首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sunflower occupies the fourth position among oilseed crops the around the world. Eceriferum (CER) is an important gene family that plays critical role in very-long-chain fatty acids elongation and biosynthesis of epicuticular waxes under both biotic and abiotic stress conditions. The aim of present study was to investigate the effect of sunflower CER genes during drought stress condition. Thus, comparative analysis was undertaken for sunflower CER genes with Arabidopsis genome to determine phylogenetic relationship, chromosomal mapping, gene structures, gene ontology and conserved motifs. Furthermore, we subjected the sunflower cultivars under drought stress and used qRT-PCR analysis to explore the expression pattern of CER genes during drought conditions. We identified thirty-seven unevenly distributed CER genes in the sunflower genome. The phylogenetic analysis revealed that CER genes were grouped into seven clades in Arabidopsis, Helianthus annuus, and Gossypium hirsutum. Expression analysis showed that genes CER10 and CER60 were upregulated in sunflower during drought conditions, indicating that these genes are activated during drought stress. The results obtained will serve to characterize the CER gene family in sunflower and exploit the role of these genes in wax biosynthesis under limited water conditions.Key messageCuticular waxes protect the plants from drought stress, so we observed the expression of wax bio synthesis genes in recently sequences genome of Helianthus annuus. We observed that expression of wax biosynthesis genes CER10 and CER60 was upregulated when the plants were subjected to drought stress.  相似文献   

2.
Mitochondrial genomes of the three lucanid species in the Dorcus velutinus complex – Dorcus velutinus Thomson, D. ursulus Arrow and D. tenuihirsutus Kim and Kim were assembled and analyzed through next generation sequencing. The mitogenome sequences were used to infer phylogenetic relationships among Dorcus species. Our analyses revealed that the newly sequenced mitogenomes are comparable in their size, content, and gene arrangement to other lucanid mitogenomes reported to date. However, we confirmed the presence of a large intergenic spacer (IGS) between trnS(UCN) and ND1 genes, whose length varied from 170 bp (in D. tenuihirsutus) to 193 bp (in D. ursulus and D. velutinus). Within this IGS region, a short sequence fragment (TACTAAATT) was found uniquely across the three species of Dorcus velutinus complex. Our phylogenetic analyses show that the D. velutinus complex constitutes a distinct clade with a significant divergence from other species of the genus Dorcus sensu stricto. Furthermore, we reaffirm the validity of D. tenuihirsutus – a species originally described from Korea – as a distinct species, though the taxonomic status of D. ursulus remains to be studied further. Finally, we find the presence and location of large IGSs to be useful for studying evolutionary history and species delimitation in stag beetles.  相似文献   

3.
4.
《Mycoscience》2020,61(5):249-258
The classification system and evolutionary history of Erysiphaceae have been studied based on the results of molecular phylogenetic analyses. However, the sequence data used for these phylogenetic estimations have been limited to the nrDNA of ca., 50 taxa, and the relationships among higher taxonomic groups are not well understood. To provide a phylogenetic overview of Erysiphaceae, we performed phylogenetic estimations based on nrDNA and MCM7 sequences obtained from ca., 270 taxa. The phylogenetic tree showed a similar topology to the trees obtained in previous studies, although the branching order between Golovinomyceteae and Phyllactinieae was different and Phyllactinieae was not monophyletic. Phyllactinieae and Erysipheae were estimated to diversify after the divergence of Golovinomyceteae, suggesting an evolutionary trend in which non-catenate conidia + endoparasitic or non-catenate conidia + ectoparasitic lineages were derived from catenate conidia + ectoparasitic lineages. Phyllactinieae was divided into a clade of Phyllactinia + Leveillula and other clade(s) consisting of Pleochaeta and Queirozia. The phylogenetic hypothesis of Erysiphaceae was updated based on the largest dataset to date, but the higher-level phylogenetic relationships remain unclear. For a more robust phylogenetic hypothesis of Erysiphaceae, further sequence data, including protein coding regions, should be added to the dataset of nrDNA sequences.  相似文献   

5.
Strain LMG 31809 T was isolated from a top soil sample of a temperate, mixed deciduous forest in Belgium. Comparison of its 16S rRNA gene sequence with that of type strains of bacteria with validly published names positioned it in the class Alphaproteobacteria and highlighted a major evolutionary divergence from its near neighbor species which represented species of the orders Emcibacterales and Sphingomonadales. 16S rRNA amplicon sequencing of the same soil sample revealed a highly diverse community in which Acidobacteria and Alphaproteobacteria predominated, but failed to yield amplicon sequence variants highly similar to that of strain LMG 31809 T. There were no metagenome assembled genomes that corresponded to the same species and a comprehensive analysis of public 16S rRNA amplicon sequencing data sets demonstrated that strain LMG 31809 T represents a rare biosphere bacterium that occurs at very low abundances in multiple soil and water-related ecosystems. The genome analysis suggested that this strain is a strictly aerobic heterotroph that is asaccharolytic and uses organic acids and possibly aromatic compounds as growth substrates. We propose to classify LMG 31809 T as a novel species within a novel genus, Govania unica gen. nov., sp. nov, within the novel family Govaniaceae of the class Alphaproteobacteria. Its type strain is LMG 31809 T (=CECT 30155 T). The whole-genome sequence of strain LMG 31809 T has a size of 3.21 Mbp. The G + C content is 58.99 mol%. The 16S rRNA gene and whole-genome sequences of strain LMG 31809 T are publicly available under accession numbers OQ161091 and JANWOI000000000, respectively.  相似文献   

6.
《Genomics》2022,114(4):110400
Endive (Cichorium endivia L.) is a leafy vegetable in the Asteraceae family. Sesquiterpene lactones (STLs) in endive leaves bring a bitter taste that varies between varieties. Despite their importance in breeding varieties with unique flavours, sesquiterpenoid biosynthesis pathways in endive are poorly understood. We assembled a chromosome-scale endive genome of 641 Mb with a contig N50 of 5.16 Mb and annotated 46,711 protein-coding genes. Several gene families, especially terpene synthases (TPS) genes, expanded significantly in the C. endivia genome. STLs biosynthesis-related genes and TPS genes in more bitter varieties have shown a higher level of expression, which could be attributed to genomic variations. Our results penetrate the origin and diversity of bitter taste and facilitate the molecular breeding of endive varieties with unique bitter tastes. The high-quality endive assembly would provide a reference genome for studying the evolution and diversity of Asteraceae.  相似文献   

7.
Bacteria within the phylum Planctomycetota are biologically relevant due to unique characteristics among prokaryotes. Members of the genus Rhodopirellula can be abundant in marine habitats, however, only six species are currently validly described. In this study, we expand the explored genus diversity by formally describing a novel species. The pink-coloured strain ICT_H3.1T was isolated from brackish sediments collected in the Tagus estuary (Portugal) and a 16S rRNA gene sequence-based analysis placed this strain into the genus Rhodopirellula (family Pirellulaceae). The closest type strain is Rhodopirellula rubra LF2T, suggested by a similarity of 98.4% of the 16S rRNA gene sequence. Strain ICT_H3.1T is heterotrophic, aerobic and able to grow under microaerobic conditions. The strain grows between 15 and 37 °C, over a range of pH 6.5 to 11.0 and from 1 to 8% (w/v) NaCl. Several nitrogen and carbon sources were utilized by the novel isolate. Cells have an elongated pear-shape with 2.0 ± 0.3 × 0.9 ± 0.2 µm in size. Cells of strain ICT_H3.1T cluster in rosettes through a holdfast structure and divide by budding. Younger cells are motile. Ultrathin cell sections show cytoplasmic membrane invaginations and polar fimbriae. The genome size is 9,072,081 base pairs with a DNA G + C content of 56.1 mol%. Genomic, physiological and morphological comparison of strain ICT_H3.1T with its relatives suggest that it belongs to a novel species within the genus Rhodopirellula. Hence, we propose the name Rhodopirellula aestuarii sp. nov., represented by ICT_H3.1T (=CECT30431T = LMG32464T) as the type strain of this novel species.16S rRNA gene accession number: GenBank = OK001858.Genome accession number: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAMQBK000000000. The version described in this paper is version JAMQBK010000000.  相似文献   

8.
Azurin protein of Pseudomonas aeruginosa is an anti-tumor agent against breast cancer and mammaglobin-A (MAM-A) protein is a specific antigen on the surface of MCF-7 for induction of cellular immune. The purpose of the present study was to investigate the effects of simultaneous expression of azurin and human MAM-A genes on the mRNA expression level of apoptosis-related and cell cycle genes in MCF-7 breast cancer cell line. The recombinant or empty plasmids were separately transferred into MCF-7 cells using Lipofectamine reagent. Flow cytometry was done to detect cell death and apoptosis. The expression of azurin and MAM-A genes were evaluated by IF assay, RT-PCR and western blot methods. Finally, apoptosis-related and cell cycle genes expression was examined in transformed and non-transformed MCF-7 cells by qPCR method. The successful expression of azurin and MAM-A genes in the MCF-7 cell were confirmed by RT-PCR, IF and western blotting. The apoptosis assay was showed a statistically significant (p < 0.05) difference after transfection. The expression of BAK, FAS, and BAX genes in transformed cells compare with non-transformed and transformed MCF-7 by pBudCE4.1 were increased statistically significant (p < 0.05) increases. Although, the increase of SURVIVIN and P53 expressions in transformed cells were not statistically significant (p > 0.05). Co-expression of azurin and MAM-A genes could induce apoptosis and necrosis in human MCF-7 breast cancer cells by up-regulation of BAK, FAS, and BAX genes. In future researches, it must be better the immune stimulation of pBudCE4.1-azurin-MAM-A recombinant vector in animal models and therapeutic approaches will be evaluated.  相似文献   

9.
The causative agent of crayfish plague, Aphanomyces astaci (Saprolegniales, Oomycota), is one of the 100 world’s worst invasive alien species and represents a major threat to freshwater crayfish species worldwide. A better understanding of the biology and epidemiology of A. astaci relies on the application of efficient tools to detect the pathogen and assess its genetic diversity. In this study, we validated the specificity of two recently developed PCR-based approaches used to detect A. astaci groups. The first relies on the analysis of mitochondrial ribosomal rnnS (small) and rnnL (large) subunit sequences and the second, of sequences obtained by using genotype-specific primers designed from A. astaci whole genome sequencing. For this purpose, we tested the specificity against 76 selected isolates, including other oomycete species and the recently described species Aphanomyces fennicus, which, when used in nrITS-based specific tests for A. astaci, is known to result in a false positive. Under both approaches, we were able to efficiently and accurately identify A. astaci and its genetic groups in both pure cultures and clinical samples. We report that sequence analysis of the rnnS region alone is sufficient for the identification of A. astaci and a partial characterization of haplogroups. In contrast, the rnnL region alone is not sufficiently informative for A. astaci identification as other oomycete species present sequences identical to those of A. astaci.  相似文献   

10.
Marine sponges represent a rich source of uncharacterized microbial diversity, and many are host to microorganisms that produce biologically active specialized metabolites. Here, a polyphasic approach was used to characterize two Actinobacteria strains, P01-B04T and P01-F02, that were isolated from the marine sponges Geodia barretti (Bowerbank, 1858) and Antho dichotoma (Esper, 1794), respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains P01-B04T and P01-F02 are closely related to Streptomyces beijiangensis DSM 41794T, Streptomyces laculatispora NRRL B-24909T, and Streptomyces brevispora NRRL B-24910T. The two strains showed nearly identical 16S rRNA gene sequences (99.93%), and the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) relatedness values were 99.96% and 99.6%, respectively, suggesting that these strains are affiliated with the same species. Chemotaxonomic and culture characteristics of both strains were also consistent with the genus Streptomyces, while phenotypic properties, genome-based comparisons, and phylogenomic analyses distinguished strains P01-B04T and P01-F02 from their closest phylogenetic relatives. In silico analysis predicted that the 8.9 Mb genome of P01-B04T contains at least 41 biosynthetic gene clusters (BGCs) encoding secondary metabolites, indicating that this strain could express diverse bioactive metabolites; in support of this prediction, this strain expressed antibacterial activity against Gram-positive bacteria including a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA) EAMC30. Based on these results, the marine sponge-associated isolates represent a novel species of the genus Streptomyces, for which the name Streptomyces poriferorum sp. nov. is proposed, with P01-B04T (=DSM 111306T = CCM 9048T) as the type strain.  相似文献   

11.
β-Carotene is converted into vitamin A in the body and can remove reactive oxygen species. However, it is still unclear whether β-carotene alters the expression levels of inflammation-related genes in macrophages and how this is regulated. In the present study, we investigated whether the administration of β-carotene under hyperglycemic conditions altered the expression level of inflammation-related genes and whether any observed differences were associated with changes in histone modifications in juvenile macrophage-like THP-1 cells. THP-1 cells (from a human monocytic leukemia cell line) were cultured in low glucose (5 mM), high glucose (25 mM), or high glucose (25 mM) + β-carotene (5 μM) media for 1 day, and mRNA expression levels of genes related to oxidative stress and inflammation, and histone modifications were determined by mRNA microarray and qRT-PCR analyses, and chromatin immunoprecipitation assays, respectively. The expression of inflammation-related genes, such as IL31RA, CD38, and NCF1B, and inflammation-associated signaling pathway genes, such as ITGAL, PRAM1, and CSF3R, were upregulated by β-carotene under high-glucose conditions. Under these conditions, histone H3 lysine 4 (K4) demethylation, H3K36 trimethylation, and H3K9 acetylation around the CD38, NCF1B, and ITGAL genes were higher in β-carotene-treated cells than in untreated cells. Treatment of juvenile macrophage-like THP-1 cells with β-carotene under these high glucose conditions induced the expression of inflammation-related genes, K9 acetylation, and K4 di- and K36 trimethylation of histone H3 around these genes.  相似文献   

12.
13.
Foxtail millet (Pennisetum glaucum L.) is a vital crop that is planted as food and fodder crop around the globe. There is only limited information is present for abiotic stresses on the physiological responses to atrazine. A field experiment was conducted to investigate the effects of different atrazine dosages on the growth, fluorescence and physiological parameters i.e., malonaldehyde (MDA) and reactive oxygen species (ROS) (H2O2 and O2) in the leaves to know the extent of atrazine on oxidative damage of foxtail millet. Our experiment consisted of 0, 2.5, 12.5, 22.5 and 32.5 (mg/kg) of labeled atrazine doses on 2 foxtaill millet varieties. High doses of atrazine significantly enhanced ROS and MDA synthesis in the plant leaves. Enzymes activities like ascorbate peroxidase (APX) and peroxidase (POD) activities enhanced, while catalase (CAD) and superoxide dismutase (SOD) activities reduced with increasing atrazine concentrations. Finally atrazine doses at 32.5 mg/kg reduced chlorophyll contents, while chlorophyll (a/b) ratio also enhanced. Biomass, plant height, chlorophyll fluorescence parameters, minimal and maximal fluorescence (Fo, Fm), maximum and actual quantum yield, photochemical quenching coefficient, and electron transport rate are decreased with increasing atrazine doses.  相似文献   

14.
A spiral-shaped, highly motile bacterium was isolated from freshwater sulfidic sediment. Strain J10T is a facultative autotroph utilizing sulfide, thiosulfate, and sulfur as the electron donors in microoxic conditions. Despite high 16S rRNA gene sequence sequence identity to Magnetospirillum gryphiswaldense MSR-1 T (99.6 %), digital DNA-DNA hybridisation homology and average nucleotide identity between the two strains was of the different species level (25 % and 83 %, respectively). Strain J10T is not magnetotactic. The DNA G + C content of strain J10T is 61.9 %. The predominant phospholipid ester-linked fatty acids are C18:1ω7, C16:1ω7, and C16:0. Strain J10T (=DSM 23205 T = VKM B-3486 T) is the first strain of the genus Magnetospirillum showing lithoautotrophic growth and is proposed here as a novel species, Magnetospirillum sulfuroxidans sp. nov. In addition, we propose to establish a framework for distinguishing genera and families within the order Rhodospirillales based on phylogenomic analysis using the threshold values for average amino acid identity at ̴ 72 % for genera and ̴ 60 % for families. According to this, we propose to divide the existing genus Magnetospirillum into three genera: Magnetospirillum, Paramagnetospirillum, and Phaeospirillum, constituting a separate family Magnetospirillaceae fam. nov. in the order Rhodospirillales. Furthermore, phylogenomic data suggest that this order should accomodate six more new family level groups including Magnetospiraceae fam. nov., Magnetovibrionaceae fam. nov., Dongiaceae fam. nov., Niveispirillaceae fam. nov., Fodinicurvataceae fam. nov., and Oceanibaculaceae fam. nov.  相似文献   

15.
16.
A polyphasic taxonomic approach was used to characterize the four strains P2653T, P2652, P2498, and P2647, isolated from Antarctic regolith samples. Initial genotype screening performed by PCR fingerprinting based on repetitive sequences showed that the isolates studied formed a coherent cluster separated from the other Pseudomonas species. Identification results based on 16S rRNA gene sequences showed the highest sequence similarity with Pseudomonas graminis (99.7%), which was confirmed by multilocus sequence analysis using the rpoB, rpoD, and gyrB genes. Genome sequence comparison of P2653T with the most related P. graminis type strain DSM 11363T revealed an average nucleotide identity of 92.1% and a digital DNA-DNA hybridization value of 46.6%. The major fatty acids for all Antarctic strains were C16:0, Summed Feature 3 (C16:1 ω7c/C16:1 ω6c) and Summed Feature 8 (C18:1 ω7c/C18:1 ω6c). The predominant respiratory quinone was Q-9, and the major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol. The regolith strains could be differentiated from related species by the absence of arginine dihydrolase, ornithine and lysine decarboxylase and by negative tyrosine hydrolysis. The results of this polyphasic study allowed the genotypic and phenotypic differentiation of four analysed strains from the closest related species, which confirmed that the strains represent a novel species within the genus Pseudomonas, for which the name Pseudomonas petrae sp. nov. is proposed with P2653T (CCM 8850T = DSM 112068T = LMG 30619T) as the type strain.  相似文献   

17.
This investigation aimed to determine the relatedness of dominant occurring soil Streptomyces spp. in Northern Jordan based on their RAPD-PCR fingerprints, and to compare RAPD technique with the conventional phenotypic characterization of Streptomyces isolates. Fifty-eight white and gray color-bearing aerial mycelia antibiotic active-producing Streptomyces soil isolates along with three reference strains were genetically analyzed by RAPD-PCR. Polymorphisms between the isolates showed 1 to 10 bands per isolate and ranged from 200 to 3200 bp in size. Results revealed one common band of ~600 bp shared by ~85% of the isolates, and the observation of bands specific to some reference strains and some soil isolates. When RAPD patterns were analyzed with the UPGMA, results revealed clustering the tested isolates into two equal main super clusters (50% each). Super cluster I appeared to be homogenous and include the three reference strains. However, super cluster II was heterogeneous and but not including any of the reference strains. The association of the antibiotic activity of the dominant white and gray aerial mycelium-bearing Streptomyces isolates to RAPD clustering is reported for the first time, and the RAPD-PCR fingerprints generated here deserve to be cloned, characterized and sequenced in future as Streptomyces species-specific DNA markers. The more random primers used in the analysis may add to RAPD technique a cost-effective, fast, precise result, and less labor work solution for analyzing the similarities and differences among the Streptomyces isolates.  相似文献   

18.
19.
Several plants have traditionally been used since antiquity to treat various gastroenteritis and respiratory symptoms similar to COVID-19 outcomes. The common symptoms of COVID-19 include fever or chills, cold, cough, flu, headache, diarrhoea, tiredness/fatigue, sore throat, loss of taste or smell, asthma, shortness of breath, or difficulty breathing, etc. This study aims to find out the plants and plant-derived products which are being used by the COVID-19 infected patients in Bangladesh and how those plants are being used for the management of COVID-19 symptoms. In this study, online and partially in-person survey interviews were carried out among Bangladeshi respondents. We selected Bangladeshi COVID-19 patients who were detected Coronavirus positive (+) by RT-PCR nucleic acid test and later recovered. Furthermore, identified plant species from the surveys were thoroughly investigated for safety and efficacy based on the previous ethnomedicinal usage reports. Based on the published data, they were also reviewed for their significant potentialities as antiviral, anti-inflammatory, and immunomodulatory agents. We explored comprehensive information about a total of 26 plant species, belonging to 23 genera and 17 different botanical families, used in COVID-19 treatment as home remedies by the respondents. Most of the plants and plant-derived products were collected directly from the local marketplace. According to our survey results, greatly top 5 cited plant species measured as per the highest RFC value are Camellia sinensis (1.0) > Allium sativum (0.984) > Azadirachta indica (0.966) > Zingiber officinale (0.966) > Syzygium aromaticum (0.943). Previously published ethnomedicinal usage reports, antiviral, anti-inflammatory, and immunomodulatory activity of the concerned plant species also support our results. Thus, the survey and review analysis simultaneously reveals that these reported plants and plant-derived products might be promising candidates for the treatment of COVID-19. Moreover, this study clarifies the reported plants for their safety during COVID-19 management and thereby supporting them to include in any future pre-clinical and clinical investigation for developing herbal COVID-19 therapeutics.  相似文献   

20.
Drought and salinity are potential threats in arid and semi arid regions. The current study was conducted with objective to optimize the production of different exotic genotypes of mungbean (NM-121-25, Chakwal M-6, DM-3 and PRI-Mung-2018) under drought and salinity stresses using humic acid in field experiments. One year tri-replicate field experiment was performed in RCBD using three factorial arrangement and effects of humic acid (60 kg ha?1) were evaluated at physiological, biochemical, molecular and agronomical level under individual and integrated applications of drought (no irrigation till 15 days) and salinity (EC 6.4 dSM?1). Data for physiological parameters (total chlorophyll, photosynthesis rate, stomatal conductance, transpiration rate and membrane damage), antioxidant enzymes (superoxide dismutase, catalase, peroxidase) and proline were collected on weekly basis since after the initiation of drought and salinity stresses. However data for agronomic characteristics (plant height, branches plant?1, LAI, pods plant?1, pod length and hundred seed weight) and grain carbohydrate content were collected after harvesting, while sampling for drought (VrDREB2A, VrbZIP17 and VrHsfA6a) and salinity (VrWRKY73, VrUBC1 and VrNHX1) related genes expression study was done after plants attained seedling stage. Under both individual and integrated applications of drought and salinity, all genotypes showed significant (p ≤ 0.05) increase in all traits excluding Cell membrane damage and proline during humic acid application. Likewise, genes expression revealed statistically distinct (p ≤ 0.05) up-regulation under humic acid treatment as compared to no humic acid treatment during both individual and integrated applications of drought and salinity. The genotype PRI-Mung-2018 recorded noteworthy performance during study. Moreover correlation and PCA analysis revealed that ultimate agronomical yield due to humic acid is an outcome of interconnection of physiological and biochemical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号