首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
Variations in oceanic primary productivity, flux of organic carbon to the sediments, and dissolved-oxygen levels in the water column are thought to be important in the control of benthic foraminiferal test size, wall thickness, morphology, and species composition of assemblages by many foraminiferal paleontologists. Aspects of these processes should be reflected by the benthic foraminiferal oxygen index (BFOI) based on these foraminiferal characteristics. However, analyses indicate that the BFOI correlates most strongly with dissolved-oxygen levels in overlying water (R2=0.81), weakly with oceanic primary productivity (R2=0.55), and weakly with organic carbon flux to the sediments (R2=0.51). Although both dissolved oxygen and organic carbon flux are main controlling factors for benthic foraminiferal assemblages, the BFOI is a useful indicator extracted from benthic foraminiferal assemblages for estimating the condition of dissolved oxygen in Cretaceous and Cenozoic oceans.  相似文献   

2.
Environmental conditions and productivity changes in the southeastern Okhotsk Sea have been reconstructed for the last 20 ka using planktonic and benthic foraminiferal oxygen isotope records and calcium carbonate, organic carbon and opal content data from two sediment cores. Species variability in benthic foraminiferal and diatom assemblages provides additional palaeoceanographic evidence. AMS radiocarbon dating of the sediments and oxygen isotope stratigraphy serve as the basis for the age models of the cores for the last 20 14C kyr and for correlation between environmental variations in the Okhotsk Sea, and regional and global climate changes. Benthic foraminiferal assemblages in the two cores (depth 1590 and 1175 m) varied with time, so that we could recognise seven zones with different species composition. Changes in the benthic foraminiferal assemblages parallel major environmental and productivity variations. During the last glaciation, fluxes of organic matter to the sea floor showed strong seasonal variations, indicated by the presence of abundant A. weddellensis and infaunal Uvigerina spp. Benthic foraminiferal assemblages changed with warming at 12.5–11 and 10–8 14C kyr BP, when productivity blooms and high organic fluxes were coeval with global meltwater pulses 1A and 1B. Younger Dryas cooling caused a decline in productivity (11–10 kyr BP) affecting the benthic faunal community. Subsequent warming triggered intensive diatom production, opal accumulation and a strong oxygen deficiency, causing significant changes in benthic fauna assemblages from 5.26–4.4 kyr BP to present time.  相似文献   

3.
Recent benthic foraminiferal assemblages in surface sediments of the Rockall Trough (NE Atlantic) have been qualitatively and quantitatively studied in order to investigate the effects of hydrocarbon seepage on benthic foraminiferal populations. Species diversity and abundance data have been examined in samples of similar lithology collected from hydrocarbon seep and non-seep (control) areas at a water depth of about 1000 m. Three species groups with different environmental preferences can be recognized. Group 1 dominates seep samples, and includes species tolerant to hydrocarbon emission, especially Angulogerina bradyana. In contrast, the less tolerant Group 2 species are weakly represented at seeps but dominate control samples. Group 3 species occur in low frequencies in both seep and non-seep samples. Furthermore, the measurement of species diversity (Shannon-Wiener and Simpson indices) demonstrates a difference in foraminiferal occurrence and frequencies between the seep and non-seep sites. Thus, the benthic foraminiferal distribution pattern is guided by different sensitivities of the species to hydrocarbons, reduced bottom-water oxygen usually associated with seepage and/or to a relatively elevated organic matter content in the sediment.  相似文献   

4.
Saronikos Gulf, including the industrial zone of Elefsis Bay and the Port of Piraeus, is one of the most anthropogenically impacted coastal regions of Greece. Distinct assemblages of benthic foraminifers in sediment samples, collected from this gulf in February 2012, defined three zones that reflect abiotic parameters of the sediments (e.g., organic carbon, metal content). A low-diversity assemblage, dominated by stress-tolerant Ammonia tepida and Bulimina spp., was characteristic of samples from Elefsis Bay. Samples from the western and central part of Saronikos Gulf were the most variable with respect to both abiotic parameters and the foraminiferal assemblage, characterized by a mix of stress-tolerant and more sensitive taxa, especially Bolivina spp. and Nonion fabum. Samples from the coast of Salamis and at the eastern sector of the gulf were characterized by a diverse assemblage that included Peneroplis pertusus, miliolids, and a variety of small, epiphytic rotaliid taxa. A new biotic index, the Foram Stress Index (FSI), is based on the relative percentages of two ecological groups of benthic foraminiferal species, grouped according to their tolerance/sensitivity to organic matter enrichment and weighted proportionately to obtain a formula to define five ecological-status classes. The FSI produced three rankings for these samples (Poor, Moderate and Good), that strongly correlate with the macroinvertebrate-classification tool known as the BENTIX Index. The FSI provides a new tool to assess sediment or substrata quality based upon the benthic foraminiferal assemblages, which are a significant component of living meiobenthic communities that are generally not considered in most biotic benthic indices.  相似文献   

5.
Marc W. Beutel 《Hydrobiologia》2001,466(1-3):107-117
Walker Lake (area = 140 km2, Z mean = 19.3 m) is a large, terminal lake in western Nevada. As a result of anthropogenic desiccation, the lake has decreased in volume by 75% since the 1880s. The hypolimnion of the lake, now too small to meet the oxygen demand exerted by decaying matter, rapidly goes anoxic after thermal stratification. Field and laboratory studies were conducted to examine the feasibility of using oxygenation to avoid hypolimnetic anoxia and subsequent accumulation of ammonia in the hypolimnion, and to estimate the required DO capacity of an oxygenation system for the lake. The accumulation of inorganic nitrogen in water overlaying sediment was measured in laboratory chambers under various DO levels. Rates of ammonia accumulation ranged from 16.8 to 23.5 mg-N m–2 d–1 in chambers with 0, 2.5 and 4.8 mg L–1 DO, and ammonia release was not significantly different between treatments. Beggiatoa sp. on the sediment surface of the moderately aerated chambers (2.5 and 4.8 mg L–1 DO) indicated that oxygen penetration into sediment was minimal. In contrast, ammonia accumulation was reversed in chambers with 10 mg L–1 DO, where oxygen penetration into sediment stimulated nitrification and denitrification. Ammonia accumulation in anoxic chambers (18.1 and 20.6 mg-N m–2 d–1) was similar to ammonia accumulation in the hypolimnion from July through September of 1998 (16.5 mg-N m–2 d–1). Areal hypolimnetic oxygen demand averaged 1.2 g O2 m–2 d–1 for 1994–1996 and 1998. Sediment oxygen demand (SOD) determined in experimental chambers averaged approximately 0.14 g O2 m–2 d–1. Continuous water currents at the sediment-water interface of 5–6 cm s–1 resulted in a substantial increase in SOD (0.38 g O2 m–2 d–1). The recommended oxygen delivery capacity of an oxygenation system, taking into account increased SOD due to mixing in the hypolimnion after system start-up, is 215 Mg d–1. Experimental results suggest that the system should maintain high levels of DO at the sediment-water interface (10 mg L–1) to insure adequate oxygen penetration into the sediments, and a subsequent inhibition of ammonia accumulation in the hypolimnion of the lake.  相似文献   

6.
A study on sediment metabolism was carried out during 1986 in Lake Ton-Ton, Uruguay. Sediment oxygen demand (SOD) from chemical and biological origin was measured in undisturbed sediment cores taken from the deepest part of the lake. Mean SOD rate for the study period (51.56 mgO2 m–2 h–1) corresponded well with the eutrophic state of the lake. During stratification, SOD from chemical origin accounted for 69–87% of total SOD, while SOD from biological origin was dominating for the rest of the year, except in July. Biological respiration was principally of microbial origin. Hypolimnetic temperature was the main factor controlling SOD rates (r = 0.771,p < 0.001). Nevertheless, freshly sedimented phytodetritus from anAnabaena bloom, together with a renewed input of oxygen to bottom water were responsible for the maximum SOD values, recorded at the beginning of a mixing period in April (72.51 mgO2 m–2 H–1).  相似文献   

7.
A survey of foraminiferal microhabitats at several Gulf of Mexico bathyal/abyssal hydrocarbon seeps reveals that many epibenthic species live not on the sediment, but attached to vestimentiferan tubeworms – centimeters to decimeters above the seafloor – thus avoiding the oxygen depletion and H2S toxicity at the sediment–water interface. This observation explains how certain species with a relatively high oxygen requirement (e.g., Cibicides spp.) may become components of foraminiferal death assemblages in seep sediments. Thus, when the sedimentary record of Foraminifera is used to interpret the history of past methane venting, the species from elevated microhabitats cannot be ignored, but they need to be considered separately from the sediment dwellers.  相似文献   

8.
Sediment cores were collected from three sites (1000–1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies (210Pb, 234Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80–93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera (Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2–3 times background) in PAH’s, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long-term effects of the DWH event on a larger spatial scale.  相似文献   

9.
Live (Rose Bengal stained) and dead benthic foraminiferal communities (hard-shelled species only) from the Pakistan continental margin oxygen minimum zone (OMZ) have been studied in order to determine the relation between faunal composition and the oxygenation of bottom waters. Samples were taken from 136 m to 1870 m water depth during the intermonsoon season of 2003 (March–April). Live foraminiferal densities show a clear maximum in the first half centimetre of the sediment only few specimens are found down to 4 cm depth. The faunas exhibit a clear zonation across the Pakistan margin OMZ. Down to 500 m water depth, Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata dominate the assemblages. These taxa are largely restricted to the upper cm of the sediment. They are adapted to the very low bottom-water oxygen values (≈ 0.1 ml/l in the OMZ core) and the extremely high input of organic carbon on the upper continental slope. The lower part of the OMZ is characterised by cosmopolitan faunas, containing also some taxa that in other areas have been described in deep infaunal microhabitats. The contrast between faunas typical for the upper part of the OMZ, and cosmopolitan faunas in the lower part of the OMZ, may be explained by a difference in the stability of dysoxic conditions over geological time periods. The core of the OMZ has been characterised by prolonged periods of stable, strongly dysoxic conditions. The lower part of the OMZ, on the contrary, has been much more variable over time-scales of 1000s and 10,000 years because of changes in surface productivity and a fluctuating intensity of NADW circulation. We suggest that, as a consequence, well-adapted, shallow infaunal taxa occupy the upper part of the OMZ, whereas in the lower part of the OMZ, cosmopolitan deep infaunal taxa have repeatedly colonised these more intermittent low oxygen environments.  相似文献   

10.
Benthic foraminiferal composition assemblages and their temporal changes, ecological indices and foraminiferal densities are used to compare three coastal environments with different physicogeographical features in the Aegean Sea (coastal environment of Avdira–Vistonikos Gulf and Kitros–Thermaikos Gulf and open lagoonal environment of Vravron–South Evoikos Gulf). Three main foraminiferal assemblages have been recognized: a) “Assemblage A”; high degree of similarity between living and dead foraminiferal species, dominated by Ammonia beccarii, Elphidium spp. and relatively abundant and diverse miliolids, b) “Assemblage B1”; intermediate degree of similarity between live and dead assemblages, characterized by highly-abundant and well-diversified foraminiferal assemblages including the algal symbiont bearing Peneroplis pertusus together with Ammonia tepida and several small epiphytic rotaliids and miliolids, and c) “Assemblage B2”; absence of living individuals, strongly dominated by the opportunistic species A. tepida. Our results suggest a good comparison between living and dead assemblages from different coastal environments in the Aegean Sea, however the prevailing environmental conditions (vegetation cover, hydrodynamics, fresh water influx) have a strong impact on the taphonomic processes.  相似文献   

11.
《Marine Micropaleontology》2006,58(3):159-183
We determined the stable oxygen and carbon isotopic composition of live (Rose Bengal stained) benthic foraminifera (> 150 μm size fraction) of seven taxa sampled along a downslope transect between 140 to 2000 m water depth in the Bay of Biscay. At the five stations, Hoeglundina elegans, Cibicidoides pachydermus, Uvigerina peregrina, Uvigerina mediterranea preferentially occupy shallow infaunal niches, whereas Melonis barleeanus and Uvigerina elongatastriata occupy an intermediate infaunal microhabitat, and Globobulimina spp. live in a deep infaunal niche close to the zero oxygen boundary.When compared with δ18O values of calcite formed in equilibrium with bottom waters, U. peregrina forms its test in close equilibrium with bottom water δ18O. All other foraminiferal taxa calcify with a constant offset to calculated equilibrium calcite. There is no systematic relationship between the foraminiferal microhabitat depth and the Δδ18O between foraminiferal and equilibrium calcite. We calculated correcting factors for the various taxa, which are needed for constructing multispecies-based oxygen isotope records in paleoceanographic studies of the study area.The δ13C values of foraminiferal taxa investigated in this study do neither record bottom water δ13CDIC in a 1 : 1 relationship nor with a constant offset, but appear to be mainly controlled by microhabitat effects. The increase of δ13C values of shallow infaunal taxa with increasing water depth reflects the decrease of the exported flux of organic carbon along the bathymetric transect and early diagenetic processes in the surface sediment. This is particularly the case for the shallow infaunal U. peregrina. The δ13C values of deep infaunal Globobulimina spp. are much less dependent on the exported organic matter flux. We suggest that the Δδ13C between U. peregrina and Globobulimina spp. can shed light on the various pathways of past degradation of organic detritus in the benthic environments.At a station in 550 m water depth, where periodic eutrophication of sediment surface niches was demonstrated previously, we performed a two-year seasonal survey of the isotopic composition of foraminiferal faunas. No marked seasonal changes of the stable carbon isotopic composition of shallow, intermediate and deep infaunal foraminiferal taxa were observed. Thus, the δ13C values of foraminiferal individuals belonging to the > 150 μm fraction may result from rather long-term calcification processes lasting for several weeks or months, which limit the impact of ephemeral 12C enrichment of shallow infaunal niches on the isotope chemistry of adult individuals during eutrophic periods. Only highly opportunistic taxa reproducing or calcifying during phytoplankton bloom periods and the subsequent deposits of phytoplankton remains in the benthic environment may exhibit a particularly low δ13C, indicative of such short productive periods.  相似文献   

12.
The paleoecological interpretation of fossil foraminiferal assemblages depends on an understanding of the ecological processes operating at the present. This study investigates both the quality of organic matter (OM) by elemental analysis as well as the sediment grain size and clay mineralogy to understand their relative influence on distribution and abundance of benthic foraminifera. This study is carried out on 15 samples regularly spaced from the mudflat to the tidal marsh. The results indicate that grain size is the most limiting parameter. Living (stained) benthic foraminiferal density and species richness are both very low within coarser sediments. OM is the second limiting factor. The density of foraminifera is the lowest and the species richness is the highest with the lowest organic carbon (Corg) contents and C/N < 12. Conversely, when the Corg is very high and C/N > 12, the density is high and the species richness medium. A high smectite proportion within the clay-size fraction seems to favor the development of Miliammina fusca. Trochammina inflata and Jadammina macrescens are both favored by an increase of organic carbon proportion but Trochammina inflata preferentially feeds on algal-derived OM when compared with Jadammina macrescens.  相似文献   

13.
The biochemical oxygen demand (BOD) value is still a key parameter that can determine the level of organics, particularly the content of biodegradable organics in water. In this work, the effects of sample dilution, which should be done inevitably to get appropriate dissolved oxygen (DO) depletion, on the measurement of 5-day BOD (BOD5), was investigated with and without seeding using natural and synthetic water. The dilution effects were also evaluated for water samples taken in different seasons such as summer and winter because water temperature can cause a change in the types of microbial species, thus leading to different oxygen depletion profiles during BOD testing. The predation phenomenon between microbial cells was found to be dependent on the inorganic nutrients and carbon sources, showing a change in cell populations according to cell size after 5-day incubation. The dilution of water samples for BOD determination was linked to changes in the environment for microbial growth such as nutrition. The predation phenomenon between microbial cells was more important with less dilution. BOD5 increased with the specific amount of inorganic nutrient per microbial mass when the natural water was diluted. When seeding was done for synthetic water samples, the seed volume also affected BOD due to the rate of organic uptake by microbes. BOD5 increased with the specific bacterial population per organic source supplied at the beginning of BOD measurement. For more accurate BOD measurements, specific guidelines on dilution should be established.  相似文献   

14.
Surface sediment samples taken by ? corer from 45 stations on the Norwegian continental margin and in the Norway Basin have been investigated for their benthic foraminiferal content. Unlike previous studies, the living benthic foraminiferal fauna was differentiated from empty tests comprising the foraminiferal death assemblage. Factor analysis of both the living and dead faunal data reveals six living species assemblages and five corresponding dead assemblages. The additional living assemblage is characterized by the arenaceous speciesCribrostomoides subglobosum that dominates between 1400 and 2000 m water depth, but is rare in the dead faunal data.Trifarina angulosa and, to a lesser extent,Cibicides lobatulus characterize the shallowest foraminiferal assemblage from 200 to 600 m water depth, where it is associated with strong bottom currents and warm, saline Atlantic water of the North Atlantic Drift. On the slope between 600 and 1200 m water depth, theMelonis zaandami Species Assemblage dominates, particularly in areas characterized today by rapid sedimentation of terrigeneous material. Between 1000 and 1400 m depth, where the slope is covered by fine grained, organic-rich, terrigeneous mud, the living foraminiferal assemblage is characterized byCassidulina teretis andPullenia bulloides. Below 1400 m, three foraminiferal assemblages are found:C. subglobosum is found from 1400 to 2000 m,Cibicidoides wuellerstorfi andEpistominella exigua predominantly live from 2000 to 3000 m water depth, and below 3000 m,Oridorsalis umbonatus andTriloculina frigida dominate the fauna.All of theElphidium excavatum tests found in this study and theCassidulina reniforme tests found above 500 m water depth were found to be reworked.Analysis of the sediment grain-size distribution and the organic carbon content in surface samples from the deepest stations suggest that the abundance ofC. wuellerstorfi andE. exigua is positively correlated to relatively coarse (caused by planktic foraminifera) and organic-rich sediments, whereas high frequencies ofO. umbonatus andT. frigida coincide with low organic carbon content. We suggest thatC. wuellerstorfi is adapted to deep-sea environments with relatively high food supply, tolerating relatively low interstitial water oxygen content, whereasO. umbonatus may tolerate lower food supply prefering well-oxygenated interstitial waters.  相似文献   

15.
Low dissolved oxygen (DO) levels often occur during summer in tidal creeks along the southeastern coast of the USA. We analyzed rates of oxygen loss as water-column biochemical oxygen demand (BOD5) and sediment oxygen flux (SOF) at selected tidal creek sites monthly over a 1-year period. Ancillary physical, chemical and biological data were collected to identify factors related to oxygen loss. BOD5 rates ranged from 0.0 mg l?1 to 7.6 mg l?1 and were correlated positively with organic suspended solids, total suspended solids, chlorophyll a concentrations, temperature, and dissolved oxygen, and negatively with pH and nitrate + nitrite. SOF rates ranged from 0.0 to 9.3 g O2 m?2 d?1, and were positively correlated with temperature, chlorophyll a, and total suspended solids, but negatively with dissolved oxygen. Both forms of oxygen uptake were seasonally dependent, with BOD5 elevated in spring and summer and SOF elevated in summer and fall. Average oxygen loss to sediments was greater and more variable than oxygen loss in the water column. Oxygen deficits at three of five locations were significantly related to BOD5 and SOF, but not at two sites where ground water discharges were observed. Correlation and principal component analyses suggested that BOD5 and SOF responded to somewhat different suites of environmental variables. BOD5 was driven by a set of parameters linked to warm season storm water inputs that stimulated organic seston loads, especially chlorophyll a, while SOF behaved less strongly so. Runoff processes that increase loads of organic material and nutrients and ground water discharges low in dissolved oxygen contribute to occurrences of low dissolved oxygen in tidal creeks.  相似文献   

16.
Sediment pore water concentrations of Fe2+, Mn2+, NH inf4 sup+ and CH4 were analyzed from both diver-collected cores and anin situ equilibration device (peeper) in Lake Erie's central basin. Sediment oxygen demand (SOD) was measured at the same station with a hemispheric chamber (including DO probe and recorder) subtending a known area of sediments. The average SOD was 9.4 mM m−2 day−1 (0.3 g m−2 day−1). From pore water gradients within the near-surface zone, the chemical flux across the interface was calculated indirectly using Fick's first law modified for sediments. These calculations, using core and peeper gradients, always showed sediment loss to overlying waters, and variations between the two techniques differed by less than an order of magnitude for Fe2+ and CH4. The transport of these reduced constituents can represent a sizeable oxygen demand, ranging from less than 1% for Fe2+ and Mn2+ to as high as 26% for NH inf4 sup+ , and 30% for CH4. The average flux of these constituents could account for about a third of the SOD at the sediment-water interface of this station.  相似文献   

17.
Cold-water coral ecosystems are characterised by a high diversity and population density. Living and dead foraminiferal assemblages from 20 surface sediment samples from Galway and Propeller Mounds were analysed to describe the distribution patterns of benthic foraminifera on coral mounds in relation to different sedimentary facies. Hard substrates were examined to assess the foraminiferal microhabitats and diversities in the coral framework. We recognised 131 different species, of which 27 prefer an attached lifestyle. Epibenthic species are the main constituents of the living and dead foraminiferal assemblages. The frequent species Discanomalina coronata was associated with coral rubble, Cibicides refulgens showed preference to the off-mound sand veneer, and Uvigerina mediterranea displayed abundance maxima in the main depositional area on the southern flank of Galway Mound, and in the muds around Propeller Mound. The distribution of these species is rather governed by their specific ecological demands and microhabitat availability than by the sedimentary facies. Benthic foraminiferal assemblages from coral mounds fit well into basin-wide-scale distribution patterns of species along the western European continental margin. The diversity of the foraminiferal faunas is not higher on the carbonate mounds as in their vicinity. The living assemblages show a broad mid-slope diversity maximum between 500 and 1,300 m water depth, which is the depth interval of coral mound formation at the Celtic and Amorican Margin. The foraminiferal diversity maximum is about 700 m shallower than comparable maxima of nematodes and bivalves. This suggests that different processes are driving the foraminiferal and metazoan diversity patterns.  相似文献   

18.
Benthic foraminiferal assemblages are increasingly utilized as indicators of water and sediment quality in coastal-marine environments. Most reef-dwelling foraminifers live on firm substrata such as reef or phytal surfaces, while most assessments have examined assemblages from sediments. This case study compared relative abundances of total foraminiferal-shell assemblages between sediment and phytal/rubble samples collected from one reef within one week. A total of 117 species within 72 genera were identified, with the same taxa in both sample sets in different proportions. Larger benthic foraminifers and some agglutinated taxa were concentrated about 1.5–3 fold in sediment samples, while nearly two-thirds of small, fragile shells were lost. Several common indices were compared, including Taxonomic Richness (number of genera), Shannon (H), Simpson's (D) and Fisher (α) diversity indices, Evenness (E), and the FORAM Index (FI). Highly significant differences (p < 0.001) between shell assemblages from 13 sets of phytal/rubble substrata and sediments were found in mean number (± standard deviation) of genera (49 ± 4 vs. 34 ± 10) and mean FI (5.6 ± 0.8 vs. 3.6 ± 0.4); both reflecting greater relative abundances of smaller foraminifers in the rubble samples. Fisher diversity was marginally significant (p = 0.05); other indices showed no significant differences between sample types. Although assessment of total assemblages is substantially less costly than distinguishing between specimens that were live or dead when collected, many researchers report those distinctions. The results of our study provide insight that can assist interpretations of studies that use live assemblages to calculate the FI, rather than total assemblages for which it was originally developed.  相似文献   

19.
Surface sediment samples taken by box corer from 32 stations on the Iceland-Scotland Ridge have been investigated for their benthic foraminiferal content. The live (Rose Bengal stained) benthic foraminiferal fauna was differentiated from empty tests comprising the foraminiferal death assemblage. Principal component analysis of both the live and dead faunal data from the Iceland-Scotland Ridge reveals eight live species assemblages and six corresponding dead assemblages. Bottom water current conditions, surface sediment characteristics, particulate organic matter supply, and to some extent also the bottom water temperatures are the main factors limiting and governing the composition and distribution of live benthic foraminiferal species assemblages on the Iceland-Scotland Ridge. On the Atlantic slope of the Iceland-Scotland Ridge the dead species assemblages differ greatly from the foraminiferal fauna living there today due to winnowing processes and redeposition of Pleistocene sediments. In this area an investigation of distribution patterns of the empty tests only would lead to wrong results concerning ecologic interrelations between benthic foraminiferal species assemblages and their environment.  相似文献   

20.
We investigated the influence of bioturbation by macrofauna on the vertical distribution of living (stained) benthic foraminifera in marine intertidal sediments. We investigated the links between macrofaunal bioturbation and foraminiferal distribution, by sampling from stations situated on a gradient of perturbation by oyster-farming, which has a major effect on benthic faunal assemblages. Sediment cores were collected on the French Atlantic coast, from three intertidal stations: an oyster farm, an area without oysters but affected by oyster biodeposits, and a control station. Axial tomodensitometry (CT-scan) was used for three-dimensional visualization and two-dimensional analysis of the cores. Biogenic structure volumes were quantified and compared between cores. We collected the macrofauna, living foraminifera, shells and gravel from the cores after scanning, to validate image analysis. We did not investigate differences in the biogenic structure volume between cores. However, biogenic structure volume is not necessarily proportional to the extent of bioturbation in a core, given that many biodiffusive activities cannot be detected on CT-scans. Biodiffusors and larger gallery-diffusors were abundant in macrofaunal assemblage at the control station. By contrast, macrofaunal assemblages consisted principally of downward-conveyors at the two stations affected by oyster farming. At the control station, the vertical distribution of biogenic structures mainly built by the biodiffusor Scorbicularia plana and the large gallery-diffusor Hediste diversicolor was significantly correlated with the vertical profiles of living foraminifera in the sediment, whereas vertical distributions of foraminifera and downward-conveyors were not correlated at the station affected by oyster farming. This relationship was probably responsible for the collection of foraminifera in deep sediment layers (> 6 cm below the sediment surface) at the control station. As previously suggested for other species, oxygen diffusion may occur via the burrows built by S. plana and H. diversicolor, potentially increasing oxygen penetration and providing a favorable microhabitat for foraminifera in terms of oxygen levels. By contrast, the absence of living foraminifera below 6 cm at the stations affected by oyster farming was probably associated with a lack of biodiffusor and large gallery-diffusor bioturbation. Our findings suggest that the effect of macrofaunal bioturbation on the vertical distribution of foraminiferal assemblages in sediments depends on the effects of the macrofauna on bioirrigation and sediment oxidation, as deduced by Eh values, rather than on the biogenic structure volume produced by macrofauna. The loss of bioturbator functional diversity due to oyster farming may thus indirectly affect infaunal communities by suppressing favorable microhabitats produced by bioturbation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号