首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rickettsia helvetica, a spotted fever rickettsia and emerging pathogen with Ixodes ricinus ticks as the main vector, is an agent of human disease and may cause febrile illness as well as meningitis. In three parallel series the isolated standard type of R. helvetica, obtained from a PCR-positive I. ricinus tick, was high-passaged and propagated in a Vero cell line. By using quantitative real-time PCR, the generation time from inoculation to stationary phase of growth was calculated to 20–22 h. In the static cultivation system the stationary phase was observed from the seventh day after inoculation, and there was no observed degradation of R. helvetica DNA during the 14 days studied. Microscopy showed that the organisms invaded the host cells rapidly and were primarily found free in the cytoplasm and only occasionally located in the nucleus. Four days after inoculation some of the host cells were broken and many indifferent stages of cytoplasmic organic decomposition were seen. However the R. helvetica organism did not show any morphologic alterations and the number of organisms was stable after the replication peak which may indicate that R. helvetica is adapted to growth in a Vero cell line and/or that the phase of degradation occurs later than the 14 days studied. The findings differ from what has been reported for other rickettsiae of the spotted fever group and may be of importance for invasiveness and virulence of R. helvetica.  相似文献   

2.
Rickettsia helvetica, a tick-borne member of the spotted-fever-group rickettsiae, is a suspected pathogen in humans; however, its role in animals is unknown. The aims of this study were to establish a R. helvetica-specific real-time TaqMan PCR assay and apply it to the analysis of tick vectors (to determine potential exposure risk) and blood samples from Canidae and humans (to determine prevalence of infection). The newly designed 23S rRNA gene assay for R. helvetica was more sensitive than a published citrate synthase gene (gltA) assay for several rickettsiae. Blood samples from 884 dogs, 58 foxes, and 214 human patients and 2,073 ticks (Ixodes spp.) collected from either vegetation or animals were analyzed. Although the maximal likelihood estimate of prevalence was 12% in unfed ticks and 36% in ticks collected from animals, none of the 1,156 blood samples tested PCR positive. Ticks from cats were more frequently PCR positive than ticks from dogs. Sequencing of the 23S rRNA and/or the gltA gene of 17 tick pools confirmed the presence of R. helvetica. Additionally, Rickettsia monacensis, which has not been previously found in Switzerland, was identified. In conclusion, R. helvetica was frequently detected in the tick population but not in blood samples. Nevertheless, due to the broad host range of Ixodes ticks and the high rate of infestation with this agent (i.e., R. helvetica was 13 times more frequent in unfed ticks than the tick-borne encephalitis virus), many mammals may be exposed to R. helvetica. The PCR assay described here represents an important tool for studying this topic.Tick-borne rickettsioses are caused by intracellular bacteria belonging to the spotted fever group (SFG) of the genus Rickettsia. The latter comprises more than 20 different species, of which an increasing number are known to be associated with human and animal diseases. The SFG rickettsiae are distributed worldwide, and their distribution depends upon the occurrence of tick species. The most common tick in Europe is Ixodes ricinus, which was found to harbor Rickettsia helvetica. R. helvetica is transmitted not only transstadially but also transovarially in I. ricinus. Therefore, this tick is both a vector and a reservoir for R. helvetica. Due to the broad host range of I. ricinus, many mammalian species, including humans, can serve as hosts. Therefore, these host species may potentially be exposed to R. helvetica. R. helvetica is a suspected pathogen in humans, and the symptoms described for infections in humans include fever, headache, arthralgia, and myalgia (1, 3, 7, 21, 34). The agent also has been implicated in two cases of fatal perimyocarditis (20, 22).Interestingly, despite the wide distribution of I. ricinus ticks and the high rate of infection of these ticks with R. helvetica that has been reported in several European countries (2, 9, 18, 19, 25, 29, 35, 42), larger studies discussing the prevalence of the infection in humans and animals are scarce. No studies evaluating the importance of R. helvetica in pets or farm animals are available as yet. It is unknown whether these animals can serve as a reservoir or develop clinical signs after infection.Rickettsial infections have been reported to represent the third most common vector-borne disease acquired during international travel and are therefore considered a common cause of fever of unknown origin in returned travelers (24). As the occurrence of tick-borne infectious diseases, and particularly rickettsial infections, is increasing in humans worldwide (26), it may be assumed that the same holds true for companion animals. In dogs, fever of unknown origin that is responsive to antibiotic treatment is frequently observed. In these cases, an infectious agent is suspected but rarely, if ever, confirmed. R. helvetica infections may be the underlying cause in some of these cases, even if the patient does not have a travel history, since exposure to R. helvetica-infected I. ricinus ticks may have occurred locally.To date, the diagnosis of rickettsial infection has most often been confirmed by serological testing. However, antibodies are not detectable prior to the second week of illness for any rickettsial disease studied thus far. Moreover, except for detection of seroconversion or a fourfold increase in titer, a positive serology result does not necessarily indicate an acute infection. A standardized sensitive and specific molecular method for the confirmation of R. helvetica infections would facilitate not only its diagnosis but also prevalence studies. This in turn could increase the awareness of physicians and veterinarians who are confronted with diseased individuals.Therefore, the aims of the present study were as follows: first, to establish a sensitive real-time PCR assay specific for R. helvetica; second, to study tick vectors for R. helvetica to assess the potential exposure risk for animals and humans; and third, to evaluate blood samples from Canidae and humans to assess the occurrence of R. helvetica infections.(These studies were conducted by A. Perreten as partial fulfillment of the requirements for a doctoral thesis at the Vetsuisse Faculty, University of Zurich.)  相似文献   

3.
Rickettsiae are obligate intracellular alphaproteobacteria that include pathogenic species in the spotted fever, typhus, and transitional groups. The development of a standardized cell line in which diverse rickettsiae can be grown and compared would be highly advantageous to investigate the differences among and between pathogenic and nonpathogenic species of rickettsiae. Although several rickettsial species have been grown in tick cells, tick cells are more difficult to maintain and they grow more slowly than insect cells. Rickettsia-permissive arthropod cell lines that can be passaged rapidly are highly desirable for studies on arthropod-Rickettsia interactions. We used two cell lines (Aedes albopictus cell line Aa23 and Anopheles gambiae cell line Sua5B) that have not been used previously for the purpose of rickettsial propagation. We optimized the culture conditions to propagate one transitional-group rickettsial species (Rickettsia felis) and two spotted-fever-group rickettsial species (R. montanensis and R. peacockii) in each cell line. Both cell lines allowed the stable propagation of rickettsiae by weekly passaging regimens. Stable infections were confirmed by PCR, restriction digestion of rompA, sequencing, and the direct observation of bacteria by fluorescence in situ hybridization. These cell lines not only supported rickettsial growth but were also permissive toward the most fastidious species of the three, R. peacockii. The permissive nature of these cell lines suggests that they may potentially be used to isolate novel rickettsiae or other intracellular bacteria. Our results have important implications for the in vitro maintenance of uncultured rickettsiae, as well as providing insights into Rickettsia-arthropod interactions.  相似文献   

4.
Cytokines and chemokines trigger complex intracellular signaling through specific receptors to mediate immune cell recruitment and activation at the sites of infection. CX3CL1 (Fractalkine), a membrane-bound chemokine also capable of facilitating intercellular interactions as an adhesion molecule, contributes to host immune responses by virtue of its chemoattractant functions. Published studies have documented increased CX3CL1 expression in target tissues in a murine model of spotted fever rickettsiosis temporally corresponding to infiltration of macrophages and recovery from infection. Because pathogenic rickettsiae primarily target vascular endothelium in the mammalian hosts, we have now determined CX3CL1 mRNA and protein expression in cultured human microvascular endothelial cells (HMECs) infected in vitro with Rickettsia rickettsii. Our findings reveal 15.5 ± 4.0-fold and 12.3 ± 2.3-fold increase in Cx3cl1 mRNA expression at 3 h and 24 h post-infection, coinciding with higher steady-state levels of the corresponding protein in comparison to uninfected HMECs. Since CX3CL1 is a validated target of microRNA (miR)-424-5p (miR-424) and our earlier findings demonstrated robust down-regulation of miR-424 in R. rickettsii-infected HMECs, we further explored the possibility of regulation of CX3CL1 expression during rickettsial infection by miR-424. As expected, R. rickettsii infection resulted in 87 ± 5% reduction in miR-424 expression in host HMECs. Interestingly, a miR-424 mimic downregulated R. rickettsii-induced expression of CX3CL1, whereas an inhibitor of miR-424 yielded a converse up-regulatory effect, suggesting miR-424-mediated regulation of CX3CL1 during infection. Together, these findings provide the first evidence for the roles of a host microRNA in the regulation of an important bifunctional chemokine governing innate immune responses to pathogenic rickettsiae.  相似文献   

5.
Twenty Rhipicephalus sanguineus ticks collected in eastern Arizona were tested by PCR assay to establish their infection rate with spotted fever group rickettsiae. With a nested PCR assay which detects a fragment of the Rickettsia genus-specific 17-kDa antigen gene (htrA), five ticks (25%) were found to contain rickettsial DNA. One rickettsial isolate was obtained from these ticks by inoculating a suspension of a triturated tick into monolayers of Vero E6 monkey kidney cells and XTC-2 clawed toad cells, and its cell culture and genotypic characteristics were determined. Fragments of the 16S rRNA, GltA, rOmpA, rOmpB, and Sca4 genes had 100%, 100%, 99%, 99%, and 99%, respectively, nucleotide similarity to Rickettsia massiliae strain Bar29, previously isolated from R. sanguineus in Catalonia, Spain (L. Beati et al., J. Clin. Microbiol. 34:2688-2694, 1996). The new isolate, AZT80, does not elicit cytotoxic effects in Vero cells and causes a persistent infection in XTC-2 cells. The AZT80 strain is susceptible to doxycycline but resistant to rifampin and erythromycin. Whether R. massiliae AZT80 is pathogenic or infectious for dogs and humans or can cause seroconversion to spotted fever group antigens in the United States is unknown.  相似文献   

6.
7.
8.
Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate intracellular bacterium that replicates only within the cytosol of a eukaryotic host cell. Despite the barriers to genetic manipulation that such a life style creates, rickettsial mutants have been generated by transposon insertion as well as by homologous recombination mechanisms. However, progress is hampered by the length of time required to identify and isolate R. prowazekii transformants. To reduce the time required and variability associated with propagation and harvesting of rickettsiae for each transformation experiment, characterized frozen stocks were used to generate electrocompetent rickettsiae. Transformation experiments employing these rickettsiae established that fluorescent rickettsial populations could be identified using a fluorescence activated cell sorter within one week following electroporation. Early detection was improved with increasing amounts of transforming DNA. In addition, we demonstrate that heterogeneous populations of rickettsiae-infected cells can be sorted into distinct sub-populations based on the number of rickettsiae per cell. Together our data suggest the combination of fluorescent reporters and cell sorting represent an important technical advance that will facilitate isolation of distinct R. prowazekii mutants and allow for closer examination of the effects of infection on host cells at various infectious burdens.  相似文献   

9.

Background

Rickettsioses are one of the most important causes of systemic febrile illness among travelers from developed countries, but little is known about their incidence in indigenous populations, especially in West Africa.

Methodology/Principal Findings

Overall seroprevalence evaluated by immunofluorescence using six rickettsial antigens (spotted fever and typhus group) in rural populations of two villages of the Sine-Saloum region of Senegal was found to be 21.4% and 51% for spotted fever group rickettsiae for Dielmo and Ndiop villages, respectively. We investigated the role of tick-borne rickettsiae as the cause of acute non-malarial febrile diseases in the same villages. The incidence of rickettsial DNA in 204 blood samples from 134 (62M and 72F) febrile patients negative for malaria was studied. DNA extracted from whole blood was tested by two qPCR systems. Rickettsial DNA was found in nine patients, eight with Rickettsia felis (separately reported). For the first time in West Africa, Rickettsia conorii was diagnosed in one patient. We also tested 2,767 Ixodid ticks collected in two regions of Senegal (Niakhar and Sine-Saloum) from domestic animals (cows, sheep, goats, donkeys and horses) by qPCR and identified five different pathogenic rickettsiae. We found the following: Rickettsia aeschlimannii in Hyalomma marginatum rufipes (51.3% and 44.8% in Niakhar and Sine-Saloum region, respectively), in Hyalomma truncatum (6% and 6.8%) and in Rhipicephalus evertsi evertsi (0.5%, only in Niakhar); R. c. conorii in Rh. e. evertsi (0.4%, only in Sine-Saloum); Rickettsia massiliae in Rhipicephalus guilhoni (22.4%, only in Niakhar); Rickettsia sibirica mongolitimonae in Hyalomma truncatum (13.5%, only in Sine-Saloum); and Rickettsia africae in Rhipicephalus evertsi evertsi (0.7% and 0.4% in Niakhar and Sine-Saloum region, respectively) as well as in Rhipicephalus annulatus (20%, only in Sine-Saloum). We isolated two rickettsial strains from H. truncatum: R. s. mongolitimonae and R. aeschlimannii.

Conclusions/Significance

We believe that together with our previous data on the high prevalence of R. africae in Amblyomma ticks and R. felis infection in patients, the presented results on the distribution of pathogenic rickettsiae in ticks and the first R. conorii case in West Africa show that the rural population of Senegal is at risk for other tick-borne rickettsioses, which are significant causes of febrile disease in this area.  相似文献   

10.
The purpose of this study was to investigate the role of wild animals for Anaplasma phagocytophilum, other ehrlichiae/anaplasmae, Rickettsia helvetica and other rickettsiae and whether different genetic variants of A. phagocytophilum in central Slovakia exist. A total of 109 spleen samples from 49 red deer (Cervus elaphus), 30 roe deer (Capreolus capreolus), 28 wild boar (Sus scrofa) and two mouflon (Ovis musimon) were collected from June 2005 to December 2006. Polymerase chain reaction (PCR) amplification of the16S rRNA gene was used for detection of ehrlichiae/anaplasmae. A nested PCR targeting part (392 bp) of groESL gene was applied for the specific detection of A. phagocytophilum. Fragments of the gltA and ompA genes (381 bp and 632 bp, respectively) were amplified to detect rickettsiae, followed by sequencing. A. phagocytophilum and R. helvetica were detected in wild animals. The prevalence of A. phagocytophilum was 50.0 ± 18.2% in roe deer and 53.1 ± 14.1% in red deer. None of the 28 wild boar was PCR positive for ehrlichiae/anaplasmae. A. phagocytophilum was detected in one mouflon. R. helvetica was found in one roe deer. Our study suggests a role of cervids as a natural reservoir of A. phagocytophilum in Slovakia. However, the role of cervids and wild boars in the circulation of R. helvetica remains unknown. The analysis of sequence variation in the msp4 coding region of A. phagocytophilum showed the presence of different variants previously described in ruminants.  相似文献   

11.
Genetic analysis of Rickettsia prowazekii has been hindered by the lack of selectable markers and efficient mechanisms for generating rickettsial gene knockouts. We have addressed these problems by adapting a gene that codes for rifampin resistance for expression in R. prowazekii and by incorporating this selection into a transposon mutagenesis system suitable for generating rickettsial gene knockouts. The arr-2 gene codes for an enzyme that ADP-ribosylates rifampin, thereby destroying its antibacterial activity. Based on the published sequence, this gene was synthesized by PCR with overlapping primers that contained rickettsial codon usage base changes. This R. prowazekii-adapted arr-2 gene (Rparr-2) was placed downstream of the strong rickettsial rpsL promoter (rpsLP), and the entire construct was inserted into the Epicentre EZ::TN transposome system. A purified transposon containing rpsLP-Rparr-2 was combined with transposase, and the resulting DNA-protein complex (transposome) was electroporated into competent rickettsiae. Following selection with rifampin, rickettsiae with transposon insertions in the genome were identified by PCR and Southern blotting and the insertion sites were determined by rescue cloning and inverse PCR. Multiple insertions into widely spaced areas of the R. prowazekii genome were identified. Three insertions were identified within gene coding sequences. Transposomes provide a mechanism for generating random insertional mutations in R. prowazekii, thereby identifying nonessential rickettsial genes.  相似文献   

12.
13.
Rickettsiae are obligate intracellular alphaproteobacteria that include pathogenic species in the spotted fever, typhus, and transitional groups. The development of a standardized cell line in which diverse rickettsiae can be grown and compared would be highly advantageous to investigate the differences among and between pathogenic and nonpathogenic species of rickettsiae. Although several rickettsial species have been grown in tick cells, tick cells are more difficult to maintain and they grow more slowly than insect cells. Rickettsia-permissive arthropod cell lines that can be passaged rapidly are highly desirable for studies on arthropod-Rickettsia interactions. We used two cell lines (Aedes albopictus cell line Aa23 and Anopheles gambiae cell line Sua5B) that have not been used previously for the purpose of rickettsial propagation. We optimized the culture conditions to propagate one transitional-group rickettsial species (Rickettsia felis) and two spotted-fever-group rickettsial species (R. montanensis and R. peacockii) in each cell line. Both cell lines allowed the stable propagation of rickettsiae by weekly passaging regimens. Stable infections were confirmed by PCR, restriction digestion of rompA, sequencing, and the direct observation of bacteria by fluorescence in situ hybridization. These cell lines not only supported rickettsial growth but were also permissive toward the most fastidious species of the three, R. peacockii. The permissive nature of these cell lines suggests that they may potentially be used to isolate novel rickettsiae or other intracellular bacteria. Our results have important implications for the in vitro maintenance of uncultured rickettsiae, as well as providing insights into Rickettsia-arthropod interactions.  相似文献   

14.
15.
Morphological differentiation in some arthropod-borne bacteria is correlated with increased bacterial virulence, transmission potential, and/or as a response to environmental stress. In the current study, we utilized an in vitro model to examine Rickettsia felis morphology and growth under various culture conditions and bacterial densities to identify potential factors that contribute to polymorphism in rickettsiae. We utilized microscopy (electron microscopy and immunofluorescence), genomic (PCR amplification and DNA sequencing of rickettsial genes), and proteomic (Western blotting and liquid chromatography-tandem mass spectrometry) techniques to identify and characterize morphologically distinct, long-form R. felis. Without exchange of host cell growth medium, polymorphic R. felis was detected at 12 days postinoculation when rickettsiae were seeded at a multiplicity of infection (MOI) of 5 and 50. Compared to short-form R. felis organisms, no change in membrane ultrastructure in long-form polymorphic rickettsiae was observed, and rickettsiae were up to six times the length of typical short-form rickettsiae. In vitro assays demonstrated that short-form R. felis entered into and replicated in host cells faster than long-form R. felis. However, when both short- and long-form R. felis organisms were maintained in cell-free medium for 12 days, the infectivity of short-form R. felis was decreased compared to long-form R. felis organisms, which were capable of entering host cells, suggesting that long-form R. felis is more stable outside the host cell. The relationship between rickettsial polymorphism and rickettsial survivorship should be examined further as the yet undetermined route of horizontal transmission of R. felis may utilize metabolically and morphologically distinct forms for successful transmission.  相似文献   

16.
We describe the isolation and characterization of Rickettsia monacensis sp. nov. (type strain, IrR/MunichT) from an Ixodes ricinus tick collected in a city park, the English Garden in Munich, Germany. Rickettsiae were propagated in vitro with Ixodes scapularis cell line ISE6. BLAST analysis of the 16S rRNA, the citrate synthase, and the partial 190-kDa rickettsial outer membrane protein A (rOmpA) gene sequences demonstrated that the isolate was a spotted fever group (SFG) rickettsia closely related to several yet-to-be-cultivated rickettsiae associated with I. ricinus. Phylogenetic analysis of partial rompA sequences demonstrated that the isolate was genotypically different from other validated species of SFG rickettsiae. R. monacensis also replicated in cell lines derived from the ticks I. ricinus (IRE11) and Dermacentor andersoni (DAE100) and in the mammalian cell lines L-929 and Vero, causing cell lysis. Transmission electron microscopy of infected ISE6 and Vero cells showed rickettsiae within the cytoplasm, pseudopodia, nuclei, and vacuoles. Hamsters inoculated with R. monacensis had immunoglobulin G antibody titers as high as 1:16,384, as determined by indirect immunofluorescence assay. Western blot analyses demonstrated that the hamster sera cross-reacted with peptides from other phylogenetically distinct rickettsiae, including rOmpA. R. monacensis induced actin tails in both tick and mammalian cells similar to those reported for R. rickettsii. R. monacensis joins a growing list of SFG rickettsiae that colonize ticks but whose infectivity and pathogenicity for vertebrates are unknown.  相似文献   

17.
The tick species, Amblyomma neumanni (Acari: Ixodidae) is the most frequent tick parasitizing humans in northwestern Argentina. The present study evaluated the rickettsial infection among 55 A. neumanni adult free-living ticks collected in Dean Funes, Córdoba Province. Ticks were individually processed by the hemolymph test with Gimenez staining, isolation of rickettsia in Vero cell culture by the shell vial technique, and polymerase chain reaction (PCR) targeting the citrate synthase rickettsial gene. Through the shell vial technique, rickettsiae were successfully isolated and established in Vero cell culture from two ticks (ticks 4 and 13), which previously showed to contain Rickettsia-like organisms by the hemolymph test. These two Rickettsia isolates were designated as An4 and An13. Molecular characterization (partial DNA sequences of two to three rickettsial genes were determined) of these two isolates and phylogenetic analyses identified them as Rickettsia bellii (isolate An4) and CandidatusRickettsia amblyommii” (isolate An13). After testing all A. neumanni ticks by PCR, the prevalence of Candidatus R. amblyommii and R. bellii was 23.6% (13/55) and 3.6% (2/55), respectively. These two rickettsiae have been considered of unknown pathogenicity and appropriate studies to test their pathogenicity to humans or animals need to be conducted. This is the first report of Rickettsia in ticks from Argentina, and also in the species A. neumanni. The results reinforce previous findings that R. bellii (and probably Candidatus R. amblyommii) are widespread among some Neotropical Amblyomma species, suggesting that these ticks gained these bacterial agents from a common ancestor and/or by recent horizontal transmission of rickettsiae between ticks.  相似文献   

18.
It has been reported that oxidatively modified low-density lipoprotein (Ox-LDL) involvement with vascular endothelial growth factor (VEGF) and foam cell formation play an important role in atherosclerosis (AS). Protective effects of Ginkgo biloba extract (EGb 761) have been identified for some cardiovascular and neurological disorders. The aim of this study was to investigate whether Ox-LDL regulates VEGF expression in human THP-1 monocytes, as well as the effect of EGb 761 on VEGF expression and the formation of foam cells. After exposure to Ox-LDL alone or in combination with EGb 761 for up to 48 h, cell viability was measured using the MTT assay. VEGF protein content in the supernatant was analyzed by enzyme-linked immunosorbent assay (ELISA). VEGF mRNA was determined by real-time PCR. To determine the effect of EGb 761 on foam cell formation, an Ox-LDL-induced foam cell model was used. Ox-LDL inhibited the growth of THP-1 cells and EGb 761 increased the cell survival rate. Ox-LDL markedly increased VEGF expression in THP-1 cells in a time- and concentration-dependent manner, which was significantly suppressed by EGb 761. EGb 761 also inhibited monocyte/macrophage-derived foam cell formation. These results suggest that Ox-LDL is involved in the development of human AS through VEGF induction in monocytes, and that EGb 761 prevents in vitro atherogenesis, probably via downregulation of VEGF expression in monocytes and inhibition of monocyte/macrophage-derived foam cell formation. The findings suggest a mechanism for the in vivo anti-AS effect of EGb 761 and support its potential clinical use in AS.  相似文献   

19.
20.
From January 2002 to December 2004, 152 ticks were collected from 40 wild birds recovered in Santo André Natural Reserve and Monsanto Forestal Park, Portugal mainland. Five ticks species were identified from 22 species of birds, and new host record were provided for some species. In addition, 32 (21%) ticks were screened by PCR to detect infections with agents belonging to order Rickettsiales: Anaplasma phagocytophilum, Ehrlichia chaffeensis, and Rickettsia spp. PCR amplicons were obtained in 5 (15.6%) tick samples. Rickettsia DNA exhibiting gltA sequences similar to those of Rickettsia aeschilimannii, R. helvetica and R. massiliae were identified in Hyalomma marginatum, Ixodes ventalloi and in Rhipicephalus turanicus, respectively. This is the first report of rickettsiae infections in ticks collected from wild birds in Portugal. Giving the results presented above wild birds play an important role in the maintenance and dissemination of several tick species and associated rickettsiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号