首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 866 毫秒
1.
Mushtaq AHMAD 《昆虫学报》2009,52(6):631-639
采用浸液生测法研究了斜纹夜蛾Spodoptera litura巴基斯坦抗性种群中酶抑制剂[胡椒基丁醚(PBO)和脱叶膦(DEF)]对丙溴磷、灭多威、硫双灭多威、氯氰菊酯、氯氟氰菊酯、联苯菊酯、茚虫威和多杀菌素等杀虫剂的增效作用。结果表明:PPO和DEF对氨基甲酸酯杀虫剂灭多威和硫双灭多威均具有增效作用,但对有机磷杀虫剂丙溴磷不具有增效作用。两种抑制剂对氯氰菊酯均产生增效作用,但对联苯菊酯没有增效作用。PPO 和DEF增加了氯氟氰菊酯对Multan种群的毒性,但没有增加其对Mailsi种群的毒性。DEF对多杀菌素具有增效作用,但PBO对其没有增效作用。PBO和DEF对氨基甲酸酯杀虫剂、拟除虫菊酯杀虫剂、茚虫威和多杀菌素具有明显的增效作用,这说明细胞色素P450单加氧酶和酯酶的解毒作用至少部分参与了斜纹夜蛾对这些杀虫剂的抗性过程。不过,两种增效剂对杀虫剂增效作用范围有限,暗示对于斜纹夜蛾巴基斯坦种群而言,其他的机制(如靶位点不敏感、表皮穿透作用降低)可能是更重要的抗性机制。  相似文献   

2.
禾谷缢管蚜和麦长管蚜玻璃管药膜法敏感毒力基线的建立   总被引:9,自引:0,他引:9  
【目的】建立禾谷缢管蚜Rhopalosiphum padi(Linnaeus)和麦长管蚜Sitobion avenae(Fabricius)对常用杀虫剂的相对敏感基线。【方法】从田间采集麦蚜在实验室内饲养30代以上,利用玻璃管药膜法测定其对杀虫剂的敏感度,每条毒力基线为2次以上独立测定数据合并后的计算结果。【结果】用玻璃管药膜法建立了包括新烟碱类、吡啶类、氨基甲酸酯类、有机磷类和拟除虫菊酯类共22个药剂品种对禾谷缢管蚜和麦长管蚜3 h的敏感毒力基线。禾谷缢管蚜对新烟碱类药剂吡虫啉和啶虫脒的LC50值分别为0.02和0.007 μg/cm2;对吡啶类药剂吡蚜酮的LC50值为0.124 μg/cm2;对氨基甲酸酯类药剂丁硫克百威、硫双灭多威、灭多威、抗蚜威、西维因的LC50值为0.0026~0.70 μg/cm2;对有机磷类药剂三唑磷、丙溴磷、氧乐果、乐果、马拉硫磷、辛硫磷、敌敌畏、毒死蜱的LC50值为0.005~0.065 μg/cm2;对拟除虫菊酯类药剂三氟氯氰菊酯、高效氯氰菊酯、溴氰菊酯、联苯菊酯、氰戊菊酯、氯氰菊酯的LC50值为0.033~0.240 μg/cm2。麦长管蚜对新烟碱类药剂吡虫啉和啶虫脒的LC50值分别为0.15和0.12 μg/cm2;对吡啶类药剂吡蚜酮的LC50值为0.41 μg/cm2;对氨基甲酸酯类药剂丁硫克百威、硫双灭多威、灭多威、抗蚜威、西维因的LC50值为0.005~0.76 μg/cm2;对有机磷类药剂三唑磷、丙溴磷、氧乐果、乐果、马拉硫磷、辛硫磷、敌敌畏、毒死蜱的LC50值为0.018~0.36 μg/cm2;对拟除虫菊酯类药剂三氟氯氰菊酯、高效氯氰菊酯、溴氰菊酯、联苯菊酯、氰戊菊酯、氯氰菊酯的LC50值为0.20~2.94 μg/cm2。【结论】建立的两种麦蚜对22种杀虫药剂的相对敏感基线,包括当前所有可能用于防治麦蚜的药剂,可以用于以后麦蚜抗药性监测或其他相关研究的参照;禾谷缢管蚜对药剂的敏感度高于麦长管蚜。  相似文献   

3.
To determine their baseline susceptibility to chlorantraniliprole, spinetoram, spinosad, and acetamiprid, oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), neonates were placed on diet cubes containing a range of concentrations of each insecticide. Mortality was assessed after 96 h. Two populations-a long-term laboratory colony from Rutgers University and a colony established in 2007 from a southwestern Illinois (Calhoun County) field population-were tested. We used probit and logit analyses to compare the responses of Calhoun colony neonates from parents reared on 'Gala' apples (Malus spp.) with those of Calhoun colony neonates from parents reared on lima bean, Phaseolus lunatus L., diet. We also compared the responses of Calhoun colony neonates with those of Rutgers colony neonates (all from parents reared on apples). LC50s (ppm in diet) for Calhoun colony progeny of adults reared on apples were 0.08, 0.06, 0.41, and 0.30, respectively, for chlorantraniliprole, spinetoram, acetamiprid, and spinosad. Parental food source (apples versus lima bean diet) did not consistently influence the concentration-mortality relationships for neonates. Based on LC50s and toxicity ratio tests, Calhoun colony neonates were slightly but significantly less susceptible to spinetoram and acetamiprid than were Rutgers colony neonates. Similarly, LC90s and toxicity ratio tests indicated that Calhoun colony neonates were slightly but significantly less susceptible to chlorantraniliprole as well. However, toxicity ratios (Calhoun/Rutgers) were low in all instances, and the highest ratio was 1.73 at LC90 for chlorantraniliprole. Overall, the two colonies responded similarly to these insecticides. Results reported here provide baseline data for future monitoring of resistance development.  相似文献   

4.
During an outbreak of the diamondback moth, Plutella xylostella (L.), in California in 1997, nine populations were collected from the major broccoli areas throughout the state. Populations were assayed for their susceptibility to currently used materials (Bacillus thuringiensis subsp. kurstaki, permethrin, and methomyl) and to newer materials that had not yet been commercially used in California (spinosad, emamectin benzoate, and chlorfenapyr). For the currently used insecticides, elevated levels of resistance were seen only with permethrin and seven of the nine populations had tolerance ratios (TR) of > 100. With the newer chemistries, TR values were all < 15. To compare potential cross-tolerance, TR values of the currently used insecticides were compared with TR values of the newer insecticides. There were significant relationships found between: methomyl and emamectin benzoate, methomyl and spinosad, and permethrin and spinosad. Further biochemical studies are needed to confirm the actual mechanisms that lead to these relationships and field tests are needed to determine what impact, if any, such TR levels would have on control in the field. These data indicate that resistance to at least one of the commonly used insecticides (permethrin) may have played a role in the outbreak during 1997. However, other factors may have been at least equally important. The winter of 1996-1997 was warmer than normal, and during the period from February through August of 1997 the amount of rainfall was < 50% of normal. Hot and dry conditions are known to be conducive to outbreaks of P. xylostella. These data add to an overall knowledge about the geographic variation of resistance in P. xylostella populations within the United States. They also serve as a baseline for monitoring changes in susceptibility to these newer insecticides and can also help explain the occurrence of outbreaks caused by factors other than insecticide resistance.  相似文献   

5.
The soybean looper Chrysodeixis includens (Lepidoptera: Noctuidae) is a pest of the soya bean, and increasing populations have been observed on several crops in Brazil. Control of this pest is accomplished using insecticides, particularly with new products recently launched in the market. The effectiveness of these insecticides against C. includens and their impact on natural enemies need further study. Therefore, this study aimed to determine the toxicity of nine insecticides for C. includens and their effects on the Blaptostethus pallescens. Toxicity was increased via the addition of an insecticide synergist, and behavioural changes in Blaptostethus pallescens, an anthocorid predator of C. includens, were assessed. Except for acephate, all other insecticides showed high toxicity to C. includens (mortality >80%). The estimated lethal time (LT50) for C. includens was shorter for methomyl, cartap and spinosad than others six insecticides tested in this work. Chlorantraniliprole, chlorfenapyr, deltamethrin, flubendiamide, indoxacarb and spinosad showed selectivity for the predator B. pallescens and exhibited a lower toxicity to the predator than to C. includens. The detoxifying enzymes monooxygenase and glutathione S‐transferase may be involved in the selectivity mechanisms of these insecticides for the predator based on the results obtained with the synergized insecticides. Only the insecticides cartap, indoxacarb and spinosad changed the behaviour of the predator B. pallescens. These three insecticides are repellent, and the predator avoids them. However, the predator tended to remain on the surface treated with flubendiamide longer. Our results suggest that the insecticides chlorfenapyr, chlorantraniliprole, flubendiamide, spinosad and indoxacarb are the most promising compounds for use against C. includens. These compounds also preserve populations of B. pallescens and allow more sustainable integrated pest management programmes.  相似文献   

6.

Background

Diarrhea is an important cause of childhood mortality in developing countries like Pakistan because of unhygienic conditions, lack of awareness, and unwise use of preventive measures. Mechanical transmission of diarrheal pathogens by house flies, Musca domestica, is believed as the most effective route of diarrhea transmission. Although the use of insecticides as a preventive measure is common worldwide for the management of house flies, success of the measure could be compromised by the prevailing environmental temperature since it significantly affects toxicity of insecticides and thus their efficacy. Peaks of the house fly density and diarrheal cases are usually coincided and season specific, yet little is known about the season specific use of insecticides.

Methodology/Principal Findings

To determine the temperature-toxicity relationship in house flies, the effect of post-bioassays temperature (range, 20–34°C) on the toxicity of seven insecticides from organophosphate (chlorpyrifos, profenofos), pyrethroid (cypermethrin, deltamethrin) and new chemical (emamectin benzoate, fipronil, spinosad) classes was evaluated by using a feeding bioassay method. From 20–34°C, the toxicities of chlorpyrifos, profenofos, emamectin and fipronil increased 2.10, 2.93, 2.40 and 3.82 fold (i.e. positive temperature coefficient), respectively. Whereas, the toxicities of cypermethrin, deltamethrin and spinosad decreased 2.21, 2.42 and 3.16 fold (i.e. negative temperature coefficient), respectively.

Conclusion/Significance

These findings suggest that for the reduction in diarrheal cases, house flies should be controlled with insecticides according to the prevailing environmental temperature. Insecticides with a positive temperature coefficient may serve as potential candidates in controlling house flies and diarrhea epidemics in hot season and vice versa.  相似文献   

7.
Laboratory-reared predators, the insidious flower bug, Orius insidiosus (Say), and big-eyed bug Geocoris punctipes (Say), were exposed to 10 insecticides, including three newer insecticides with novel modes of action, using a residual insecticide bioassay. These species are important predators of several economic pests of cotton. Insecticides tested were: azinphos-methyl, imidacloprid, spinosad, tebufenozide, fipronil, endosulfan, chlorfenapyr, cyfluthrin, profenofos, and malathion. There was considerable variation in response between both species tested to the insecticides. Tebufenozide and cyfluthrin were significantly less toxic to male O. insidiosus than malathion. Tebufenozide was also significantly less toxic to female O. insidiosus than malathion. Imidacloprid, tebufenozide, and spinosad were significantly less toxic to male G. punctipes than chlorfenapyr, endosulfan, and fipronil. Spinosad, tebufenozide, and azinphos-methyl were significantly less toxic to female G. punctipes than fipronil and endosulfan. Fecundity of O. insidiosus was significantly greater in the spinosad treatment compared with other treatments including the control. Consumption of bollworm, Helicoverpa zea (Boddie), eggs by O. insidiosus was significantly lower in the fipronil, profenofos, and cyfluthrin treatments compared with other treatments including the control. Consumption of H. zea eggs by G. punctipes was significantly lower in the malathion, profenofos, endosulfan, fipronil, azinphos-methyl, and imidacloprid treatments compared with the control. Egg consumption by G. punctipes was not significantly different in the tebufenozide treatment compared with the control. The lower toxicity of spinosad to G. punctipes is consistent with other reports. Based on these results, the following insecticides are not compatible with integrated pest management of cotton pests: malathion, endosulfan, profenofos, fipronil, and cyfluthrin; while imidacloprid, tebufenozide, azinphos-methyl, and spinosad should provide pest control while sparing beneficial species.  相似文献   

8.
西花蓟马田间种群对常用杀虫剂的抗性现状及防治对策   总被引:5,自引:0,他引:5  
【目的】西花蓟马Frankliniella occidentalis在中国是一种严重危害温室蔬菜的入侵害虫。本研究旨在了解该害虫在中国的抗药性现状,为防治该害虫提供理论支持。【方法】采用Munger cell法测定了北京,山东寿光和青岛以及云南晋宁和呈贡等5个地区西花蓟马田间种群对多杀菌素、毒死蜱、阿维菌素、甲维盐、氟氯氰菊酯、溴虫腈、灭多威、吡虫啉和啶虫脒9种杀虫剂的抗药性水平,同时利用这些田间种群测定了多功能氧化酶抑制剂胡椒基丁醚(PBO)、谷胱甘肽S 转移酶抑制剂顺丁烯二酸二乙酯(DEM)和羧酸酯酶抑制剂三丁基三硫磷酸酯(DEF)对多杀菌素、吡虫啉和甲维盐的增效作用。【结果】生物测定结果表明,北京、晋宁及呈贡种群分别对多杀菌素产生了34.45, 47.45和64.45倍的高水平抗性;晋宁种群对灭多威和甲维盐分别产生了16.58和11.03倍的中等水平抗性;呈贡种群对甲维盐、啶虫脒、吡虫啉、阿维菌素、溴虫腈分别产生了24.17, 21.69, 20.05, 16.45和10.31的中等水平抗性;青岛种群对啶虫脒和吡虫啉产生了17.70和12.49倍的中等水平抗性;寿光种群没有对任何杀虫剂产生高等或中等水平抗性。增效剂生物测定结果表明,对于吡虫啉和甲维盐,多功能氧化酶抑制剂PBO在所有田间种群上均有显著的增效作用。谷胱甘肽S-转移酶抑制剂DEM在呈贡、寿光和青岛种群中对吡虫啉存在显著增效作用;在北京、呈贡和寿光种群中,DEM对甲维盐存在显著增效作用。羧酸酯酶抑制剂DEF在呈贡、晋宁和青岛种群中对吡虫啉存在显著增效作用;在北京、呈贡和晋宁种群中,DEF对吡虫啉存在显著增效作用。但所有增效剂在各田间种群中对多杀菌素均无显著增效作用。【结论】结果提示:在使用多杀菌素防治西花蓟马时,应与其他杀虫剂轮换使用;此外,可通过添加酶抑制剂来增强甲维盐和吡虫啉对西花蓟马的防效。  相似文献   

9.
The pyrrolidine-2,4-dione derivatives were used to conduct a larvicidal test on Culex quinquefasciatus larvae of the second instar. Mannich base condensation method was used to synthesis the pyrrolidine-2,4-dione derivatives by grindstone method. The reaction conditions were mild, resulting in high yields. An analysis of the synthesized compounds was carried out using FTIR, 1H NMR, 13C NMR, mass spectrometry, and elemental analysis. Synthesized compounds (1a-h) were evaluated for larvicidal activities. Compound 1e (LD50: 26.06 µg/mL), and 1f (LD50: 26.89 µg/mL), and were notably more active against Culex quinquefasciatus than permethrin (LD50: 26.14 µg/mL). The docking studies also demonstrated that 1e, and 1f are potent larvicides with higher binding energy (?12.6 kcal/mol) than the control in the mosquito odorant binding protein (PDB ID: 3OGN). The larvicidal properties of lead molecules have made them important for use as insecticides.  相似文献   

10.
《Journal of Asia》2019,22(3):728-732
The field population of Spodoptera litura from Huizhou, Guangdong Province, China was evaluated for resistance to 21 insecticides, including conventional and new chemistry insecticides. Extreme levels of resistance were observed to metaflumizone and emamectin benzoate with resistance factors of 234.1 and 183.3, respectively. Resistance to abamectin was also high (perhaps extremely high) and over 71.9-fold. The Huizhou population of S. litura possessed high resistance to deltamethrin (96.5-fold) and moderate resistance to beta cyfluthrin and lambda cyhalothrin but remained susceptible to bifenthrin. Moderate resistance to chlorantraniliprole (22.3-fold), endosulfan (22.2-fold), tebufenozide (10.7-fold) and thiodicarb (14.3-fold), and low-level resistance to fipronil, indoxacarb and spinosad were also reported in this population. This field population remained susceptible to acetamiprid, chlorfenapyr, chlorfluazuron, hexaflumuron, chlorpyrifos, pyridalyl and spinetoram. The stabilities of resistance to metaflumizone, emamectin benzoate, deltamethrin, chlorantraniliprole and endosulfan were evaluated, the resistance level decreased when the insecticide stress was removed, suggesting stop of the application of insecticides with high level resistance could be implemented into the resistance management. Because S. litura from Huizhou developed resistance to multiple insecticides, integration of different control practices, especially the rotation of insecticides with biocontrol agents, should be performed in the management of this pest. The results suggested the suspension of the application of insecticide to which S. litura had developed high level of resistance in order to mitigate the resistance status, and the use of the insecticides to which this pest remained sensitive, including spinetoram, pyridalyl, indoxacarb, hexaflumuron, chlorfluazuron, chlorfenapyr and bifenthrin, could be incorporated into the alternating application for resistance management.  相似文献   

11.
Methomyl was 15 and 31.3 times more toxic than bendiocarb to bulb mites at the LC50 and LC90 values respectively. However, methomyl (pI50 3.0) was at least 126 times less active than bendiocarb (pI50 5.1) as an inhibitor of bulb mite cholinesterase in vitro. The disparity between the high toxicity of methomyl and its extremely low activity as an inhibitor of mite cholinesterase in vitro indicated that another mechanism was likely involved in its toxic action. Pharmacokinetic studies of methomyl and bendiocarb showed that penetration and metabolism were rapid and that there were no substantial differences in the internal levels of the respective parent carbamates during the 24 h test period. However, volatile radioactive material(s), some of which was carbon dioxide, was produced in appreciably greater amounts from methomyl than from bendiocarb. We speculate that the production of volatiles, such as carbon dioxide, acetonitrile and/or methylamine, may contribute to the toxicity of methomyl to bulb mites. © Rapid Science Ltd. 1998  相似文献   

12.
The essential oil from leaves of Majorana hortensis Moench (Lamiaceae) was isolated by hydrodistillation with a yield of 1.6% (wt/wt). The insecticidal activity of the oil was evaluated against fourth instars of Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae) and adults of Aphis fabae L. (Hemiptera: Aphididae). The oil showed a remarkable toxic effect against S. littoralis in a topical application assay (LD50 = 2.48 μg per larva) and in a residual film assay (LC50 = 3.14 g/l). The oil of M. hortensis also exhibited a pronounced toxic effect against A. fabae adults with LC50 values of 1.86 and 2.27 g/l in rapid dipping and residual film assays, respectively. Gas chromatography-mass spectrometry analyses of M. hortensis essential oils revealed the presence of 31 compounds and the main components were terpinen-4-ol (30.0%), γ-terpinene (11.3%), and trans -sabinene hydrate (10.8%). Repeated column chromatography of M. hortensis oil on silica gel led to the isolation of two major constituents, which were characterized based on 1H-nuclear magnetic resonance and mass spectrometric data, as terpinen-4-ol and γ-terpinene. These two components were examined for their insecticidal and synergistic activities towards S. littoralis and A. fabae . Terpinen-4-ol and γ-terpinene exhibited a significant insecticidal activity against both insects, but γ-terpinene was more toxic than terpinen-4-ol. When tested in a binary mixture with the synthetic insecticides profenofos and methomyl, it was found that both compounds enhanced the insecticidal activity of these insecticides by two- to threefold. These results show that terpinen-4-ol and γ-terpinene have a synergistic effect on the insecticidal activities of synthetic insecticides profenofos and methomyl.  相似文献   

13.
The mosquito Culex pipiens is the most widely distributed dipteran species in all regions of Egypt and the principal vector of Wuchereria bancrofti and certain arboviruses in human beings. For controlling C. pipiens vector, biological tools (e.g., larvivorous fish and bioinsecticides) are more potent and safer options to the environment, human beings, and beneficial organisms than chemical pesticides. The efficiency of O. niloticus juveniles as predatory fish species and two bioinsecticides, spinosad 24% and spinetoram 12%, was investigated against the C. pipiens developmental stages in the laboratory. The first trial evaluated the predatory efficacy of small-sized O. niloticus (2.1–2.6 cm; 250–315 mg) and large-sized O. niloticus (2.5–3.2 cm; 250–315 mg) against the 3rd larvae and pupae of C. pipiens. This is the first report in Egypt confirming the predation potential of O. niloticus as efficient predatory fish against the immature C. pipiens. Large-sized O. niloticus predated a greater number of 3rd of C. pipiens larvae and pupae than the small-sized ones. Furthermore, the daily consumption of C. pipiens larvae by small- and large-sized O. niloticus was significantly higher than the pupae. The second trial assessed the toxicity efficacy of spinosad 24% and spinetoram 12% against C. pipiens larvae and pupae. The results confirmed that the tested bioinsecticides showed higher potency toward C. pipiens larvae than pupae after exposure for 24 h and 48 h. Spinosad was more toxic toward 3rd C. pipiens larvae (LC50 = 0.013 and 0.003 mg/L) and pupae (LC50 = 320.69 and 44.28 mg/L) than spinetoram after 24 and 48 h. Herein, O. niloticus juveniles (as promising native predatory fish) and spinosyns bioinsecticides were more effective against C. pipiens in the larval stage than in the pupal stage. In conclusion, Nile tilapia juveniles and biorational compounds, spinosad 24% and spinetoram 12%, might be considered as promising and favorable environmental biological agents for controlling C. pipiens in Egypt. However, further trials are needed to investigate the potential of these agents in the control of this mosquito vector under field conditions.  相似文献   

14.
The South American tomato pinworm, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) is a leafminer species currently considered as one of the major pests of fresh tomatoes around the world. The species settled in north Africa in 2007, before being observed in the entire continent. Widespread insecticide use has led to the emergence of resistant populations in South America and Europe, but no large-scale insecticide resistance assessment has been performed in Sub-Saharan Africa so far. In this study, we collected T. absoluta larvae from locations widely distributed in Burkina Faso, where the pest was first detected in 2016. Acute toxicity of the all available molecules in Burkina Faso was evaluated in the laboratory on F1 individuals, including acetamiprid, abamectin, spinosad, cypermethrin, chlorpyrifos, λ-cyhalothrin, deltamethrin, and Bacillus thuringiensis. No LC50 differences among T. absoluta populations were highlighted, except for Bacillus thuringiensis. Insects were still highly susceptible to abamectin [LC50 < 0.4 mg/L; Control failure likelihood (CFL) = −25%], spinosad (LC50 < 0.6 mg/L; CFL = 25%) and chlorpyrifos-ethyl (LC50 between 254 and 458 mg/L; CFL = −15%), but were less susceptible to acetamiprid (CFL ranging from 72% to 91%), cypermethrin (CFL = 80%), λ-cyhalothrin (CFL =79%), and deltamethrin (CFL ranging from 51% to 66%), with LC50 values for these insecticides ranging between 100 and 525 mg/L. Pending a proper communication strategy, we hope this work could help producers avoiding the most inefficient active substances.  相似文献   

15.
The toxicities of 24 insecticides for the biological control of whiteflies were evaluated for Eretmocerus mundus (Mercet), Eretmocerus eremicus Rose and Zolnerowich and Encarsia formosa Gahan using the residual film method (for adults) and the dipping method (for pupae). Mortalities from insect growth regulators (IGRs) (flufenoxuron and lufenuron), Bacillus thuringiensis (Bt), pymetrozine and sulfur were <30% for both pupae and adults of all three species, indicating that the parasitoids were not seriously affected by these insecticides. Neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid and nitenpyram), synthetic pyrethroids (etofenprox and permethrin), organophosphates (acephate and fenitrothion), chlorphenapyr, emamectin benzoate, spinosad and tolfenpyrad were seriously harmful (100% mortality) and acaricides (chinomethionat, milbemectin and pyridaben) were moderately harmful or seriously harmful to adult parasitoids (leading to mortalities of >92%). For each insecticide, the mortality of pupae was generally lower than that of adults, even though the toxicity classification for the two groups was similar. The results indicate that IGRs, Bt, pymetrozine and sulfur are relatively harmless, and are compatible with the use of parasitoids to help control whiteflies for integrated pest management in greenhouses.  相似文献   

16.
Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations.  相似文献   

17.
蜂巢小甲虫Aethina tumida是一种新入侵为害蜜蜂蜂巢的危险性害虫,筛选出具有较高毒力水平的化学药剂防治该虫迫在眉睫。本文采用浸渍法测定了10种杀虫剂对蜂巢小甲虫幼虫的毒力。试验结果表明,10 mg/L高效氯氰菊酯、啶虫脒和功夫菊酯在24 h内对蜂巢小甲虫幼虫的致死率达到36.67%、33.33%和29.39%,而10 mg/L高效氯氰菊酯和功夫菊酯在48 h对蜂巢小甲虫幼虫的致死率均达到100%。啶虫脒、高效氯氰菊酯和功夫菊酯在24 h的LC_(50)分别为10.47 mg/L、16.94 mg/L和19.1 mg/L。其它受试的杀虫剂如多杀菌素、氟虫腈、氟啶脲、虫酰肼、敌百虫、阿维菌素和甲维盐的触杀致死率相对较低。筛选结果显示,啶虫脒、高效氯氰菊酯和功夫菊酯可作为目前防治蜂巢小甲虫的的重要参考防治药剂。  相似文献   

18.
Helicoverpa armigera (Hübner) is one of the most destructive pests of several field and vegetable crops, with indiscriminate use of insecticides contributing to multiple instances of resistance. In the present study we assessed whether H. armigera had developed resistance to Bt cotton and compared the results with several conventional insecticides. Furthermore, the genetics of resistance was also investigated to determine the inheritance to Cry1Ac resistance. To investigate the development of resistance to Bt cotton, and selected foliar insecticides, H. armigera populations were sampled in 2010 and 2011 in several cotton production regions in Pakistan. The resistance ratios (RR) for Cry1Ac, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin and deltamethrin were 580-fold, 320-, 1110-, 1950-, 200-, 380, 690, and 40-fold, respectively, compared with the laboratory susceptible (Lab-PK) population. Selection of the field collected population with Cry1Ac in 2010 for five generations increased RR to 5440-fold. The selection also increased RR for deltamethrin, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin to 125-folds, 650-, 2840-, 9830-, 370-, 3090-, 1330-fold. The estimated LC50s for reciprocal crosses were 105 µg/ml (Cry1Ac-SEL female × Lab-PK male) and 81 g µg/ml (Lab-PK female × Cry1Ac-SEL male) suggesting that the resistance to Cry1Ac was autosomal; the degree of dominance (DLC) was 0.60 and 0.57 respectively. Mixing of enzyme inhibitors significantly decreased resistance to Cry1Ac suggesting that the resistance to Cry1Ac and other insecticides tested in the present study was primarily metabolic. Resistance to Cry1Ac was probably due to a single but unstable factor suggesting that crop rotation with non-Bt cotton or other crops could reduce the selection pressure for H. armigera and improve the sustainability of Bt cotton.  相似文献   

19.
Kampimodromus aberrans is an effective predatory mite in fruit orchards. The side-effects of insecticides on this species have been little studied. Field and laboratory experiments were conducted to evaluate the effects of insecticides on K. aberrans. Field experiments showed the detrimental effects of etofenprox, tau-fluvalinate and spinosad on predatory mites. Spider mite (Panonychus ulmi) populations reached higher densities on plots treated with etofenprox and tau-fluvalinate than in the other treatments. Single or multiple applications of neonicotinoids caused no detrimental effects on predatory mites. In the laboratory, spinosad and tau-fluvalinate caused 100 % mortality. Etofenprox caused a significant mortality and reduced fecundity. The remaining insecticides did not affect female survival except for imidacloprid. Thiamethoxam, clothianidin, thiacloprid, chlorpyrifos, lufenuron and methoxyfenozide were associated with a significant reduction in fecundity. No effect on fecundity was found for indoxacarb or acetamiprid. Escape rate of K. aberrans in laboratory was relatively high for etofenprox and spinosad, and to a lesser extent thiacloprid. The use of etofenprox, tau-fluvalinate and spinosad was detrimental for K. aberrans and the first two insecticides induced spider mite population increases. The remaining insecticides caused no negative effects on predatory mites in field trials. Some of them (reduced fecundity and repellence) should be considered with caution in integrated pest management programs.  相似文献   

20.
The effects of spinosad bait and various insecticides, the presence of sugar in insecticides, and diet on feeding responses and mortality in western cherry fruit fly, Rhagoletis indifferens Curran (Dipt., Tephritidae), were determined. Numbers of feeding events on insecticides with sugar were greater than on insecticides alone, but there was only a small effect of diet on feeding responses to insecticides with sugar. Feeding durations on imidacloprid, thiamethoxam and acetamiprid with sugar were shorter than on sugar water and spinosad bait, as the neonicotinoids paralysed flies quickly. Flies that fed on sugar only (nitrogen‐starved) suffered higher mortalities when exposed to spinosad, thiamethoxam and azinphos‐methyl than to imidacloprid, acetamiprid and indoxacarb, and mortality in between these two groups of treatments when exposed to spinosad bait. Mortalities were greater when sugar was added to insecticides, and were higher in nitrogen‐starved than fully‐fed (yeast extract + sugar fed) flies. Flies that fed once on thiamethoxam were killed more quickly than those that fed once on spinosad bait and spinosad. Results suggest that thiamethoxam is comparable to spinosad in its effects on mortality, and that using it with sugar in bait may also have similar results as using spinosad bait or spinosad. One benefit of using thiamethoxam with sugar may be that it kills flies more quickly, before they can oviposit, than spinosad bait, although whether a fly will feed on it may depend on how much sugar or nitrogenous food it has eaten.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号