首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various high-mannose-type glycan modifications of dihydrofolate reductase (DHFR) were achieved by ligand-based approach using glycan-methotrexate (MTX) conjugates as tight binding glycan bearing ligands for DHFR. The resulting glycan-MTX conjugates and the corresponding artificial glycoproteins could be useful as oligosaccharide- and glycoprotein-probes to perform quantitative analysis of glycan recognizing protein such as lectins, glycosyltransferases or glycosidases. Moreover, artificial glycoproteins having two different high-mannose-type glycans were developed for the first time by a combination of two different types of glycan modification strategies.  相似文献   

2.
We present a protocol for the identification of glycosylated proteins in plasma followed by elucidation of their individual glycan compositions. The study of glycoproteins by mass spectrometry is usually based on cleavage of glycans followed by separate analysis of glycans and deglycosylated proteins, which limits the ability to derive glycan compositions for individual glycoproteins. The methodology described here consists of 2D HPLC fractionation of intact proteins and liquid chromatography-multistage tandem mass spectrometry (LC-MS/MS(n)) analysis of digested protein fractions. Protein samples are separated by 1D anion-exchange chromatography (AEX) with an eight-step salt elution. Protein fractions from each of the eight AEX elution steps are transferred onto the 2D reversed-phase column to further separate proteins. A digital ion trap mass spectrometer with a wide mass range is then used for LC-MS/MS(n) analysis of intact glycopeptides from the 2D HPLC fractions. Both peptide and oligosaccharide compositions are revealed by analysis of the ion fragmentation patterns of glycopeptides with an intact glycopeptide analysis pipeline.  相似文献   

3.
Glycosylation, the most prevalent post-translational modification of proteins, affects a number of physical properties including the interactions with the surrounding aqueous solvent. Such glycan-water interactions have been discussed with respect to the increased solubility generally observed for glycoproteins, but experimental support of this correlation remains sparse. We have applied a two-channel calorimetric method to measure the free energy and enthalpy of hydration at 25 degrees C for the glycoprotein phytase (Phy) and a deglycosylated form (dgPhy) of the same protein. Comparisons of results for Phy and dgPhy show that the polypeptide moiety has a higher affinity for water than the glycans. In fact, at moderate hydration levels (approximately 0.3 g water/g macromolecule) the water uptake appears to be entirely governed by adsorption to the peptide groups. We conclude that strengthened interaction with the solvent is unlikely to be the mechanism underlying the increased solubility and lowered propensity of aggregation often reported to result from the glycosylation of proteins.  相似文献   

4.
  1. Download : Download high-res image (198KB)
  2. Download : Download full-size image
  相似文献   

5.
Bagger HL  Fuglsang CC  Westh P 《Biochemistry》2003,42(34):10295-10300
Regulation of hydration behavior, and the concomitant effects on solubility and other properties, has been suggested as a main function of protein glycosylation. In this work, we have studied the hydration of the heavily glycosylated Peniophora lycii phytase in solutions (0.15-1.1 m) of the two compatible solutes glycerol and sorbitol. Osmometric measurements showed that glycerol preferentially binds to phytase (i.e., glycerol-glycoprotein interactions are more favorable than water-glycoprotein interactions resulting in a preferential accumulation of glycerol near the protein interface), while sorbitol is preferentially excluded from the hydration sphere (water-glycoprotein interactions are the more favorable). To assess contributions from carbohydrate and peptide moieties, respectively, we compared phytase (Phy) and a modified, yet enzymatically active form (dgPhy) in which 90% of the glycans had been removed. This revealed that both polyols showed a pronounced and approximately equal degree of preferential binding to the carbohydrate moiety. This preferential binding of polyols to glycans is in contrast to the exclusion from peptide interfaces observed here (for dgPhy) and in numerous previous reports on nonglycosylated proteins. Despite the distinct differences between peptide and carbohydrate groups, glycosylation had no effect on the stabilizing action provided by glycerol and sorbitol. On the basis of this, it was concluded that the carbohydrate mantle of Phy is equally accessible in the native and thermally denatured states, respectively (most likely fully accessible in both), and thus that its interactions with compatible solutes have little or no effect on conformational equilibria of the glycoprotein. For solubility and aggregation equilibria, on the other hand, the results suggest a polyol-induced stabilization of monomeric forms.  相似文献   

6.
Sheep red blood cell (SRBC), a non-specific biological response modifier that has long been used as a classical antigen, has been shown to exert an immunomodulatory and anti-tumor activities in experimental animals. The active component of SRBC, which is responsible for such effects, was found to be a cell surface acidic glycoprotein molecule, known as T11 target structure (T11TS). In the present study, T11TS was isolated and purified to homogeneity using a five-step protocol involving isolation of sheep erythrocyte membrane from packed cell volume, 20% ammonium sulfate cut of the crude membrane proteins mixture, immunoaffinity purification using mouse anti-sheep CD58 mAb (L180/1) tagged matrix, preparative gel electrophoresis, and gel electroelution process. Finally, the purity and identity of the proteins were confirmed by the matrix-assisted laser desorption/ionization (MALDI) mass spectrometric analysis. The in silico glycosylation site analysis showed that the extracellular domain contained three N-glycosylation sites (N-12, N-62, and N-111) and one O-glycosylation site (T-107). However, the experimental analysis negated the presence of O-linked glycan moieties on T11TS. To investigate the role of glycan moieties in the current immunotherapeutic regime, T11TS and its deglycosylated form (dT11TS) were administered intraperitoneally (i.p.) in N-ethyl-N-nitrosourea-induced immune-compromised mice at 0.4 mg/kg body weight. It was observed that both the forms of T11TS could activate the compromised immune status of mice by augmenting immune receptor expression (CD2, CD25, CD8, and CD11b), T-helper 1 shift of cytokine network, enhanced cytotoxicity, and phagocytosis activity. Therefore, the results nullify the active involvement of the N-linked glycan moieties in immunotherapeutic efficacy of T11TS.  相似文献   

7.
The resistance of the opossum Didelphis aurita to Bothrops snake venoms is attributed to the opossum's antihemorrhagic (DM43) and antimyotoxic (DM64) acidic serum glycoproteins. The aim of this study was to characterize the N-glycosylation sites of these antiophidic proteins and to determine whether their glycans influence the biological activity measured by in vitro assays. Our experimental pipeline included the sequential enzymatic digestion of the inhibitors with two different proteinases (trypsin and endoproteinase Asp-N) and eventually with trypsin, peptide-N-glycosidase F (PNGase F) and endoproteinase Asp-N, used in that order. All of the peptide and protein samples were analyzed by MALDI-TOF/TOF MS. The results experimentally confirmed the putative N-glycosylation sites of DM43 (Asn23, Asn156, Asn160, and Asn175) and DM64 (Asn46, Asn179, Asn183, and Asn379). Following treatments with specific glycosidases, complex-type oligosaccharides containing galactose and sialic acid could be assigned to both proteins. The removal of these monosaccharide units by exoglycosidase digestion did not measurably affect the inhibitory activity. In contrast, partially deglycosylated DM43 treated with PNGase F under nondenaturing conditions was half as effective as native DM43. In conclusion, we have demonstrated that the contribution of the carbohydrate portion of these potentially therapeutic molecules, for their mechanism of action, should not be overlooked.  相似文献   

8.
Thermal perturbation of the dicluster ferredoxin from Acidianus ambivalens was investigated employing a toolbox of spectroscopic methods. FTIR and visible CD were used for assessing changes of the secondary structure and coarse alterations of the [3Fe4S] and [4Fe4S] cluster moieties, respectively. Fine details of the disassembly of the metal centers were revealed by paramagnetic NMR and resonance Raman spectroscopy. Overall, thermally induced unfolding of AaFd is initiated with the loss of -helical content at relatively low temperatures (T(app)(m) approximately 44 degrees C), followed by the disruption of both iron-sulfur clusters (T(app)(m) approximately 53-60 degrees C). The degradation of the metal centers triggers major structural changes on the protein matrix, including the loss of tertiary contacts (T(app)(m) approximately 58 degrees C) and a change, rather than a significant net loss, of secondary structure (T(app)(m) approximately 60 degrees C). This latter process triggers a secondary structure reorganization that is consistent with the formation of a molten globule state. The combined spectroscopic approach here reported illustrates how changes in the metalloprotein organization are intertwined with disassembly of the iron-sulfur centers, denoting the conformational interplay of the protein backbone with cofactors.  相似文献   

9.
Cofactors in and as posttranslational protein modifications   总被引:1,自引:0,他引:1  
R B Rucker  F Wold 《FASEB journal》1988,2(7):2252-2261
A symposium at the FASEB meeting in Las Vegas in May 1988 will be devoted to the role of cofactors (vitamins, coenzymes, prosthetic groups) in and as posttranslational protein modifications; the symposium is part of a thematic focus on metabolic regulation. In planning the symposium, we decided to consider metabolic regulation in its broadest context, which should include both the short-term activity modulations in the life of contemporary organisms and the adaptations of special molecular strategies over evolutionary time. We further decided to focus the symposium context on the involvement of cofactors both as catalytic participants in and as substrates or end products of posttranslational modifications. As a preview of the actual symposium, the present discussion is an attempt to enumerate cases of cofactor involvement in these different categories: 1) essential nutrients as participants in posttranslational modifications; 2) cofactors as donor substrates in reversible, regulatory modifications; and 3) cofactor incorporation or generation as covalent constituents of proteins. The actual symposium topics are taken from category 1: vitamin C and protein hydroxylation (K. I. Karivikkio) and vitamin K and protein carboxylation (J. W. Suttie) and category 3: biotinylation (H. G. Wood), phycobiliproteins (A. Glazer), and pyruvoyl enzymes (W. Dowhan).  相似文献   

10.
Potent inhibitors of proteases are constantly sought because of their potential as new therapeutic lead compounds. In this paper we report a simple computational methodology for obtaining new ideas for functional groups that may act as effective inhibitors. We relate this study to serine proteases. We have analyzed all of the factors that operate in the enzyme-substrate interactions and govern the free energy for the transformation of the Michaelis complex (MC) to the anionic covalent tetrahedral complex (TC). The free energy of this transformation ( GMC-TC ) is the quantitative criterion that differentiates between the catalytic and inhibitory processes in proteases. The catalytic TC is shifted upwards (GMC-TC > 0) relative to the MC in the free energy profile of the reaction, whereas the inhibitory tetrahedral species is shifted downward (GMC-TC < 0). Therefore, the more stable the TC, the more effective it should be as an inhibitor. We conclude that the dominant contribution to the superstabilization of an anionic TC for transition state analog inhibitors originates from the formation of a -covalent bond between the reactive centers of the enzyme and its inhibitor. This energetic effect is a quantitative value obtained in ab initio calculations and provides an estimate as to whether a functional group is feasible as potent inhibitor or not. To support our methodology, we describe several examples where good agreement is shown between modeled ab initio quantum chemical calculations and experimental results extracted from the literature.  相似文献   

11.
The solubilizing power of various nonionic and zwitterionic detergents as membrane protein solubilizers for two-dimensional electrophoresis was investigated. Human red blood cell ghosts and Arabidopsis thaliana leaf membrane proteins were used as model systems. Efficient detergents could be found in each class, i.e. with oligooxyethylene, sugar or sulfobetaine polar heads. Among the commercially available nonionic detergents, dodecyl maltoside and decaethylene glycol mono hexadecyl ether proved most efficient. They complement the more classical sulfobetaine detergents to widen the scope of useful detergents for the solubilization of membrane proteins in proteomics.  相似文献   

12.
13.
It is now understood that a cohesive series of quality control checkpoints ensures the accuracy of gene expression in eukaryotic cells. Although initiated in the nucleus to monitor the integrity of inherited genetic information, the quality control program encompasses post-translational events that facilitate the structural maturation of encoded proteins or target them for degradation if unable to adopt native structure. Given the fact that many genetic mutations actually manifest themselves at the level of aberrant protein structure, a current challenge in the post-genomics era is to elucidate how post-translational checkpoints can modify the severity of numerous loss-of-function and gain-of-toxic-function diseases, possibly influencing an individual's susceptibility toward the development of the associated pathologies. The purpose of this chapter is to describe the experimental methodology by which alpha1-antitrypsin has been used as a molecular reagent to define the mechanisms by which the processing and recognition of asparagine-linked oligosaccharides can orchestrate the fate of newly synthesized glycoproteins in the early secretory pathway. The conceptual framework, and associated techniques, can serve as a roadmap for the investigation of other mutated glycoproteins, many of which can contribute to disease.  相似文献   

14.
From a library of compounds of natural sources, a big series of molecules was chosen by random sampling to evaluate their in vitro antimalarial activity against Plasmodium falciparum and their antifungal activity against Candida sp. From 184 molecules tested, no molecules were active against Candida sp. (MIC > 10 μg/ml) whereas 13 clearly showed high antiplasmodial activity in vitro, with an IC50 less than 1 μg/ml against the chloroquine-resistant strain of P. falciparum FcM29-Cameroon. The molecules with the best antiplasmodial efficacy were 10-hydroxy-ellipticin (IC50: 0.08 μg/ml), tchibangensin (IC50: 0.13 μg/ml), ellipticin hydrochloride (IC50: 0.17 μg/ml), usambarensin (IC50: 0.23 μg/ml), 7S,3S-ochropposinine oxindole (IC50: 0.25 μg/ml), 3,14-dihydro-ellipticin (IC50: 0.25 μg/ml), tetrahydro-4′,5′,6′17-usambarensin 17S (IC50: 0.26 μg/ml), ellipticine (IC50: 0.28 μg/ml), aricin (IC50: 0.3 μg/ml), 10-methoxy-ellipticin (IC50: 0.32 μg/ml), aplysinopsin (IC50: 0.43 μg/ml), descarbomethoxydihydrogambirtannin (IC50: 0.46 μg/ml) and ochrolifuanin A (IC50: 0.47 μg/ml). Among these 13 promising molecules, all except descarbomethoxydihydrogambirtannin, ochrolifuanine A and usambarensine presented here novel biological activities since they had never been described in the literature for their antiplasmodial activity. In spite of the large diversity of the molecules which have been tested, it is interesting to note that the ones active against Plasmodium are all indole derivatives (and one is both indolic and aminoimidazolic). To find new antiplasmodial compounds, ethnopharmacological approaches studying traditional medicine treatments for malaria is largely used but random research produced here an interesting yield (7%) of new antiplasmodial hits and appears therefore complementary to the traditional medicine way.  相似文献   

15.
Using printed glycan array (PGA) we compared the results of antibody profiling in undiluted, moderately (1:15) and highly (1:100) diluted human blood serum. Undiluted serum is suitable for studying blood as a tissue in its native state, whereas to study the serum of newborns or small animals one usually has to dilute the starting material in order to have sufficient volume for PGA experimentation. The PGA used in this study allows for the use of whole serum without modifications to the protocol, and the background is surprisingly low. Antibodies profiles observed in undiluted serum versus 1:15 dilution were similar, with only a limited number of new signals identified in the undiluted serum. However, unexpected irregularities were found when IgG and IgM are measured separately, namely, at a 1:15 dilution more intensive IgG signals for many glycans are observed. We believe that in conditions of moderate dilution IgG and IgM antibodies can compete with each other for antigen and as a result, the higher affinity anti-glycan IgGs give rise to more intense signals. Therefore depending on the purpose, different dilutions of serum will be optimal: in competitive 1:15 conditions the observed IgG/IgM ratio corresponds to their titer, whereas at 1:100 dilution the measured ratio corresponds to real molar concentration of IgG and IgM.  相似文献   

16.
Studies from multiple laboratories with a range of methods raised the possibility that insulin production occurs naturally at extrapancreatic sites. Part A covers the presence of insulin-related materials in organisms that do not have an endocrine pancreas, including unicellular prokaryotes and eukaryotes as well as multicellular non-vertebrate animals (insects et al.) and plants. Part B covers possible production of insulin by extrapancreatic tissues of vertebrates that are remote from a source of pancreatic insulin e.g. early chick embryos and mammalian cells in culture. Part C covers possible extrapancreatic insulin production in mammals in vivo. Each section ends with an outline summary with evidence in favor of and against the hypothesis.  相似文献   

17.
Carbohydrates play important roles in life science, but their synthesis is always hampered by their complicated chemical structures. Scientists have never stopped trying to solve the problem of glycan synthesis from various aspects. Here a brief overview of recent progress in glycan synthesis, including chemical approaches, chemoenzymatic approaches, and automated synthesis, will be discussed, focusing on the efficiency of new glycosylation methods, the stereoselectivity of coupled products, and their applications in the assembly of complex glycan chains.  相似文献   

18.
Astrocytic tumor is the most prevalent primary brain tumor. However, the role of cell surface carbohydrates in astrocytic tumor invasion is not known. In a previous study, we showed that polysialic acid facilitates astrocytic tumor invasion and thereby tumor progression. Here, we examined the role of HNK-1 glycan in astrocytic tumor invasion. A Kaplan-Meier analysis of 45 patients revealed that higher HNK-1 expression levels were positively associated with increased survival of patients. To determine the role of HNK-1 glycan, we transfected C6 glioma cells, which lack HNK-1 glycan expression, with β1,3-glucuronyltransferase-P cDNA, generating HNK-1-positive cells. When these cells were injected into the mouse brain, the resultant tumors were 60% smaller than tumors emerging from injection of the mock-transfected HNK-1-negative C6 cells. HNK-1-positive C6 cells also grew more slowly than mock-transfected C6 cells in anchorage-dependent and anchorage-independent assays. C6-HNK-1 cells migrated well after treatment of anti-β1 integrin antibody, whereas the same treatment inhibited cell migration of mock-transfected C6 cells. Similarly, α-dystroglycan containing HNK-1 glycan is different from those containing the laminin-binding glycans, supporting the above conclusion that C6-HNK-1 cells migrate independently from β1-integrin-mediated signaling. Moreover, HNK-1-positive cells exhibited attenuated activation of ERK 1/2 compared with mock-transfected C6 cells, whereas focal adhesion kinase activation was equivalent in both cell types. Overall, these results indicate that HNK-1 glycan functions as a tumor suppressor.  相似文献   

19.
The production of mice with genetic alterations in glycosyltransferases has highlighted the need to isolate and study complex mixtures of the major classes of oligosaccharides (glycans) from intact tissues. We have found that nano-NMR spectroscopy of whole mixtures of N- and O-glycans can complement HPLC profiling methods for elucidating structural details. Working toward obtaining such glycan mixtures from mouse tissues, we decided to develop an approach to isolate not only N- and O-glycans, but also to separate out glycosphingolipids, glycosaminoglycans and glycosylphosphatidylinositol anchors. We describe here a comprehensive Glycan Isolation Protocol that is based primarily upon the physicochemical characteristics of the molecules, and requires only commonly available reagents and equipment. Using radiolabeled internal tracers, we show that recovery of each major class of glycans is as good or better than with conventional approaches for isolating individual classes, and that cross-contamination is minimal. The recovered glycans are of sufficient purity to provide a "glycoprofile" of a cell type or tissue. We applied this approach to compare the N- and O-glycans from wild type mouse tissues with those from mice genetically deficient in glycosyltransferases. N- and O-glycan mixtures from organs of mice deficient in ST6Gal-I (CMP-Sia:Galbeta1-4GlcNAc alpha2-6 sialyltransferase) were studied by the nano-NMR spectroscopy approach, showing no detectable alpha2-6-linked sialic acids. Thus, ST6Gal-I is likely responsible for generating most or all of these residues in normal mice. Similar studies indicate that this linkage is very rare in ganglioside glycans, even in wild-type tissues. In mice deficient in GalNAcT-8 (UDP-GalNAc:polypeptide O-Ser/Thr GalNAc transferase 8), HPLC profiling indicates that O-glycans persist in the thymus in large amounts, without a major change in overall profile, suggesting that other enzymes can synthesize the GalNAc-O-Ser/Thr linkage in this tissue. These results demonstrate the applicability of nano-NMR spectroscopy to complex glycan mixtures, as well as the versatility of the Glycan Isolation Protocol, which makes possible the concurrent examination of multiple glycan classes from intact vertebrate tissues.  相似文献   

20.
This paper presents kinetic and structural analyses of oligosaccharidematerial released during glycosylation in permeabilized Chinesehamster ovary cells incubated with sugar nucleotides. Permeabilizedcells released 30 times more oligosaccharide material than metabolicallylabelled cells, normalized to the amount of labelled glycoproteinacceptor, making this an amenable system for study. Fifteento forty per cent of the oligosaccharide material released bypermeabilized cells was oligosaccharide-phosphate, dependingon the nature and amount of the oligosaccharide-lipids synthesized.The oligosaccharide-phosphates released were recovered in thecytosol, and were exclusively Man2GlcNAc2P and Man5GlcNAc2P,released from oligosaccharide-lipids thought to be facing thecytosol. In contrast, the structures found as neutral oligosaccharidematerial were similar to those attached to newly synthesizedglycoproteins, indicating that the oligosaccharides were subjectedto the same processing enzymes whether or not they were proteinbound. Importantly, the kinetics of the transfer to proteinand the release of free neutral oligosaccharide were parallel,suggesting that the same enzyme was responsible for both processes.Structural analyses demonstrated that the same Man5GlcNAc2 structurewas transferred to protein and released as free oligosaccharide.Neutral oligosaccharides were found in both the cytosol andthe pellet; however, oligosaccharides with one GlcNAc residueat the reducing end (OS-Gn1) were found exclusively in the supemate.The major neutral oligosaccharide produced after 2 h of metaboliclabelling was Man5GlcNAc and it was found in the cytosol. lipid intermediates oligomannoside-phosphates permeabilized cells subcellular distribution of oligomannosides  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号