共查询到11条相似文献,搜索用时 0 毫秒
1.
Saloni Shah Swapnil Gaikwad Shuchi Nagar Shatavari Kulshrestha Viniti Vaidya Neelu Nawani 《Biofouling》2019,35(1):34-49
Quorum sensing (QS), the communication signaling network, regulates biofilm formation and several virulence factors in Pseudomonas aeruginosa PAO1, a nosocomial opportunistic pathogen. QS is considered to be a challenging target for compounds antagonistic to virulent factors. Biologically synthesized silver nanoparticles (AgNPs) are reported as anti-QS and anti-biofilm drugs against bacterial infections. The present study reports on the synthesis and characterization of Piper betle (Pb) mediated AgNPs (Pb-AgNPs). The anti-QS activity of Pb-AgNPs against Chromobacterium violaceum and the potential effect of Pb-AgNPs on QS-regulated phenotypes in PAO1 were studied. FTIR analysis exhibited that Pb-AgNPs had been capped by phytochemical constituents of Pb. Eugenol is one of the active phenolic phytochemicals in Pb leaves, therefore molecular docking of eugenol-conjugated AgNPs on QS regulator proteins (LasR, LasI and MvfR) was performed. Eugenol-conjugated AgNPs showed considerable binding interactions with QS-associated proteins. These results provide novel insights into the development of phytochemically conjugated nanoparticles as promising anti-infective candidates. 相似文献
2.
《Bioorganic & medicinal chemistry》2014,22(19):5392-5409
Type II bacterial topoisomerases are well validated targets for antimicrobial chemotherapy. Novel bacterial type II topoisomerase inhibitors (NBTIs) of these targets are of interest for the development of new antibacterial agents that are not impacted by target-mediated cross-resistance with fluoroquinolones. We now disclose the optimization of a class of NBTIs towards Gram-negative pathogens, especially against drug-resistant Pseudomonas aeruginosa. Physicochemical properties (pKa and log D) were optimized for activity against P. aeruginosa and for reduced inhibition of the hERG channel. The optimized analogs 9g and 9i displayed potent antibacterial activity against P. aeruginosa, and a significantly improved hERG profile over previously reported analogs. Compound 9g showed an improved QT profile in in vivo models and lower clearance in rat over earlier compounds. The compounds show promise for the development of new antimicrobial agents against drug-resistant Pseudomonas aeruginosa. 相似文献
3.
Subajini Mahilrajan Jeyarani Nandakumar Robika Kailayalingam Nilushiny Aloysius Manoharan SriThayalan SriVijeindran 《Biological research》2014,47(1)
Background
The whitish tender leaves of Palmyrah are used for making handicrafts. The problem with these articles is discolouration with time and become more brittle due to fungal attack. This could be prevented by some protective coating. Instead of expensive and harmful chemicals we decided to test natural plant essential oils to control fungal attack. Palmyrah leaf article decay fungi were isolated from two different sites of Jaffna peninsula. In this investigation Antifungal Activity of different plant essential oils from neem (Azadirachta indica), castor (Ricinus communis), citronella (Cymbopogon sp) and camphor (Cinnamomum camphora) obtained from local market have been evaluated against isolated fungi. For screening of Antifungal activity, tests and controls were set to determine minimum inhibitory concentration (MIC) and Percentage of Growth Inhibition.Results
Morphologically three different types of Palmyrah leaf decay fungi were isolated and characterized as Aspergillus niger, Aspergillus flavus and Penicillium sp. Neem and castor oils have recorded no significant (0.05 > P) antifungal activity while citronella and camphor oils showed significantly different antifungal activity compared with control. Camphor oil and Citronella oil showed 100, 58.13% of average growth inhibition for A. niger. 96.38, 51.32% for A.flavus and 84.99, 72.76% for Penicillium sp respectively. Camphor oil showed highest percentage of growth inhibition at lowest minimum inhibitory concentration compared with citronella oil. Camphor oil was found to be highly antifungal and most effective against A niger, and A. flavus, compared with Penicillium sp and gave 100 percentage of growth inhibitions at 5, 1 and 15 ml/dl minimum inhibitory concentration respectively.Conclusion
Significantly higher broad-spectrum of antifungal activity was observed in camphor oil than other tested oils because it showed highest percentage of growth inhibition at lowest inhibitory concentration. Therefore it could be used for the development of new environmental friendly antifungal agent for the preservation of leafy handicrafts. Further formulation, field experiments are necessary to achieve this target. 相似文献4.
To emphasise the role of outer and inner membranes in the resistance of Pseudomonas aeruginosa to bactericidal activity of various disinfectants, spheroplasts and whole cells were compared. Spheroplasts are more sensitive than whole cells to quaternary ammonium compounds such as didecyl dimethyl ammonium bromide (DDAB) and C16-benzalkonium chloride. The outer membrane acts as a barrier to prevent these disinfectants from entering the cell. It seems to have no influence on activities of smaller molecules such as C12, C14-benzalkonium chlorides and sodium dichloroisocyanurate. For tri-sodium phosphate, the presence of outer membrane emphasized the action of the molecule. Moreover, resistance of DDAB-adapted spheroplasts to bactericidal activity of DDAB is higher than the resistance of non-adapted spheroplasts. This suggests that the inner membrane could also play a role in resistance to DDAB. 相似文献
5.
Aims: To examine predominant isolates of Bacillus subtilis and B. pumilus isolated from Soumbala for their antimicrobial activity against indicator microorganisms as Micrococcus luteus , Staphyloccocus aureus , Bacillus cereus , Enterococus facium , Listeria monocytogenes , Escherichia coli , Salmonella typhimurium , Shigella dysenteriae , Yersinia enterocolitica , Aspergillus ochraceus and Penicillium roqueforti .
Methods and Results: Growth inhibition of indicator microorganisms by cells and supernatants of three B. subtilis and two B. pumilus strains was investigated using agar diffusion tests. Inactivation of indicator microorganisms was investigated in laboratory broth and during the fermentation of African locust bean for Soumbala production. The Bacillus isolates showed variable ability of inhibition and inactivation according to the indicator microorganism. The supernatants of pure cultures of B. subtilis inhibited one strain of B. cereus , one of Staph. aureus and E. coli and caused abnormal germination of Aspergillus ochraceus . The supernatant of mixed cultures of B. subtilis and indicators inhibited all the indicators. A treatment with protease eliminated the inhibitions. Isolates of B. subtilis inactivated all the indicators organisms during the fermentation of African locust bean as well as in laboratory broth with about five to eight decimal reduction.
Conclusion: Bacillus isolates from Soumbala inhibit and inactivate Gram-positive and Gram-negative bacteria as well as ochratoxin A producing fungi during both laboratory cultivation and natural fermentation.
Significance and Impact of the Study: Selection of starter cultures of Bacillus spp. for controlled production of Soumbala. 相似文献
Methods and Results: Growth inhibition of indicator microorganisms by cells and supernatants of three B. subtilis and two B. pumilus strains was investigated using agar diffusion tests. Inactivation of indicator microorganisms was investigated in laboratory broth and during the fermentation of African locust bean for Soumbala production. The Bacillus isolates showed variable ability of inhibition and inactivation according to the indicator microorganism. The supernatants of pure cultures of B. subtilis inhibited one strain of B. cereus , one of Staph. aureus and E. coli and caused abnormal germination of Aspergillus ochraceus . The supernatant of mixed cultures of B. subtilis and indicators inhibited all the indicators. A treatment with protease eliminated the inhibitions. Isolates of B. subtilis inactivated all the indicators organisms during the fermentation of African locust bean as well as in laboratory broth with about five to eight decimal reduction.
Conclusion: Bacillus isolates from Soumbala inhibit and inactivate Gram-positive and Gram-negative bacteria as well as ochratoxin A producing fungi during both laboratory cultivation and natural fermentation.
Significance and Impact of the Study: Selection of starter cultures of Bacillus spp. for controlled production of Soumbala. 相似文献
6.
本研究以甲硝唑为阳性对照,利用HPD-100大孔树脂和95%乙醇将猴头菌子实体中小分子活性物质进行富集,得到乙醇制备液(MREEs);然后对乙醇制备液分别使用石油醚(60-90℃)和氯仿进行多次萃取,得到石油醚萃取物(A1、A2)和氯仿萃取物(B),并进行GC-MS测定;对MREEs和A1、A2、B分别进行药敏试验,同时对5种幽门螺旋杆菌进行最低抑菌浓度测定。结果表明,使用大孔树脂得到的MREEs有较好的抑菌活性,得到的A1、A2和B对幽门螺旋杆菌的抑菌率均高于40.0%,其中石油醚萃取物A1在Helicobacter pylori SSI中的抑菌率甚至高达62.9%;A1、A2和B使用GC-MS测定出的主要成分分别是邻苯二甲酸二丁酯(A1,4.53%和A2,6.93%)和棕榈酸2.87%,但仍有大量成分没有被测出。另外,在最低抑菌浓度试验中,A1相应组分对Helicobacter pylori W2504、Helicobacter pylori 9和Helicobacter pylori ATCC 43504的最低抑菌浓度都为0.25mg/mL,A2对Helicobacter pylori 78的最低抑菌浓度仅为0.25mg/mL,而B对Helicobacter pylori W2504、Helicobacter pylori 9的最低抑菌浓度均仅为0.125mg/mL,说明通过石油醚和氯仿萃取得到的猴头菌子实体提取物对幽门螺旋杆菌具有潜在的抑菌作用。 相似文献
7.
《Peptides》2017
Chemokines are important mediators of immunological responses during inflammation and under steady-state conditions. In addition to regulating cell migration, some chemotactic cytokines have direct effects on bacteria. Here, we characterized the antibacterial ability of the synthetic oligopeptide CCL1357-75, which corresponds to the carboxyl-terminal region of the human chemokine CCL13. In vitro measurements indicated that CCL1357-75 disrupts the cell membrane of Pseudomonas aeruginosa through a mechanism coupled to an unordered-helicoidal conformational transition. In a murine pneumonic model, CCL1357-75 improved mouse survival and bacterial clearance and decreased neutrophil recruitment, proinflammatory cytokines and lung pathology compared with that observed in untreated infected animals. Overall, our study supports the ability of chemokines and/or chemokine-derived oligopeptides to act as direct defense agents against pathogenic bacteria and suggests their potential use as alternative antibiotics. 相似文献
8.
Pseudomonas aeruginosa Fuc > Man specific lectin, PA-IIL, is an important microbial agglutinin that might be involved in P. aeruginosa infections in humans. In order to delineate the structures of these lectin receptors, its detailed carbohydrate recognition profile was studied both by microtiter plate biotin/avidin-mediated enzyme-lectin-glycan binding assay (ELLSA) and by inhibition of the lectin-glycan interaction. Among 40 glycans tested for binding, PA-IIL reacted well with all human blood group ABH and Le(a)/Le(b) active glycoproteins (gps), but weakly or not at all with their precursor gps and N-linked gps. Among the sugar ligands tested by the inhibition assay, the Le(a) pentasaccharide lacto-N-fucopentaose II (LNFP II, Galbeta1-3[Fucalpha1-4]GlcNAcbeta1-3Galbeta1-4Glc) was the most potent one, being 10 and 38 times more active than the Le(x) pentasaccharide (LNFP III, Galbeta1-4 [Fucalpha1-3]GlcNAcbeta1-3Galbeta1-4Glc) and sialyl Le(x) (Neu5Acalpha2-3Galbeta1-4[Fucalpha1-3] GlcNAc), respectively. It was 120 times more active than Man, while Gal and GalNAc were inactive. The decreasing order of PA-IIL affinity for the oligosaccharides tested was: Le(a) pentaose > or = sialyl Le(a) tetraose > methyl alphaFuc > Fuc and Fucalpha1-2Gal (H disaccharide)>2'-fucosyllactose (H trisaccharide), Le(x) pentaose, Le(b) hexaose (LNDFH I) and gluco-analogue of Le(y) tetraose (LDFT)>H type I determinant (LNFP I)>Le(x) trisaccharide (Galbeta1-4[Fucalpha1-3]GlcNAc) > sialyl Le(x) trisaccharide > Man > Gal, GalNAc, and Glc (inactive). The results presented here, in accordance with the crystal 3D structural data, imply that the combining site of PA-IIL is a small cavity-type best fitting Fucalpha1- with a specific shallow groove subsite for the remainder part of the Le(a) saccharides, and that polyvalent glycotopes enhance the reactivity. The Fuc > Man Ralstonia solanacearum lectin RSL, which resembles PA-IIL in sugar specificity, differs from it in it's better fit to the B and A followed by H oligosaccharides vs. Fuc, whereas, the second R. solanacearum lectin RS-IIL (the structural homologue of PA-IIL) binds Man > Fuc. These results provide a valuable information on PA-IIL interactions with mammalian glycoforms and the possible spectrum of attachment sites for the homing of this aggressive bacterium onto the target molecules. Such information might be useful for the antiadhesive therapy of P. aeruginosa infections. 相似文献
9.
AbstractThe antibacterial efficacy of hydrogen peroxide encapsulated in micelles (mH2O2) against biofilms was compared with that of hydrogen peroxide alone and of three commercially available aqueous biocides. The activity of mH2O2 on 24-h biofilms of reference strains of Staphylococcus spp. and Pseudomonas aeruginosa was tested in a static microtiter plate model. The biofilms were incubated with mH2O2 (17% v/v H2O2, 2% lactic acid, 0.3% phytoextract, H2O) and its individual ingredients and compared with three aqueous biocides at different concentrations and times of exposure. After 5-min exposure, 10% mH2O2 (corresponding to 1.7% v/v H2O2) achieved > 8 log10 reductions against all the test strains, while 1.7% H2O2 achieved a maximum of 1.5 log10 reduction. After 5-min exposure, none of the commercially available biocides tested showed themselves to be capable of completely eliminating the test strains embedded in biofilms. Hydrogen peroxide encapsulated in micelles demonstrated enhanced activity against planktonic cells and biofilms of Staphylococcus spp. and P. aeruginosa. 相似文献
10.
Ramazan Ulus İbrahim Yeşildağ Muhammet Tanç Metin Bülbül Muharrem Kaya Claudiu T. Supuran 《Bioorganic & medicinal chemistry》2013,21(18):5799-5805
4-Amino-N-(4-sulfamoylphenyl)benzamide was synthesized by reduction of 4-nitro-N-(4-sulfamoylphenyl)benzamide and used to synthesize novel acridine sulfonamide compounds, by a coupling reaction with cyclic-1,3-diketones and aromatic aldehydes. The new compounds were investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), and more precisely the cytosolic isoforms hCA I, II and VII. hCA I was inhibited in the micromolar range by the new compounds (KIs of 0.16–9.64 μM) whereas hCA II and VII showed higher affinity for these compounds, with KIs in the range of 15–96 nM for hCA II, and of 4–498 nM for hCA VII. The structure–activity relationships for the inhibition of these isoforms with the acridine–sulfonamides reported here were also elucidated. 相似文献
11.
Thuyen Truong Guisheng Zeng Teck Kwang Lim Tong Cao Li Mei Pang Yew Mun Lee Qingsong Lin Yue Wang Chaminda Jayampath Seneviratne 《Proteomics》2020,20(1)
Candida albicans is a major fungal pathogen, accounting for approximately 15% of healthcare infections with associated mortality as high as 40% in the case of systemic candidiasis. Antifungal agents for C. albicans infections are limited, and rising resistance is an inevitable problem. Therefore, understanding the mechanism behind antifungal responses is among the top research focuses in combating Candida infections. Herein, the recently developed C. albicans haploid model is employed to examine the association between mitochondrial fission, regulated by Dnm1, and the pathogen's response to antifungals. Proteomic analysis of dnm1Δ and its wild‐type haploid parent, GZY803, reveal changes in proteins associated with mitochondrial structures and functions, cell wall, and plasma membrane. Antifungal susceptibility testing revealed that dnm1Δ is more susceptible to SM21, a novel antifungal, than GZY803. Analyses of reactive oxygen species release, antioxidant response, lipid peroxidation, and membrane damages uncover an association between dnm1Δ and the susceptibility to SM21. Dynasore‐induced mitochondrial inhibition in SC5314 diploids corroborate the findings. Interestingly, Dynasore‐primed SC5314 cultures exhibit increased susceptibility to all antifungals tested. These data suggest an important contribution of mitochondrial fission in antifungal susceptibility of C. albicans. Hence, mitochondrial fission can be a potential target for combined therapy in anti‐C. albicans treatment. 相似文献