1.1 ng/mL vs 0.91±0.7 ng/mL, P<0.001) and to T1D subjects (0.73±0.39 ng/mL, P<0.001). Controls and T1D subjects did not differ significantly in apelin levels. Apelin concentrations were directly associated with fasting blood glucose (FBG), body mass index (BMI), basal Disposition Index (DI-0), age, and diagnosis of T2D at bivariate correlation analysis. Multiple regression analysis confirmed that diagnosis of T2D, basal DI-0 and FBG were all determinants of serum apelin levels independently from age and BMI. Bariatric surgery performed in a subgroup of obese diabetic subjects (n = 12) resulted in a significant reduction of apelin concentrations compared to baseline levels (P = 0.01).

Conclusions

Our study demonstrates that T2D, but not T1D, is associated with increased serum apelin levels compared to non-diabetic subjects. This association is dependent on impaired glucose homeostasis, and disappears after bariatric surgery, providing further evidence regarding the relationship between apelin and the regulation of glucose metabolism.  相似文献   

19.
BackgroundType 2 Diabetes mellitus (T2DM) is a chronic metabolic disorder. It is a major non-communicable disease affecting 463 million people globally in 2019 and is expected to be double to about 700 million by 2045. The majority are Asians with Indian ethnicity in Malaysia reported as the highest prevalence of T2DM. Cardiovascular disease, renal failure, blindness and neuropathy, as well as premature death are the known morbidity and mortality resulted from T2DM. T2DM is characterized by the dysfunctional insulin physiology that causes reduction of glucose transport into the cells which lead to hyperglycaemia. Hence, one of the important treatments is an oral antidiabetic drug that lowers the serum glucose level in patients with T2DM. This drug will be transported across cell membranes by organic cation transporters (OCT). Therefore, it is important to identify the OCT candidate gene polymorphisms related to T2DM especially among the Indian ethnicity in Malaysia.MethodsBlood samples were collected from 132 T2DM patients and 133 controls. Genotyping of OCT1 (rs628031), OCT2 (rs145450955), OCT3 (rs3088442 and rs2292334) was performed using (PCR-RFLP).ResultsNo association was observed for genotypic and allelic distributions in all the gene polymorphisms of OCT genes (P > 0.05). However, a logistic regression analysis stratified by gender in a dominant model showed a significant difference for OCT3 among males with T2DM (P = 0.006). Significant association was also observed for OCT3 when stratified to subjects aged > 45 years old (P = 0.009).ConclusionBased on these findings, the association of OCT3 (rs2292334) could be considered as a possible genetic risk factor for the development of T2DM among Indian males alone.  相似文献   

20.

Background

In several autoimmune diseases, including multiple sclerosis (MS), a compromised regulatory T cell (Treg) function is believed to be critically involved in the disease process. In vitro, the biologically active metabolite of vitamin D has been shown to promote Treg development. A poor vitamin D status has been linked with MS incidence and MS disease activity. In the present study, we assess a potential in vivo correlation between vitamin D status and Treg function in relapsing remitting MS (RRMS) patients.

Methodology/Principal Findings

Serum levels of 25-hydroxyvitamin D (25(OH)D) were measured in 29 RRMS patients. The number of circulating Tregs was assessed by flow-cytometry, and their functionality was tested in vitro in a CFSE-based proliferation suppression assay. Additionally, the intracellular cytokine profile of T helper cells was determined directly ex-vivo by flow-cytometry. Serum levels of 25(OH)D correlated positively with the ability of Tregs to suppress T cell proliferation (R = 0.590, P = 0.002). No correlation between 25(OH)D levels and the number of Tregs was found. The IFN-γ/IL-4 ratio (Th1/Th2-balance) was more directed towards IL-4 in patients with favourable 25(OH)D levels (R = −0.435, P = 0.023).

Conclusions/Significance

These results show an association of high 25(OH)D levels with an improved Treg function, and with skewing of the Th1/Th2 balance towards Th2. These findings suggest that vitamin D is an important promoter of T cell regulation in vivo in MS patients. It is tempting to speculate that our results may not only hold for MS, but also for other autoimmune diseases. Future intervention studies will show whether modulation of vitamin D status results in modulation of the T cell response and subsequent amelioration of disease activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号