首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated the insecticidal and acetylcholinesterase (AChE) inhibition activities of the essential oils and their constituents of 10 Apiaceae on the adult rice weevil, Sitophilus oryzae. Of the 10 species tested, dill (Anethum graveolens), caraway (Carum carvi), and cumin (Cuminum cyminum) essential oils showed strong fumigant toxicity against adult S. oryzae. LC50 values of caraway, dill, and cumin essential oils were 2.45, 3.29, and 4.75 mg/L air, respectively. Among the test compounds, (+)-carvone, (?)-carvone, cuminaldehyde, dihydrocarvone, linalool oxide, carveol, trans-anethole, and neral demonstrated strong fumigant toxicity against adult S. oryzae with LC50 values of 0.61, 0.84, 1.12, 2.92, 3.76, 4.29, 5.02, and 6.60 mg/L air, respectively. α-Pinene showed the strongest AChE inhibition activity followed by β-pinene and limonene. The measured toxicity of the artificial blends of the constituents identified in dill and cumin oils indicated that (+)-carvone and cuminaldehyde were major contributors to the fumigant toxicity of the artificial blend.  相似文献   

2.
Faced with the serious consequences resulting from the abusive and repeated use of synthetic chemicals, today rethinking crop protection is more than necessary. It is in this context that the essential oils of the Lamiaceae Ocimum gratissimum and Ocimum canum, the Poaceae Cymbopogon citratus and nardus and a Rutaceae Citrus sp. of known chemical compositions were experimented. The evaluation of the larvicidal potential of the essential oils was done by the method of topical application of the test solutions, on the L1−L2 stage larvae from the first generation of S. frugiperda obtained after rearing in an air-conditioned room. Lethal concentrations (LC10, LC50 and LC90) were determined after 48 h. After assessing the larvicidal potential of essential oils, molecular docking was carried out to study protein-ligand interactions and their propensity to bind to insect enzyme sites (AChE). The essential oil of O. gratissimum was the most effective with the lowest lethal concentrations (LC10=0.91 %, LC50=1.91 % and LC90=3.92 %). The least toxic oil to larvae was Citrus sp. (LC10=5.44 %, LC50=20.50 % and LC90=77.41 %). Molecular docking revealed that p-cymene and thymol from O. gratissimum essential oil are structurally similar and bind to the AChE active site via predominantly hydrophobic interactions and a H-bond with Tyr374 in the case of thymol. The essential oil of O. gratissimum constitutes a potential candidate for the development of biological insecticides for the fight against insect pests and for the protection of the environment.  相似文献   

3.
Antimicrobial properties and chemical composition of four citrus fruit essential oils to control Paenibacillus larvae, the causal agent of American foulbrood disease (AFB) were determined. This honeybee larvae disease occurs throughout the world and is found in many beekeeping areas of Argentina. Citrus fruit essential oils tested were those from grapefruit (Citrus paradisi), sweet orange (Citrus sinensis), mandarin (Citrus nobilis) and lemon (Citrus limon). The components of the essential oils were identified by SPME-GC/MS analysis. The antimicrobial activity of the oils against P. larvae were determined by the broth microdilution method. Two way ANOVA tests for minimum inhibitory concentrations (MICs) data and minimal bactericide concentrations (MBCs) data, indicated significant differences between the strains and the oils tested. The antimicrobial assays showed that the oil of C. paradisi inhibited the bacterial strains at the lowest concentrations tested, MICs and MBCs averages of 385.0 mg/l and 770.0 mg/l, respectively. This property could be attributed to the kind and percentage of the volatile components of the oil, like limonene (69.9%) and myrcene (9.6%). The use of essential oils or their specific volatile components individually against pests related to food provision may represent an alternative scope for the control of this serious disease because it does not leave toxic chemical residues in honey nor in its by products.  相似文献   

4.
Essential oils from plants may provide environment-friendly alternatives to conventional synthetic insecticides. Here, toxic, repellent, and oviposition deterrent effects of essential oils of six plants: Allium sativum L. (Alliaceae), Azadirachta indica A. Juss. (Meliaceae), Cinnamomum cassia (L.) (Lauraceae), Eucalyptus camaldulensis Dehnh. (Myrtaceae), Piper nigrum L. (Piperaceae), and Thevetia peruviana (Pers.) (Apocynaceae), were evaluated against different life stages of Musca domestica. Bioassays revealed that the essential oils of A. indica, T. peruviana and E. camaldulensis exhibited: a) the highest toxicity on larvae (LC50 = 169.72, 182.23 and 277.01 ppm, respectively), pupae (LC50 = 150.56, 164.84 and 164.87 ppm, respectively) and adults (LC50 = 166.69, 139.15 and 302.75 ppm, respectively) of M. domestica; b) the highest repellency (91.44, 72.19 and 72.80%, respectively) and oviposition deterrent (90.36, 88.82 and 89.13%, respectively) effects on adults of M. domestica, as compared to the other essential oils. Moreover, the speed of mortality caused by essential oils of A. indica (LT50 = 16.85 and 17.06 h for larvae and adults, respectively) and T. peruviana (LT50 = 16.46 and 18.58 h for larvae and adults, respectively) was faster than the rest of the essential oils. On the whole, it might be expected that the essential oils of A. indica, T. peruviana and E. camaldulensis could be developed into a new type of environment-friendly insecticides and/or repellents for the management of M. domestica.  相似文献   

5.
Abstract

Artemisia herba-alba (Asso) and Artemisia monosperma (Delile) essential oils were tested against three sucking insect pests under laboratory and greenhouse conditions. These pests included Bemisia tabaci (Gennadius), Aphis gossypii (Glover) and Thrips tabaci (Lindman). Laboratory results showed that the LC50 of A. herba-alba and A. monosperma were 0.042, 0.186% for eggs and 0.074, 0.075% for immature stages of B. tabaci. Also, both oils gave a high toxicity on A. gossypii with LC50 0.023 and 0.085%. Artemisia herba-alba and A. monosperma were more toxic on T. tabaci and A. gossypii than B. tabaci in the laboratory test. In contrast T. tabaci was sensitive for both oils (LC50 0.011 and 0.038%). These oils were efficient for controlling tested insects on cucumber plants at greenhouses. This treatment caused 85.41, 83.57% reduction in the population of B. tabaci, 90.44, 88.00% for Aphis gossypii and 87.45, 84.45% for T. tabaci. Chemical analysis of A. herba-alba and A. monosperma oils detected the presence of hydrocarbon terpenes, oxygenated terpenes, hydrocarbon sesquiterpenes and oxygenated sesquiterpenes represented about 16.38%, 58.91%, 21.61%, 2.74% and 21.53%, 57.17%, 19.32%, 1.70%, of the oil content, respectively.  相似文献   

6.
The comparative toxicity of five essential oil vapours was tested against four aphid species, the black bean aphid Aphis fabae, the pea aphid Acyrthosiphon pisum, the chrysanthemum aphid Macrosiphoniella sanborni, the green peach aphid Myzus persicae and on two of the most common coccinellid predators, the seven-spotted ladybird Coccinella septempunctata and the two-spotted ladybird Adalia bipunctata. All essential oils were highly toxic to the aphid species tested with LC50 and LC99 values ranging between 0.17 and 1.92 and 0.44 and 4.83 µL/L air, respectively, depending on the aphid species and on the essential oil. Coccinellid predators were also highly susceptible to the essential oil vapours and the selective toxicity ratio varied depending on aphid species, coccinellid predator and essential oil. The possibilities for the utililization of essential oils as aphicides, especially in IPM programmes in glasshouses are discussed with regard to the present findings.  相似文献   

7.
Essential oils from three species of plants comprising three plant families were obtained by Clevenger-type water distillation. The major compounds in these essential oils were identified with GC-MS and their insecticidal activity against adult cotton aphid, Aphis gossypii Glover tested with dosage-mortality bioassays. We examined mortality only for viviparous adults because sizeable aphid populations on cucumber (Cucurbitaceae) hosts are largely produced by these wingless, parthenogenic females. Three of the oils were directly applied to aphid females in randomised blocks at 25?±?2?°C and 60?±?5% R.H. and under a L16:D8 photoperiod. Essential oils were mixed with a non-toxic emulsifying agent, Tween 80. Results show adverse contact effects of essential oils studied in the control of cotton aphid. Probit analysis and LC50 at concentrations at different exposures showed aphids were incapacitated and killed by aliphatic aldehydes, phenols and monocyclic terpenes contained in Azadirachta indica, Eucalyptus camaldulensis and Laurus nobilis. LC50 on cotton aphid, for azadirachtin eucalyptus and laurel essential oils were respectively 5389, 9515 and 13730?ppm. In the current study, efficacy in respect to the contact toxicity (LC50) followed the order: A. indica?>?E. camaldulensis?>?L. nobilis after 24?h treatment. Our results show quantitative and qualitative differences in the chemical composition and insecticidal activities of our essential oils. All oils became insect toxic as concentration increased. According to the results, essential oils of all the three plants have the potential to be employed in the pest management programmes that can be used in protection of greenhouse conditions against cotton aphid.  相似文献   

8.
9.
《Journal of Asia》2006,9(2):173-178
The nematicidal activity and poisoning symptoms of 88 plant essential oils against Bursaphelenchus xylophilus were examined by an immersion bioassay. Results were compared with those of three trunk-injection nematicides: fenitrithion, levamisol hydrochloride, and morantel tartrate. As judged by 24 h LC50 values, cinnamon bark oil (0.12 mg/ml) was the most effective nematicide, followed by coriander herb oil (0.14 mg/ml). Potent nematicidal activity was also observed with lemongrass, oregano, thyme red, and clove bud oils (LC50, 0.57-0.88 mg/ml). Fenitrothion was ineffective (LC50, > 10 mg/ml). In typical poisoning symptoms in B. xylophilus, these essential oils exerted rapid nematicidal action and the nematodes killed usually showed an extended shape, whereas levamisole hydrochloride and morantel tartrate usually exhibited semicircular and coiling shapes, respectively. The essential oils described merit further study as botanical nematicides for the control of pine wilt disease caused by B. xylophilus.  相似文献   

10.
Cereals are staple food for many countries and are grown on millions of hectares of land, but much of the harvest is wasted due to losses by pests. To minimize these losses, many pesticides are used which are damaging to the environment and human health. There are debates to get rid of these chemicals but they are still in use at large scale. An alternative control strategy for insect pests in storage houses is the use of botanicals. In this study, four plant essential oils, two plant extracts, two herbicides, and two insecticides were used against Tribolium confusum and the comparison of toxicity was made by calculating LC50 and LT50 values. LC50 values were higher for abamectin (2.09–10.23 mg/L) and cypermethrin (3.41–11.78 mg/L) insecticides followed by neem essential oil (7.39–19.24 mg/L) and citrus extract (10.14–24.50 mg/L). However, LC50 values were maximum in case of jaman plant extract (22.38–176.42 mg/L) followed by two herbicides, Logran (19.66–39.72 mg/L) and Topik (29.09–47.67 mg/L) However, LC50 values were higher for topic herbicide (24.098 ppm) and jaman essential oil (16.383 ppm) after four days of treatment. Abamectin and cypermethrin insecticides, neem essential oil and citrus plant extract also killed adults of T. confusum quicker as compared other essential oils, extracts and herbicides. Results revealed that botanical formulations being environmentally safe could be used instead of highly hazardous pesticides for stored products’ pests. This study also elaborates the non-host toxicity of herbicides commonly applied in our agroecosystem.  相似文献   

11.
Essential oils are very popular among organic growers because they are ecologically safe, do not have mammalian toxicity, and cannot be resistant to a variety of contaminants. Four essential oils, Lemon, Lavender, Peppermint, and Neem, were tested for larvicide efficacy against the dengue fever vector Aedes aegypti larvae under laboratory conditions using dipping bioassay techniques. Among the essential oils tested, lemon, peppermint, and lavender oils showed high larvicidal activity against larvae of Ae. aegypti. Lemon oil showed the highest effects (LC50 10.676 ppm), while Peppermint, Lavender and Neem oil showed the lowest effects (LC50 21.380, 29.818 and 38.058 ppm, respectively). As a result, the mixture of lemon oil (LC50) with Peppermint oil (LC25) showed the highest co-toxicity factor, whereas the mixture of Lemon oil (LC50) with Diesel oil (LC25) showed the lowest co-toxicity factor. Based on the results of this study, it appears that essential oils may be useful as larvicides against Ae. aegypti larvae. In search of new natural larvicides, these compounds may provide an alternative to Synthetic insecticides as these are environmentally safe insecticides.  相似文献   

12.
Culex pipiens mosquitoes are the most widely distributed primary vector of the West Nile virus worldwide. Many attempts for investigation of botanical pesticides to avoid the development of pesticide resistance to conventional synthetic pesticides that are recognized as a threat to the diversity of ecosystems. The study aimed to determine the components of three essential oils of Lamiaceae family, lavender (Lavandula angustifolia), peppermint (Mentha piperita L.), and rosemary (Rosmarinus officinalis L.) by gas chromatography-mass spectrometry (GC–MS) analysis. Furthermore, aimed to validate the insecticidal activities of these oils as larvicidal agents against the third instar larvae of Culex pipiens using five different concentrations (62.5, 125, 250, 500, and 1000 ppm) for each oil in five replicates and as an adulticidal agent against approximately three-day-old female adults of Cx. Pipiens using 0.5, 1, 2, 4, and 5% concentrations in three replicates. The results generally showed a dose-related response. At 1000 ppm, rosemary oil showed the highest larvicidal (100%) (LC50, 214.97 ppm), followed by peppermint oil (92.00% mortality and LC50 (269.35 ppm). Lavender oil showed the lowest efficacy with 87.20% mortality and LC50 (301.11 ppm). At 5% oil concentration, the highest knockdown rate at 1 h was recorded for lavender oil (95.55%), followed by peppermint oil (88.89%) and lastly rosemary oil (84.44%). After 24 h, rosemary oil showed the lowest adult mortality rate (88.89%; LC50, 1.44%), while lavender and peppermint oils both showed a 100% mortality rate, with (LC50, 0.81% and 0.91%, respectively). The chemical constituents of the oils consisted of monoterpenes and sesquiterpenes that determined their insecticidal activities against the target insect stage. The study proposed that rosemary essential oil may be useful for the control of Cx. pipiens larvae as part of an integrated water treatment strategy, and lavender and peppermint oils may be used in an integrated plan for adult’s control.  相似文献   

13.
14.
In the present study, six monoterpenes [(?)-citronellal, p-cymene, (?)-menthone, α-pinene, α-terpinene, and (?)-terpinen-4-ol] and two phenylpropenes [trans-cinnamaldehyde and eugenol] were evaluated for their contact and fumigant toxicities against Sitophilus oryzae adults. The effects of these compounds on the mortality of S. oryzae adults in stored wheat and their inhibitory effects on acetylcholinesterase (AChE) and adenosine triphosphatases (ATPases) were examined. The tested compounds showed varying degrees of contact toxicity, with trans-cinnamaldehyde (LC50 = 0.01 mg/cm2) being the most potent compound, followed by (?)-menthone (LC50 = 0.013 mg/cm2) and eugenol (LC50 = 0.015 mg/cm2). In a fumigant toxicity assay, the monoterpenes α-terpinene, p-cymene, and (?)-menthone showed the highest toxicities (LC50 = 50.79, 52.37, and 54.08 μl/L air, respectively). Trans-cinnamaldehyde, (?)-citronellal, and eugenol were the least toxic (LC50 > 100 μl/L air). In general, the oxygenated compounds exhibited high contact toxicities while the hydrocarbon compounds exhibited high fumigant toxicities. When tested for their insecticidal activities against S. oryzae in stored wheat, trans-cinnamaldehyde was found to be the most potent compound, with 73.9% mortality at an application rate of 0.5 g/kg and complete mortality (100%) at 1 and 5 g/kg after 1 week of treatment. All of the tested compounds showed AChE inhibition, although (?)-citronellal and trans-cinnamaldehyde presented the strongest enzyme inhibition, with IC50 values of 18.40 and 18.93 mM, respectively. On the other hand, (?)-terpinene-4-ol exhibited the highest inhibition of ATPases, followed by α-pinene and α-terpinene.  相似文献   

15.
《Journal of Asia》2021,24(4):1235-1238
Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae), is a worldwide omnivorous pest. It is the primary insect pest in many economically important stored crops. The insecticidal activity of essential oils (EOs) extracted from Ajania potaninii and Ajania fruticulosa were evaluated against Plodia interpunctella. EOs obtained by hydro-distillation were analyzed by GC–MS. Fumigant toxicity testing indicated that both EOs and their main components were toxic to P. interpunctella adults. 1,8-Cineole exhibited the strongest activity, having an LC50 of 0.86 mg/L air and being twice as active as camphor. Myrtenol was also strongly toxic to P. interpunctella adults (LC50 0.99 mg/L air), while camphor, verbenol, borneol, and the two complete EOs exhibited lower toxicity. None of the EOs or main components exhibited significant toxicity against the larvae of P. interpunctella. This study provides evidence of the individual active substances accounting for the insecticidal activity of EOs from A. potaninii and A. fruticulosa. These EOs have potential as biological insecticides for controlling insect pest damage in stored crops.  相似文献   

16.
《Journal of Asia》2022,25(3):101963
Biological control of larval mosquitoes is in great demand due to the development of resistance against synthetic insecticides, environmental toxicity and the inability to protect habitats from further oviposition. In the present study, three botanical essential oils (BEOs) – citronella, eucalyptus, and pine oils – were formulated for the assessment of larvicidal and oviposition repellent efficacies against Culex quinquefasciatus Say, the filaria vector. The GC–MS profiling of BEOs showed the presence of 16 – 19 compounds covering 87.7–93% of oil composition. The resistance status of Culex quinquefasciatus population was evaluated with temephos (LC50 = 0.001 ppm, LC90 = 0.01 ppm). Larval bioassay of emulsifiable concentrate (EC) formulations prepared from eucalyptus and pine oils showed promising efficacy (LC50 = 22.7 and 23.2 ppm) and LC90 (63.8 and 62.4 ppm) compared to citronella oil EC (LC50 = 43.4 ppm and LC90 = 199.0 ppm). The field trials of eucalyptus + pine (1:1 ratio) EC showed 100% larval mortality for 3 weeks at 300 ppm compared to 2 weeks of individual oils. Further, the oviposition attraction index (OAI) for ECs of eucalyptus, pine, and their combination showed complete protection of breeding habitats from oviposition at 1st week and ?0.9 to ?1.0 OAI at 2nd week with slight reduction to ?0.5 at 3rd week. Citronella EC provided shortest larvicidal and oviposition repellent efficacy under the field conditions. The promising mosquitocidal activities of EC formulations of eucalyptus and pine or their combination suggest them as potential biocontrol vector control candidates over citronella oil.  相似文献   

17.
Oral squamous cell carcinoma (OSCC) is the most commom cancer in the world. If remain untreated for several years, it may be fatal. Hence, it is important to prevent and treat OSCC at an early stage. In this study the effect of aqueous and dry leaves extract of Ocimum sanctum was observed on Ca9-22 cell line, which is an OSCC cell line. For this, Ca9-22 cell line was cultured and maintained. After 24 h, the cells were treated with aqueous and dry leaves extract of Ocimum sanctum plant. Viability of the cancerous cells were studied by 3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and neutral red uptake (NRU) assay. Minimum inhibitory concentrations (MIC), lethal concentration25 (LC25), lethal concentration50 (LC50) and highest permissive concentration (HPC) was calculated by probit computational method. Experimentally, the MIC value was 5 mg/L, whereas the HPC was 30 mg/L of the plant extract in aqueous state. For the dry extract the MIC was 5 mg/L whereas the HPC was 35 mg/L for both MTT and NRU assays. For MTT assay LC values: 7.41 (LC25), 14.79 (LC50) and 26.91 mg/L (LC75) for aqueous extract and 12.58 (LC25), 20.89 (LC50), 29.51 mg/L (LC75) for dry extract. For NRU assay LC values were 10.23 (LC25), 14.79 (LC50) and 20.89 mg/L (LC75) aqueous extract, and 16.59 (LC25), 23.44 (LC50), 30.19 mg/L (LC75) dry extract of the plant. From the above study it was concluded that, Ocimum sanctum have anti-cancerous activity. It can further be used for therapeutic purposes.  相似文献   

18.
The larvicidal activity of essential oils of four species of Piper from the Amazon Forest was tested using third-instar larvae of Aedes aegypti. The oils were extracted by steam distillation and analyzed by GC and GC–MS. The main components isolated from each Piper species were as follows: viridiflorol (27.50%), aromadendrene (15.55%) and β-selinene (10.50%) from Piper gaudichaudianum; β-selinene (15.77%) and caryophyllene oxide (16.63%) from Piper humaytanum; dillapiol (54.70%) and myristicin (25.61%) from Piper permucronatum; and asaricin (27.37%) and myristicin (20.26%) from Piper hostmanianum. Amongst all essential oils tested, the most active against larvae of A. aegypti was the oil extracted from P. permucronatum, with a LC50 = 36 μg/ml (LC90 = 47 μg/ml), followed by the essential oil of P. hostmanianum, with a LC50 = 54 μg/ml (LC90 = 72 μg/ml). The oils with higher content of arylpropanoids were more active against larvae of A. aegypti.  相似文献   

19.
Plants are a prospective source of novel natural insect repellents and botanical insecticides. This study was conducted to investigate the chemical composition of the essential oils of three plants growing in Saudi Arabia, namely Ducrosia anethifolia, Achillea fragrantissima, and Teucrium polium; and to evaluate their potential mosquitocidal and repellent activities against adult female Culex pipiens L. The main components of the three oils were found to be decanal (28.9%) and chrysanthenyl acetate (10.04%), (D. anethifolia); sabinyl acetate (35.79) and artemesia ketone (18.28%) (A. fragrantissima); α‐cadinol (49.53%) and δ‐cadinene (10.23%) (T. polium). The oil of A. fragrantissima was the most toxic (LC50 = 0.11 μL/L air) followed by D. anethifolia and T. polium with LC50 values of 5.22 and 25.98 μL/L air, respectively. T. polium oil was the most repellent (292 min at 2 μL/cm2), followed by D. anethifolia and A. fragrantissima. The results indicate that the essential oils have a potential fumigant insecticidal and repellent activities for mosquito control.  相似文献   

20.
Preventive measures based in the control of insect vectors are considered as the best choice to decrease the incidence of insect-borne diseases. Herein we report on the volatile content of the leaf essential oils from Marina neglecta, a medicinal plant distributed in the tropical regions of southern Mexico. In order to investigate the chemical variation of the essential oils, a volatile screening was performed during the four seasons of the years 2016–2019. Simultaneously, their biological activity was tested on distinct life stages of Meccus pallidipennis, M. bassolsae, Aedes aegypti and A. albopictus. Essential oils were mainly constituted of β-pinene (>30%) β-caryophyllene (>25%) and germacrene D (>13%). Dorsal-abdomen application of essential oils on triatomines, revealed an efficient LC50 for nymphs of the stages I to III (4 µg/insect), nymphs of the stages IV to V (5–6 µg/insect), and adults (7–8 µg/insect). The LT50 for the stages I to III was between 6 and 8 h, whereas that for the stages IV to V and adults oscillated between 12 and 16 h and 22 to 26 h, respectively. Fumigation experiments performed on nymph V, demonstrated that 300 µg L?1 air produced 100% mortality after 72 h post-treatment. Among tested volatiles, β-pinene and β-caryophyllene produced a comparable mortality rate (p < 0.01) than that of essential oils in the stages assayed. Essential oils showed strong larvicidal (LC50, 24–36 µg mL?1) and adulticidal (35–48 µg mL?1) activities in mosquito species with an LT50 of 4.5 h and 25–35 min, respectively. The evaluation of β-pinene produced a significant mortality rate (p < 0.01) in larvae whereas germacrene D was the most effective volatile (p < 0.01) against adults of both mosquito species. According to our results, β-pinene was the most effective volatile against the four insect species evaluated and its effect was comparable to that of the essential oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号