首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungal endophytes use different strategies to protect host plants from abiotic and biotic stress. In this study, we isolated endophytic fungi from Pistacia vera and characterised their antifungal activity against Aspergillus flavus, Rhizoctonia solani and Sclerotinia sclerotiorum, and their release of some factors that can alter plant growth capability. Trichoderma harzianum TH 5-1-2, T. harzianum TH 10-2-2 and T. atroviride TA 2-2-1 exhibited the highest growth inhibition percentages in dual culture assays against A. flavus, R. solani and S. sclerotiorum, respectively. Among the fungal endophyte cultures, ethyl acetate extracts of T. harzianum TH 10-2-2, T. harzianum TH 5-1-2 and T. atroviride TA 2-2-1 exhibited the highest growth inhibition of S. sclerotiorum, R. solani and A. flavus, respectively. Phosphate solubilisation was induced by Byssochlamys nivea BN 1-1-1 in culture. Large amounts of siderophore production were observed with Quambalaria cyanescens QC 11-3-2 and Epicoccum nigrum EN1, but Trichoderma spp. also produced siderophore in lower amounts. Trichoderma harzianum TH 5-1-2 produced the highest chitinase activity (2.92 U/mL). In general, among the endophytes isolated, Trichoderma spp. appear to have the most promise for promoting healthy growth of P. vera.  相似文献   

2.
Trichoderma harzianum is a widely distributed soil fungus that antagonies numerous fungal phytopathogens. In this study, interactions between theT. harzianum isolates andAscochyta rabiei in experiments on agar growth medium were studied. All testedT. harzianum isolates produced metabolite that inhibited growth ofA. rabiei the agent of ascochyta blight disease of chickpea in culture. Isolates ofT. harzianum produced chitinase and β-1,3-glucanase when grown in liquid cultures containingA. rabiel cell wall, laminarin and chitin as sole carbon sources. Levels higher of these enzymes were induced inT. harzianum T15 isolate.  相似文献   

3.
A preliminary virulence test of four fungal isolates, Beauveria bassiana IMI 382302, Beauveria bassiana IMI 386701, Trichoderma harzianum T24 and Aspergillus flavus Link against larvae of Spodoptera littoralis was performed. The most effective isolates against larvae of S. littoralis were B. bassiana 302 and T. harzianum T24, which also showed the lower percentage of pupation compared with the other two isolates under the same conditions of treatments. Three concentrations (1 × 106, 1 × 107 and 1 × 108 ml?1) of the aqueous conidial suspension of the four tested isolates were carried out against both larval and pupal stages of S. littoralis within five days post-treatment. T. harzianum T24 showed 80% larval mortality only when applied at the highest conidial concentration, while A. flavus showed 100% pupal mortality only, at all of its conidial concentrations. However, B. bassiana IMI 382302 showed relatively high dose-dependant larval and pupal mortalities, while strain IMI 386701 of B. bassiana showed a very weak mortality against pupae at higher concentrations, and no virulence against larvae was recorded. Enzymatic and antibiosis bioassays of the four fungal isolates showed relatively high activities against Fusarium spp. for most of the tested isolates. Clear zone of enzyme activity on agar plates proportionally increased with increasing the concentration of enzyme substrate and prolongation of the incubation period. Mtabolites produced in the agar culture inhibited the growth of Fusarium spp. and the productivity differed greatly among isolates or strains of the same isolate. Volatile and non-volatile compounds produced by A. flavus Link showed a higher inhibition activity against Fusarium spp. compared with the other fungal isolates. The humoral antifungal response of insect host is relatively high compared to the anti-bacterial one. Injection of larvae with the immune sensitive bacteria Micrococcus luteus (5 × 103 bacteria/larva) showed a detectable humoral response by 2 h, peaked around 12 h and became hardly detectable by 24 h post-injection. Injection of larvae with conidial suspension (5 × 103 conidia/larva) from each of the fungal isolates showed humoral antifungal activity against B. bassiana IMI 386701 and A. flavus only. This activity was detectable by 12 h, peaked around 36 h and became hardly detectable by 48 h post-injection. Although the humoral antifungal response was started slowly compared to the antibacterial one, it lasted for longer and enabled larvae to withstand the infection with these immune-sensitive fungal strains. No humoral activity was detected against B. bassiana IMI 382302, although however, weak activity was detected against T. harzianum T24 only at the low conidial concentration but not at the higher one (1 × 108 ml?1). Thus, this study concludes that larvae of S. littoralis showed immune-dependant sensitivity to T. harzianum T24 and B. bassiana IMI 382302. Therefore, this study may recommend these two fungal isolates as mycoinsecticides in the battle against cotton leaf worm in Egypt. Hence, they have been selected for future comprehensive bioassays in the laboratory under conditions similar to that in the field. This, in fact, may help for developing effective mycoinsecticides against this pest. Penetration mechanims of insect cuticle by entomopathogenic fungi will be discussed.  相似文献   

4.
The genus Trichoderma has been studied for production of enzymes and other metabolites, as well as for exploitation as effective biological control agents. The biodiversity of Trichoderma has seen relatively limited study over much of the neotropical region. In the current study we assess the biodiversity of 183 isolates from Mexico, Guatemala, Panama, Ecuador, Peru, Brazil and Colombia, using morphological, metabolic and genetic approaches. A comparatively high diversity of species was found, comprising 29 taxa: Trichoderma asperellum (60 isolates), Trichoderma atroviride (3), Trichoderma brevicompactum (5), Trichoderma crassum (3), Trichoderma erinaceum (3), Trichoderma gamsii (2), Trichoderma hamatum (2), Trichoderma harzianum (49), Trichoderma koningiopsis (6), Trichoderma longibrachiatum (3), Trichoderma ovalisporum (1), Trichoderma pubescens (2), Trichoderma rossicum (4), Trichoderma spirale (1), Trichoderma tomentosum (3), Trichoderma virens (8), Trichoderma viridescens (7) and Hypocrea jecorina (3) (anamorph: Trichoderma reesei), along with 11 currently undescribed species. T. asperellum was the prevalent species and was represented by two distinct genotypes with different metabolic profiles and habitat preferences. The second predominant species, T. harzianum, was represented by three distinct genotypes. The addition of 11 currently undescribed species is evidence of the considerable unresolved biodiversity of Trichoderma in neotropical regions. Sequencing of the internal transcribed spacer regions (ITS) of the ribosomal repeat could not differentiate some species, and taken alone gave several misidentifications in part due to the presence of nonorthologous copies of the ITS in some isolates.  相似文献   

5.
Strawberry fungi were isolated from fresh fruits and juice on the two types of media (Sabouraud dextrose agar, SDA and potato-dextrose agar, PDA) at 28 °C. Nineteen fungal species belong to 12 genera were isolated from fruits and juice on both isolation media. The most common fungal genera and species were Aspergillus flavus, A. niger, Mucor racemosus, Neurospora crassa, Penicillium chrysogenum, Rhizopus stolonifer and Trichoderma harzianum. Twenty A. flavus and A. parasitics isolates were assayed for their abilities to produce aflatoxins. The concentration of aflatoxins ranged between 25.8–75.2 and 23.6–71.1 ng/ml at 350 and 365 nm, respectively. Among A. flavus and A. parasiticus strains tested, aflatoxin B contributed 30–60% of total isolates. However, G type contributed 85–90%. The Rf values of B1, B2, G1 and G2 were 0.79, 0.61, 0.44 and 0.32, respectively. High-performance liquid chromatography analysis of extracts revealed the presence of aflatoxins with variable levels.  相似文献   

6.
The efficacy of eight fungal and eight bacterial isolates was tested for their ability to inhibit the growth of Sclerotium rolfsii, the causal agent of collar rot of peppermint. In vitro studies revealed that Trichoderma harzianum (THA) and Pseudomonas fluorescens (PFM) showed the highest inhibition of mycelial growth (68.28; 74.25 %) of S. rolfsii. The antagonists T. harzianum and P. fluorescens were compatible with each other and they were tested alone and together in in vivo for the control of S. rolfsii. Besides, the induction of defense-related enzymes such as peroxidase, polyphenoloxidase, phenylalanine ammonia-lyase, and the accumulation of phenolics in peppermint plants due to the application of bioagents were also studied. Combined application of talc-based formulation of bioagents and challenge inoculation with S. rolfsii recorded maximum induction of defense-related enzymes, and accumulation of phenolics as compared with individual application. This study suggests that the increased induction of defense-related enzymes (two- to threefold) and phenolic content (threefold) due to the combination treatment of bioagents might be involved in the reduction of collar rot incidence.  相似文献   

7.
The selection of new isolates of Trichoderma harzianum with high suppressive activity against Fusarium oxysporum is a suitable strategy to avoid the increase of chemical pesticides. In this study, 31 isolates of Trichoderma sp. were analyzed by RAPD-PCR and five isolates of T. harzianum (T-30, T-31, T-32, T-57 and T-78) were selected. The expression of genes encoding for NAGases (exc1 and exc2), chitinases (chit42 and chit33), proteases (prb1) and β-glucanases (bgn13.1) activities and their respective in vitro enzymatic activities were measured. Dual plate confrontation assays of the isolates against F. oxysporum were also tested. Different profiles of gene expression between the different T. harzianum isolates were related to enzymatic activities values and dual plate confrontation. In this work, the T. harzianum isolates T-30 and T-78 showed the greatest mycoparasitic potential against F. oxysporum, which could lead to improved biocontrol of this phytopathogen.  相似文献   

8.
Trichoderma harzianum is the collective name of a set of asexual fungal strains which exhibit heterogeneity in genome structure, DNA sequence and behavior. Contour-clamped homogeneous field (CHEF) electrophoresis of the chromosomes of ten isolates of T. harzianum revealed six clearly distinct electrophoretic karyotypes. Of the ten isolates analyzed, four (GH12, G109, Y and YF) could be classified in a single group with identical karyotypes, while the strains T35 and 315 formed a second group. The genome size characteristic of the different isolates fell into a broad range varying from 29.6 to 56.1?Mb. Gene assignments to the resolved chromosomes showed that all genes analyzed were localized on equivalent chromosomes in the isolates belonging to the same group. Analysis of randomly amplified polymorphic DNAs from the ten isolates confirmed the classification into groups and allowed us to distinguish between isolates T35 and 315, as well as between isolates GH12, G109, Y and YF. Direct confrontation assays using isolates of the same group showed compatible interactions, whereas the same experiment carried out with isolates of different groups showed an incompatible interaction characterized by an area of cell damage. Microscopic observation of the compatible interactions showed hyphal fusions between the isolates, similar to those described for vegetative compatible groups in other fungi. The molecular karyotypes correlated well with the compatibility of the isolates. In addition, we have evaluated both electrophoretic karyotype and randomly amplified polymorphic DNAs analysis as criteria for grouping isolates within the genus according to their capacity for biocontrol of plant pathogens.  相似文献   

9.
Trichoderma harzianum is a widely distributed soil fungus that antagonizes numerous fungal phytopathogens. The antagonism of T. harzianum usually correlates with the production of antifungal activities including the secretion of fungal cell walls that degrade enzymes such as chitinases. Chitinases Chit42 and Chit33 from T. harzianum CECT 2413, which lack a chitin-binding domain, are considered to play an important role in the biocontrol activity of this strain against plant pathogens. By adding a cellulose-binding domain (CBD) from cellobiohydrolase II of Trichoderma reesei to these enzymes, hybrid chitinases Chit33-CBD and Chit42-CBD with stronger chitin-binding capacity than the native chitinases have been engineered. Transformants that overexpressed the native chitinases displayed higher levels of chitinase specific activity and were more effective at inhibiting the growth of Rhizoctonia solani, Botrytis cinerea and Phytophthora citrophthora than the wild type. Transformants that overexpressed the chimeric chitinases possessed the highest specific chitinase and antifungal activities. The results confirm the importance of these endochitinases in the antagonistic activity of T. harzianum strains, and demonstrate the effectiveness of adding a CBD to increase hydrolytic activity towards insoluble substrates such as chitin-rich fungal cell walls.  相似文献   

10.
We used randomly amplified polymorphic DNA (RAPD)-PCR to estimate genetic variation among isolates of Trichoderma associated with green mold on the cultivated mushroom Agaricus bisporus. Of 83 isolates examined, 66 were sampled during the recent green mold epidemic, while the remaining 17 isolates were collected just prior to the epidemic and date back to the 1950s. Trichoderma harzianum biotype 4 was identified by RAPD analysis as the cause of almost 90% of the epidemic-related episodes of green mold occurring in the major commercial mushroom-growing region in North America. Biotype 4 was more closely allied to T. harzianum biotype 2, the predominant pathogenic genotype in Europe, than to the less pathogenic biotype 1 and Trichoderma atroviride (formerly T. harzianum biotype 3). No variation in the RAPD patterns was observed among the isolates within biotype 2 or 4, suggesting that the two pathogenic biotypes were populations containing single clones. Considerable genetic variation, however, was noted among isolates of biotype 1 and T. atroviride from Europe. Biotype 4 was not represented by the preepidemic isolates of Trichoderma as determined by RAPD markers and PCR amplification of an arbitrary DNA sequence unique to the genomes of biotypes 2 and 4. Our findings suggest that the onset of the green mold epidemic in North America resulted from the recent introduction of a highly virulent genotype of the pathogen into cultivated mushrooms.  相似文献   

11.
The genus Trichoderma is a potential biocontrol agent against several phytopathogenic fungi. One parameter for its successful use is an efficient coiling process followed by a substantial production of hydrolytic enzymes. The interaction between fifteen isolates of Trichoderma harzianum and the soil-borne plant pathogen, Rhizoctonia solani, was studied by light microscopy and transmission electron microscopy (TEM). Macroscopic observations of fungal growth in dual cultures revealed that growth inhibition of the pathogen occurred soon after contact with the antagonist. All T. harzianum isolates tested exhibited coiling around the hyphae of R. solani. The strains ALL23, ALL40, ALL41, ALL43 and ALL49 did not differ in coiling frequency and gave equal coiling performances. No correlation between coiling frequency and the production of cell wall-degrading chitinases, N-acetyl-β-d-glucosaminidase and β-1,3-glucanases, was found.  相似文献   

12.
Trichoderma harzianum secretes α-1,3-glucanases when it is grown on polysaccharides, fungal cell walls, or autoclaved mycelium as a carbon source (simulated antagonistic conditions). We have purified and characterized one of these enzymes, named AGN13.1. The enzyme was monomeric and slightly basic. AGN13.1 was an exo-type α-1,3-glucanase and showed lytic and antifungal activity against fungal plant pathogens. Northern and Western analyses indicated that AGN13.1 is induced by conditions that simulated antagonism. We propose that AGN13.1 contributes to the antagonistic response of T. harzianum.  相似文献   

13.
To ensure proper use of Trichoderma harzianum in agriculture, accurate data must be obtained in population monitoring. The effectiveness of qRT-PCR to quantify T. harzianum in different growing media was compared to the commonly used techniques of colony counting and qPCR. Results showed that plate counting and qPCR offered similar T. harzianum quantification patterns of an initial rapid increase in fungal population that decreased over time. However, data from qRT-PCR showed a population curve of active T. harzianum with a delayed onset of initial growth which then increased throughout the experiment. Results demonstrated that T. harzianum can successfully grow in these media and that qRT-PCR can offer a more distinct representation of active T. harzianum populations. Additionally, compost amended with T. harzianum exhibited a lower Fusarium oxysporum infection rate (67%) and lower percentage of fresh weight loss (11%) in comparison to amended peat (90% infection rate, 23% fresh weight loss).  相似文献   

14.
Soil samples from both healthy and diseased paprika roots were tested to identify their mycoflora. Thirty-one species belonging to 16 genera were collected from rhizosphere and rhizoplane samples. The most frequently isolated fungi were Aspergillus flavus, A. niger, A. terreus, Fusarium oxysporum, Penicillium jensenii and Trichoderma harzianum. Fusarium oxysporum was the most common Fusarium species in the rhizoplane samples of diseased roots and identification was confirmed by RAPD-PCR technique. Trichoderma harzianum, T. pseudokoningii and Glioclaium roseum were chosen to study their biological control efficiency against Fusarium oxysporum. These fungal species reduced the percentage of seedling infection to 25, 40 and 50%, respectively. With the increasing of fungicide (Folicur and Ridomil) doses the dry weight of F. oxysporum decreased. Also, the increasing of fungicide dose lead to a slight decrease in the dry weight of T. harzianum, T. pseudokoningii and Glioclaium roseum.  相似文献   

15.
Strains of selected bacteria and Trichoderma harzianum isolated from sugarcane rhizosphere and endosphere regions were tested for the production of chitinolytic enzymes and their involvement in the suppression of Colletotrichum falcatum, red rot pathogen of sugarcane. Among several strains tested for chitinolytic activity, 12 strains showed a clearing zone on chitin-amended agar medium. Among these, bacterial strains AFG2, AFG 4, AFG 10, FP7 and VPT4 and all the tested T. harzianum strains produced clearing zones of a size larger than 10 mm. The antifungal activity of these strains increased when chitin was incorporated into the medium. Trichoderma harzianum strain T5 showed increased levels of activity of N-acetylglucosaminidase and -1,3-glucanase when grown on minimal medium containing chitin or cell wall of the pathogen. Lytic enzymes of bacterial strains AFG2, AFG4, VPT4 and FP7 and T. harzianum T5 inhibited conidial germination and mycelial growth of the pathogen. Enzymes from T. harzianum T5 were found to be the most effective in inhibiting the fungus. When mycelial discs of the pathogen were treated with the enzymes, electrolytes were released from fungal mycelia. The results indicated that antagonistic T. harzianum T5 caused a higher level of lysis of the pathogen mycelium, and the inhibitory effect was more pronounced when the lytic enzymes were produced using chitin or cell wall of the pathogen as carbon source.  相似文献   

16.
Trichoderma spp. are known for their biocontrol activity against several plant pathogens. A specific isolate of Trichoderma harzianum, 303/02, has the potential to inhibit the growth of Sclerotinia sclerotiorum, an important agent involved in several crop diseases. In this study, the interaction between T. harzianum 303/02 and mycelia, sclerotia and apothecia of S. sclerotiorum was studied by scanning electron microscopy. RT-qPCR was used to examine the expression of 11 genes potentially involved in biocontrol. T. harzianum 303/02 parasitizes S. sclerotiorum by forming branches that coil around the hyphae. The fungus multiplied abundantly at the sclerotia and apothecia surface, forming a dense mycelium that penetrated the inner surface of these structures. The levels of gene expression varied according to the type of structure with which T. harzianum was interacting. The data also showed the presence of synergistic action between the cell-wall degrading enzymes.  相似文献   

17.
Rhizoctonia damping-off caused by Rhizoctonia solani Kühn, is one of the most damaging sugar beet diseases. It causes serious economic damage wherever sugar beets are grown. Biological control is an efficient and environmentally friendly way to prevent damping-off disease. Suppression of damping-off disease caused by R. solani was carried out by four isolates of Bacillus subtilis (Ehrenberg) Cohn as well as three isolates of each of Trichoderma harzianum Rifai and Trichoderma hamatum (Bonord.) Bainier. The effect of Bacillus and Trichoderma isolates against R. solani was investigated in vitro and tested on sugar beet plants under greenhouse conditions. Isolates of Bacillus and Trichoderma were able to inhibit the growth of R. solani in dual culture. Furthermore, Trichoderma isolates gave high antagonistic effect than isolates of B. subtilis. Under greenhouse conditions, coating seeds by T. harzianum and B. subtilis separately, reduced seedling damping-off significantly. However, applications of T. harzianum increased the percentage of surviving plants more than B. subtilis in comparison to control. The obtained results indicate that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in sugar beet damping-off and should be harnessed for further biocontrol applications.  相似文献   

18.
19.
Invasion of crops with Aspergillus flavus may result in contamination of food and feed with carcinogenic mycotoxins such as aflatoxins (AF) and cyclopiazonic acid (CPA). In the present study, distribution and toxigenicity of Aspergillus flavus and A. parasiticus in soils of five peanut fields located in Guilan province, Northern Iran was investigated. From a total of 30 soil samples, 53 strains were isolated which all of them were finally identified as A. flavus by a combination of colony morphology, microscopic criteria and mycotoxin profiles. Chromatographic analysis of fungal cultures on yeast extract sucrose broth by tip culture method showed that 45 of the 53 A. flavus isolates (84.9 %) were able to produce either CPA or AFB1, while eight of the isolates (15.1 %) were non-toxigenic. The amounts of CPA and AFB1 produced by the isolates were reported in the range of 18.2–403.8 μg/g and 53.3–7446.3 μg/g fungal dry weights, respectively. Chemotype classification of A. flavus isolates based on the ability for producing mycotoxins and sclerotia showed that 43.4 % were producers of CPA, AFB1 and sclerotia (group I), 13.2 % of CPA and AFB1 (group II), 9.4 % of AFB1 and sclerotia (group III), 13.2 % of AFB1 (group IV), 5.7 % of CPA and sclerotia (group V) and 15.1 % were non-toxigenic with no sclerotia (group VI). No strain was found as producer of only CPA or sclerotia. These results indicate different populations of mycotoxigenic A. flavus strains enable to produce hazardous amounts of AFB1 and CPA are present in peanuts field soils which can be quite important regard to their potential to contaminate peanuts as a main crop consumed in human and animal nutrition.  相似文献   

20.
Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant–herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号