首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agricultural crops especially fruit trees are constrained by edaphic stresses in shallow soils with low water retention and poor fertility. Therefore, interventions of shifting to trench planting for better root anchorage and replacing the filling soil were evaluated for 8 years in dragon fruit (Hylocereus undatus) cultivated in Deccan Plateau of peninsular India. When averaged for last 5-years, 44 % higher fruit yield (18.2 ± 1.0 Mg ha?1) was harvested from trees planted in trenches filled with 1:1 mixture (T-mixed) of native soil (loamy sand with 26.7 % stones (>2mm), field capacity, FC 0.20 cm3 cm?3; organic carbon, OC 0.17 %; Av-N 54.6 kg ha?1) and a black soil (clay 54.4 %; FC 0.42 cm3 cm?3; OC 0.70 %; Av-N 157.1 kg ha?1) than the recommended pit planting (12.4 ± 1.2 Mg ha?1). Improvements in fruit yields with trenches filled with black (T-black) and native (T-native) soil were 32 and 13 %, respectively. Yield losses (total– marketable yield) were reduced by 40, 20 and 18 % over pit method with T-mixed, T-black and T-native soil, respectively. Marketable quality attributes like fruit weight, fruit size metrics and pulp/peel content were further improved under T-mixed soil. Accumulation of total soluble solids (TSS), sugar content, phenolic and flavonoid compounds were higher in fruits from T-native soil. During storage, fruits from T-native soil and pit planting exhibited minimum physiological weight loss and retained more firmness, TSS, sugars, titratable acidity, phenolic-flavonoids contents, FARP and DPPH activities. T-mixed soil provided better hydrozone and nutrients for resilience of fruit plants while protecting from aeration problems envisaged in poorly drained black soils. With B:C ratio (1.85) and lower payback period (4-years), T-mixed soil showed superior economic viability. Therefore, soil management module of planting in trenches filled-in with mixture of native and black soils can be recommended to boost productivity of fruits from shallow soils under water scarce degraded regions without penalising agro-ecosystem.  相似文献   

2.
Effah  Zechariah  Li  Lingling  Xie  Junhong  Liu  Chang  Xu  Aixia  Karikari  Benjamin  Anwar  Sumera  Zeng  Min 《Journal of Plant Growth Regulation》2023,42(2):1120-1133

It is critical for spring wheat (Triticum aestivum L.) production in the semi-arid Loess Plateau to understand the impact of nitrogen (N) fertilizer on changes in N metabolism, photosynthetic parameters, and their relationship with grain yield and quality. The photosynthetic capacity of flag leaves, dry matter accumulation, and N metabolite enzyme activities from anthesis to maturity were studied on a long-term fertilization trial under different N rates [0 kg ha?1(N1), 52.5 kg ha?1 (N2), 105 kg ha?1 (N3), 157.5 kg ha?1 (N4), and 210 kg ha?1 (N5)]. It was observed that N3 produced optimum total dry matter (5407 kg ha?1), 1000 grain weight (39.7 g), grain yield (2.64 t ha?1), and protein content (13.97%). Our results showed that N fertilization significantly increased photosynthetic parameters and N metabolite enzymes at all growth stages. Nitrogen harvest index, partial productivity factor, agronomic recovery efficiency, and nitrogen agronomic efficiency were decreased with increased N. Higher N rates (N3–N5) maintained higher photosynthetic capacity and dry matter accumulation and lower intercellular CO2 content. The N supply influenced NUE by improving photosynthetic properties. The N3 produced highest chlorophyll content, photosynthetic rate, stomatal conductance and transpiration rate, grain yield, grain protein, dry matter, grains weight, and N metabolite enzyme activities compared to the other rates (N1, N2, N4, and N5). Therefore, increasing N rates beyond the optimum quantity only promotes vegetative development and results in lower yields.

  相似文献   

3.
Urban forests help regulating flow of ecosystem services and are efficient to sequester atmospheric carbon. Tree carbon stock in urban forests and green spaces can help improving human well-being. Nagpur being one of the fastest growing urban agglomerate in India that has faced rapid loss of green spaces in last three decades. Present study assessed tree biomass carbon storage potential of a historically conserved large (67.41 ha) Seminary Hills Reserve forest of Nagpur. A total of 150 quadrats of 100 m2 were laid to understand the vegetation structure and tree biomass storage. Overall structure and composition of the forest was assessed while, non-destructive biomass estimation was carried out using tree volume eqs. A total of 27 tree species belonging to 12 plant families were observed from the forest with only 6 tree species being dominant and remaining 21 being rare in occurrence. The maximum tree carbon storage was observed in dominant tree species of Hardwickia binata (76.30 t C ha?1) followed by 17.04 t C ha?1 in Tectona grandis and 1.19 t C ha?1 in Boswellia serrata. Carbon stock in other co-dominant species was reported in Terminalia bellirica (76.57 kg C ha?1), Gardenia resinifera (1118.6 g C ha?1) and Terminalia arjuna (84.8 g C ha?1). Total carbon stock of dominant tree species present in Seminary Hills urban forest was 94.53 ± 39.6 t C ha?1. The study intends to bring focus ecosystem benefits from Urban Forests in growing urban sprawls of India and the need to include their vital role in urban planning.  相似文献   

4.
Spinach (Spinacia oleracea L.) is considered a nitrogen (N) intensive plant with high nitrate (NO3?) accumulation in its leaves. The current study via a two-year field trial introduced an approach by combining N fertilization from different sources (e.g., ammonium nitrate; 33.5 % N, and urea; 48 % N) at different rates (180, and 360 kg N ha?1) with the foliar spraying of molybdenum (Mo) as sodium molybdate, and/or manganese (Mn) as manganese sulphate at rates of 50 and 100 mgL?1 of each or with a mixture of Mo and Mn at rates of 50 and 50 mg L?1, respectively on growth, chemical constituents, and NO3? accumulation in spinach leaves. Our findings revealed that the highest rate of N fertilization (360 kg N ha?1) significantly increased most of the measured parameters e.g., plant length, fresh and dry weight plant?1, number of leaves plant?1, leaf area plant?1, leaf pigments (chlorophyll a, b and carotenoids), nutrients (N, P, K, Fe, Mn, Zn), total soluble carbohydrates, protein content, net assimilation rate, and NO3? accumulation, but decreased leaf area ratio and relative growth rate. Moreover, plants received urea-N fertilizer gave the highest values of all previous attributes when compared with ammonium nitrate –N fertilizers, and the lowest values of NO3? accumulation. The co-fertilization of N-Mo-Mn gave the highest values in all studied attributes and the lowest NO3? accumulation. The best treatment was recorded under the treatment of 360 kg N-urea ha?1 in parallel with the combined foliar application of Mo and Mn (50 + 50 mg L?1). Our findings proposed that the co-fertilization of N-Mo-Mn could enhance spinach yield and its quality, while reducing NO3? accumulation in leaves, resulting agronomical, environmental and economic benefits.  相似文献   

5.
Soil moisture and nitrogen (N) are two of the most important factors affecting the production of medicinal plants. So, the management strategy of these factors is critical and to be identified. In order to study the application of zeolite (Z) (0 and 10 ton ha?1) in S. officinalis culture medium under different irrigation regimes (30 % depletion of available soil water (ASW)) and 60 % depletion of ASW) and N (0, 75 and 150 kg N ha?1) a split-factorial experiment was carried out with three replicates in 2018. The highest fresh and dry weight were achieved at irrigation after 30 % depletion of ASW while using 150 kg N ha?1 and 10 ton Z ha?1. Maximum water use efficiency (WUE) (22.10 g.L-1) was obtained after 60 % depletion of ASW and 150 kg N ha?1 and 10 ton Z ha?1. Besides, the maximum nitrogen use efficiency (NUE) was obtained after 60 % depletion of ASW and 75 kg N ha?1 and 10 ton Z ha?1 (14.25 kg.kg-1N). Maximum essential oil (EO) content (1.06%) and cis-Thujone were obtained from plants subjected to 60 % depletion of ASW and, application of 75 kg N ha?1 and 10 ton Z ha?1. Applying Z with N, in different irrigation regimes did improve soil conditions for achieving higher, WUE and NUE, increased the EO content and yield while decreasing the negative effects from water-deficit stress and has provided a direction towards a stable system.  相似文献   

6.
The study was carried out to evaluate growth performance of Indian major carps at different stocking densities in rainwater reservoirs. In this experiment, the absolute growth performance of Catla catla, Labeo rohita and Cirrhinus mrigala at stocking densities of 5000, 8000 and 11 000 fingerlings per hectare was 377.7, 215.4 and 241.9; 370.2, 186.7 and 219.1; and 306.7, 163.4 and 180.6 g, respectively. The recorded biomass yield at 5000, 8000 and 11 000 fingerlings per hectare was 1035, 1572 and 1573 kg ha?1 per 180 days of culture. The effect of stocking density on production performance (performance index, PI) was highly significant (P < 0.05) at the higher stocking density of 11 000 ha?1, while there was no significant variation between PI at stocking densities of 5000 and 8000 ha?1. This indicates optimum production performance at 8000 ha?1, where yield is significantly higher (P < 0.05) than yield at 5000 ha?1 and almost equal to the yield at 11 000 ha?1. An increase in stocking density from 8000 to 11 000 ha?1, however, showed a sharp decline in average mean body weight of each species, even with supplemental feeding. With an increase in stocking density, the biomass yield increased to an optimum (1572 kg ha?1), with no substantial increase thereafter. Reductions in growth, which occurred at high density, did not appear to be due to poor water quality as the water quality did not differ significantly among various treatments. Thus, the reduced survival and growth at high density appears to be a behavioural interaction or physiological response to density itself.  相似文献   

7.
Maize (Zea mays L.) grain is an important feedstock for the ethanol-producing industry. However, little is known about the optimum grain quality for optimizing ethanol yielding efficiencies. We specifically investigated the response of ethanol yields (L Mg?1) to kernel hardness, and its physiological determinant endosperm zein protein profiles, as affected by genotype selection, field nitrogen (N) fertilization, and crop growth environment. We measured ethanol yield and related this to different kernel hardness indicators, kernel composition, and zein profiles. We also described changes in field ethanol yield (L ha?1), by taking into account the crop yield (Mg ha?1). Hard endosperm genotypes always yielded less ethanol than softer endosperm ones per grain mass (L Mg?1). Higher N fertilization rates increased kernel hardness and decreased ethanol yield (L Mg?1) on soft endosperm dented genotypes but had no effect on hard endosperm ones. Ethanol yield was negatively correlated with kernel density, kernel protein concentration, and Z1 and Z2 zein fractions. Within Z2, 15 kDa β-zein explained the largest ethanol yield variation generated by genotypes, N fertilizations, and growth environments. However, and although these differences were as large as 10%, ethanol field yield (L ha?1) was mainly driven by crop yields (r 2 0.98) due to the large crop yield (Mg ha?1) differences observed across treatments. Together, our results helped describe the magnitude that changes in maize kernel hardness can have over ethanol yield, both through genotype selection or crop management. A particular Z2 zein protein rises as relevant for future genetic manipulations of maize ethanol yield determination.  相似文献   

8.
Gui  Runfei  Mo  Zhaowen  Zeng  Shan  Wen  Zhiqiang  Long  Weisi 《Journal of Plant Growth Regulation》2023,42(3):1604-1613

Compared with the standard method of manual fertilizer broadcasting (MFB), mechanized hill-drilling direct-seeding with deep application of slow-release nitrogen fertilizer (MHDDF) is an efficient method to integrate both fertilization and seeding. However, there are few studies that combine the use of slow-release fertilizer with MHDDF. We sought to explore the combined effect of MHDDF with slow-release fertilizer on rice yield and nitrogen, phosphorus, and potassium utilization, compared to MFB. We compared three different MHDDF methods (D30: 450 kg ha?1, D40: 600 kg ha?1, D50: 750 kg ha?1), with one MFB method (B50: 750 kg ha?1), and one control (CK: 0 kg ha?1). We found that the yield of all MHDDF method was higher than that of both the MFB method. Yield was the highest in the D50 treatment and was 14.14–46.03% higher than that in B50 treatment. Biomass accumulation, nutrient accumulation, and nutrient use efficiency were similarly higher in MHDDF method than both MFB and CK. Compared to B50, the D50 treatment increased nitrogen recovery efficiency by 170.53–231.50%, phosphorus recovery efficiency by 480.00–724.25%, and potassium recovery efficiency by 201.55–169.59%. Overall, we found that combining MHDDF with slow-release fertilizer was an effective method to increase rice yield and nutrient use efficiency compared with MFB.

  相似文献   

9.
Field trials were carried out to evaluate six treatments combining biological agents and chemical fungicides applied via chemigation against white mold (Sclerotinia sclerotiorum) on processing tomatoes. The experiment was performed in Goiânia, Brazil, with tomato hybrid Heinz 7155 in 2009 and 2010 in a field previously infested with S. sclerotiorum sclerotia. Treatments were arranged in a randomized complete block design in a 2 × 3 factorial structure (with and without Trichoderma spp. 1.0 × 109 viable conidia mL−1 ha−1) × fluazinam (1.0 L ha−1), procimidone (1.5 L ha−1) and control, applied by drip irrigation. Treatments were applied three times 10 days apart, starting one month after transplanting. Each treatment consisted of plots with three 72-meter rows with four plants m−1 and 1.5 m spacing between rows, with three replications. Based on disease incidence evaluated weekly, the area under the disease progress curve (AUDPC) was obtained. Yield and its components were evaluated in addition to fruit pH and °Brix. Results were subjected to ANOVA, Scott-Knott (5%), and regression analysis. Biocontrol using Trichoderma spp. via chemigation singly or in combination with synthetic fungicides fluazinam and procimidone reduced AUDPC and increased fruit yield up to 25 t ha−1. The best treatment for controlling white mold also increased pulp yield around 1.0 and 7.0 t ha−1 in 2009 and 2010, respectively. The present work demonstrated the advantages of white mold biological control in processing tomato crops, where drip irrigation favored Trichoderma spp. delivery close to the plants and to the inoculum source.  相似文献   

10.
Homobrassinolide (HBR), which is one of the most biologically active forms of Brassinosteroids (BRs), was used to examine the potential effects of hormone on root germination, antioxidant system enzymes and cell division of barley (Hordeum vulgare L.). Seeds were germinated between filter papers in 0.1, 0.5 and 1.0 μM HBR-supplemented distilled water for 48 h at dark with their controls. HBR application increased especially the primary root growth significantly with increasing concentrations when compared with the control materials and reached two fold increase in 1.0 μM HBR treated material. Treated and untreated control group roots were fixed in 1:3 aceto-alcohol and aceto-orcein preparations were made. Roots treated with HBR showed more mitotic activity, mitotic abnormalities and significant enlargements at the root tips when compared with control material. HBR application decreased total soluble protein content, superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and peroxidase (EC 1.11.1.11) activities significantly at 1.0 μM HBR concentration. Data presented here is one of the first detailed analyses of HBR effect on barley root development.  相似文献   

11.
Pakistan ranks third among the chickpea growing countries of the world. Chickpea need less water that is why it is preferred by the farmers of the arid and semi- arid zone. The chickpea crop is severely infested by many weeds which reduce its yield and also deteriorate the quality of the grains. The un-availability of high competitive cultivars also had impact on the annual yield production of chickpea crop. The focus of the study was to evaluate sound, feasible and economic weed management strategies to uplift the yield of chickpea crop. The Southern districts of Khyber Pakhtunkhwa are the major producer of chickpea crop. Therefore keeping in view the importance of the crop and as well as the problems associated with the crops, the experiments were conducted at Ahmad Wala Research Station Karak during years 201112 and 2012–13 with Randomized Complete Block design with split split arrangement having four replications. Sowing was done on October 16th during both the studied years. To evaluate the potential of irrigation verses rainfed conditions five cultivars i.e. Karak-1, Karak-2, Sheenghar, Lawaghar and KC-98 and ten weed management techniques i.e. Stomp 330 EC (Pendimethalin), Stomp 330 EC + Hand Weeding (HW) at 60 DAS, Dual Gold 960 EC (S-Metolachlor), Dual Gold 960 EC + HW at 60 DAS, HW one time at (30 DAS), HW two times at (30 and 60 DAS), HW three times at (30, 60 and 90 DAS), White plastic mulch, Black plastic mulch and weedy check were tested. The data was recorded on the below mentioned parameters i.e. weed density m?2 at 60 DAS, number of productive branches plant?1, number of pods plant?1, number of grain pods?1, number of nodules plant?1, grain yield (kg ha?1) and Cost-benefit ratio (CBR). Results of the two years study revealed that with the exception of number of grains pods?1, and cost benefit ratio, all the vegetative and yield parameters were significantly different during both the studied years. Comparing the effect of irrigation regimes versus rainfed conditions significantly (p < .05) difference was recorded in all parameters while the maximum values were in irrigated plots as compared to rainfed conditions. Significant (p < .05) difference was recorded in weeds density at 60 DAS (64.13 m?2) found in irrigated plots as compared to rainfed conditions. The year wise comparison of the varieties was significant (p < .05) in number of pods plant?1, grain yield (kg ha?1). The varieties were also found with significant difference. After 60 days the minimum weed density (60.68 m?2) was found in Karak-2 and the maximum weed density at 60 DAS (62.42 m?2) was recorded in Sheenghar. Among the varieties the maximum values were found number of productive branches plant?1 (15.89), number of pods plant?1 (45.52), was found in Karak-1.The maximum number of grains pod?1 (l.93) was found in Karak-2. The maximum number of nodules plant?1 (28.54) in Sheenghar and grain yield (1484.1 kg ha?1) and cost benefit ratio (3.32) was recorded in Lawaghar. The year wise comparison of weed management parameters was also significant in different parameters. However among the treatments after 60 DAS the minimum weed density (51.15 m?2) was recorded in black and white plastic and the maximum weed density (99.54 m?2) was recorded in the weedy check. Among the applied treatments for weed management the maximum number of productive branches plant?1 (16.83), number of pods plant?1 (52.46), number of grains pod?1 (2.16) and grain yield (1659.75 kg ha?1) was recorded in HW three times treatments while on the other hand maximum number of nodules plant?1 (29.96) was recorded in both black and white plastic mulches. The maximum cost benefit ratio (3.39) was recorded in Stomp 330 EC. The minimum number of nodules plant?1 (25.35) was found in Dual Gold EC 960 treated plots. The minimum number of productive branches plant?1 (13.32), number of pods plant?1 (31.47), number of grains pod?1 (l.68) and grain yield (1148.4 kg ha?1) was found in weedy check. The minimum cost benefit ratio (2.54) was found in black plastic mulches treated plots. From the above findings it is concluded that chickpea variety Lawaghar grown in the arid zone need subsequent irrigation. HW, black and white plastic mulches were found efficient for weed management but costly. However, the herbicide Stomp 330 EC was found efficient in weed control and gained maximum CBR in the experimental trial at Southern districts of Khyber Pakhtunkhwa province of Pakistan.  相似文献   

12.
The lack of good irrigation practices and policy reforms in Pakistan triggers major threats to the water and food security of the country. In the future, irrigation will happen under the scarcity of water, as inadequate irrigation water becomes the requirement rather than the exception. The precise application of water with irrigation management is therefore needed. This research evaluated the wheat grain yield and water use efficiency (WUE) under limited irrigation practices in arid and semi-arid regions of Pakistan. DSSAT was used to simulate yield and assess alternative irrigation scheduling based on different levels of irrigation starting from the actual irrigation level up to 65% less irrigation. The findings demonstrated that different levels of irrigation had substantial effects on wheat grain yield and total water consumption. After comparing the different irrigation levels, the high amount of actual irrigation level in semi-arid sites decreased the WUE and wheat grain yield. However, the arid site (Site-1) showed the highest wheat grain yield 2394 kg ha?1 and WUE 5.9 kg?3 on actual irrigation (T1), and with the reduction of water, wheat grain yield decreased continuously. The optimal irrigation level was attained on semi-arid (site-2) with 50% (T11) less water where the wheat grain yield and WUE were 1925 kg ha?1 and 4.47 kg?3 respectively. The best irrigation level was acquired with 40% less water (T9) on semi-arid (site-3), where wheat grain yield and WUE were 1925 kg ha?1 and 4.57 kg?3, respectively. The results demonstrated that reducing the irrigation levels could promote the growth of wheat, resulting in an improved WUE. In crux, significant potential for further improving the efficiency of agricultural water usage in the region relies on effective soil moisture management and efficient use of water.  相似文献   

13.
The bioregulators indole acetic acid (IAA), indole butyric acid (IBA), and naphthalene acetic acid (NAA) were investigated for their effects on seedling growth and yield of tomato (Solanum lycopersicon). Seeds of tomato genotypes NHLy11, NHLy12, NHLy13, NHLy15 and NHLy16 were subjected to presowing treatments in 25-, 50-, 75-, 100-, 125-, and 150-mg/l concentrations of each of the bioregulators and control replicated three times in a completely randomized design. Results revealed that IAA and IBA significantly retard (P < 0.05) the growth of radicles and hypocotyls of all test genotypes relative to controls, especially at the high concentrations of 125- and 150-mg/l solutions of the bioregulators. NAA treatments enhanced seedling growth moderately at concentrations up to 100 mg/l. At 125- and 150-mg/l concentrations, the seedlings showed reduced radicle and hypocotyl lengths compared with those of controls. All treated genotypes had higher average fruit weight and mean fruit yield than controls at the 100-mg/l concentration of the bioregulators. IAA had the highest yield of 25,900 kg fw ha−1 in the NHLy12 genotype, whereas the lowest yield of 3,760 kg fw ha−1 was obtained in the IBA-treated NHLy16 genotype. This study showed that presowing seed treatments with IAA, IBA, and NAA were effective in enhancing seedling growth and yield in tomato, especially at the 100-mg/l concentration.  相似文献   

14.
Effects of water and nitrogen (N) supply on growth and photosynthetic response of B. carinata were examined in this study. Plant growth and related characteristics varied significantly in response to the availability of water and nitrogen. B. carinata maximized the utilization efficiency of the most limiting resources by developing physiological adaptations, such as changes in root and leaf development. The utilization of water and N was tightly linked with the availability of each resource. Instantaneous water-use efficiency (WUE) was always greater in plants with high-N nutrition [50, 100, and 150 kg(N) ha?1] than in the low-N-treated plants [0 kg(N) ha?1] in all watering treatments. Instantaneous N-use efficiency (PNUE) decreased significantly with increasing water stress in all N treatments. Seed yield is significantly related to PNUE (p>0.05) but not WUE (p<0.05). The positive relationship between leaf net photosynthetic rate (P N) and seed yield suggests that P N can be used as an important tool for selection of new strains with high seed yield.  相似文献   

15.
Nitrogen (N) deficiency is a major constraint to the productivity of the African smallholder farming systems. Grain, green manure and forage legumes have the potential to improve the soil N fertility of smallholder farming systems through biological N2-fixation. The N2-fixation of bean (Phaseolus vulgaris), soyabean (Glycine max), groundnut (Arachis hypogaea), Lima bean (Phaseolus lunatus), lablab (Lablab purpureus), velvet bean (Mucuna pruriens), crotalaria (Crotalaria ochroleuca), jackbean (Canavalia ensiformis), desmodium (Desmodium uncinatum), stylo (Stylosanthes guianensis) and siratro (Macroptilium atropurpureum) was assessed using the 15N natural abundance method. The experiments were conducted at three sites in western Kenya, selected on an agro-ecological zone (AEZ) gradient defined by rainfall. On a relative scale, Museno represents high potential AEZ 1, Majengo medium potential AEZ 2 and Ndori low potential AEZ 3. Rainfall in the year of experimentation was highest in AEZ 2, followed by AEZ 1 and AEZ 3. Experimental fields were classified into high, medium and low fertility classes, to assess the influence of soil fertility on N2-fixation performance. The legumes were planted with triple super phosphate (TSP) at 30 kg P ha?1, with an extra soyabean plot planted without TSP (soyabean-P), to assess response to P, and no artificial inoculation was done. Legume grain yield, shoot N accumulation, %N derived from N2-fixation, N2-fixation and net N inputs differed significantly (P<0.01) with rainfall and soil fertility. Mean grain yield ranged from 0.86 Mg ha?1, in AEZ 2, to 0.30 Mg ha?1, in AEZ 3, and from 0.78 Mg ha?1, in the high fertility field, to 0.48 Mg ha?1, in the low fertility field. Shoot N accumulation ranged from a maximum of 486 kg N ha?1 in AEZ 2, to a minimum of 10 kg N ha?1 in AEZ 3. Based on shoot biomass estimates, the species fixed 25–90% of their N requirements in AEZ 2, 23–90% in AEZ 1, and 7–77% in AEZ 3. Mean N2-fixation by green manure legumes ranged from 319 kg ha?1 (velvet bean) in AEZ 2 to 29 kg ha?1 (jackbean) in AEZ 3. For the forage legumes, mean N2-fixation ranged from 97 kg N ha?1 for desmodium in AEZ 2 to 39 kg N ha?1 for siratro in AEZ 3, while for the grain legumes, the range was from 172 kg N ha?1 for lablab in AEZ 1 to 3 kg N ha?1 for soyabean-P in AEZ 3. Lablab and groundnut showed consistently greater N2-fixation and net N inputs across agro-ecological and soil fertility gradients. The use of maize as reference crop resulted in lower N2-fixation values than when broad-leaved weed plants were used. The results demonstrate differential contributions of the green manure, forage and grain legume species to soil fertility improvement in different biophysical niches in smallholder farming systems and suggest that appropriate selection is needed to match species with the niches and farmers’ needs.  相似文献   

16.
Perennial grasses may provide a renewable source of biomass for energy production. Biomass yield, nutrient concentrations, and nutrient removal rates of switchgrass (Panicum virgatum L.), giant miscanthus (Miscanthus x giganteus), giant reed (Arundo donax L.), weeping lovegrass [Eragrostis curvula (Shrad.) Nees], kleingrass (Panicum coloratum L.), and Johnsongrass (Sorghum halepense (L.) Pers.) were evaluated at four N fertilizer rates (0, 56, 112, or 168?kg?N?ha?1) on a Minco fine sandy loam soil in southern Oklahoma. Species were established in 2008 and harvested for biomass in winter of 2009 and 2010. Biomass yield (dry matter basis) did not show a strong relationship with N fertilizer rate (p?=?0.08), but was affected by year and species interactions (p?<?0.01). Weeping lovegrass and kleingrass produced 29.0 and 16.0?Mg?ha?1 in 2009, but only 13.0?Mg?ha?1 and 9.8?Mg?ha?1 in 2010, respectively. Biomass yields of giant reed, switchgrass, and Johnsongrass averaged 23.3, 17.8, and 6.0?Mg?ha?1, respectively. Giant miscanthus established poorly, producing only 4.7?Mg?ha?1. Across years, giant reed had the highest biomass yield, 33.2?Mg?ha?1 at 168?kg?N?ha?1, and the highest nutrient concentrations and removal rates (162 to 228?kg?N?ha?1, 23 to 25?kg?P?ha?1, and 121 to 149?kg?K?ha?1) among the grasses. Although giant reed demonstrated tremendous biomass production, its higher nutrient removal rates indicate a potential for increased fertilization requirements over time. Switchgrass had consistently high biomass yields and relatively low nutrient removal rates (40 to 75?kg?N?ha?1, 5 to 12?kg?P?ha?1, and 44 to 110?kg?K?ha?1) across years, demonstrating its merits as a low-input bioenergy crop.  相似文献   

17.

Background

Rootstocks play an essential role to determining orchard performance of fruit trees. Pyrus communis and Cydonia oblonga are widely used rootstocks for European pear cultivars. The lack of rootstocks adapted to different soil conditions and different grafted cultivars is widely acknowledged in pear culture. Cydonia rootstocks (clonal) and Pyrus rootstocks (seedling or clonal) have their advantages and disadvantages. In each case, site-specific environmental characteristics, specific cultivar response and production objectives must be considered before choosing the best rootstock. In this study, the influence of three Quince (BA 29, Quince A = MA, Quince C = MC) and a local European pear seedling rootstocks on the scion yield, some fruit quality characteristics and leaf macro (N, P, K, Ca and Mg) and micro element (Fe, Zn, Cu, Mn and B) content of ‘Santa Maria’ pear (Pyrus communis L.) were investigated.

Results

Trees on seedling rootstock had the highest annual yield, highest cumulative yield (kg tree−1), largest trunk cross-sectional area (TCSA), lowest yield efficiency and lowest cumulative yield (ton ha−1) in the 10th year after planting. The rootstocks had no significant effect on average fruit weight and fruit volume. Significantly higher fruit firmness was obtained on BA 29 and Quince A. The effect of rootstocks on the mineral element accumulation (N, K, Ca, Mg, Fe, Zn, Cu, Mn and B) was significant. Leaf analysis showed that rootstocks used had different mineral uptake efficiencies throughout the early season.

Conclusion

The results showed that the rootstocks strongly affected fruit yield, fruit quality and leaf mineral element uptake of ‘Santa Maria’ pear cultivar. Pear seedling and BA 29 rootstock found to be more prominent in terms of several characteristics for ‘Santa Maria’ pear cultivar that is grown in highly calcareous soil in semi-arid climate conditions. We determined the highest N, P (although insignificant), K, Ca, Mg, Fe and Cu mineral element concentrations on the pear seedling and BA 29 rootstocks. According to the results, we recommend the seedling rootstock for normal density plantings (400 trees ha−1) and BA 29 rootstock for high-density plantings (800 trees ha−1) for ‘Santa Maria’ pear cultivar in semi-arid conditions.  相似文献   

18.

Coastal wetlands are key in regulating coastal carbon and nitrogen dynamics and contribute significantly to climate change mitigation and anthropogenic nutrient reduction. We investigated organic carbon (OC) and total nitrogen (TN) stocks and burial rates at four adjacent vegetated coastal habitats across the seascape elevation gradient of Cádiz Bay (South Spain), including one species of salt marsh, two of seagrasses, and a macroalgae. OC and TN stocks in the upper 1 m sediment layer were higher at the subtidal seagrass Cymodocea nodosa (72.3 Mg OC ha−1, 8.6 Mg TN ha−1) followed by the upper intertidal salt marsh Sporobolus maritimus (66.5 Mg OC ha−1, 5.9 Mg TN ha−1), the subtidal rhizophytic macroalgae Caulerpa prolifera (62.2 Mg OC ha−1, 7.2 Mg TN ha−1), and the lower intertidal seagrass Zostera noltei (52.8 Mg OC ha−1, 5.2 Mg TN ha−1). The sedimentation rates increased from lower to higher elevation, from the intertidal salt marsh (0.24 g cm−2 y−1) to the subtidal macroalgae (0.12 g cm−2 y−1). The organic carbon burial rate was highest at the intertidal salt marsh (91 ± 31 g OC m−2 y−1), followed by the intertidal seagrass, (44 ± 15 g OC m−2 y−1), the subtidal seagrass (39 ± 6 g OC m−2 y−1), and the subtidal macroalgae (28 ± 4 g OC m−2 y−1). Total nitrogen burial rates were similar among the three lower vegetation types, ranging from 5 ± 2 to 3 ± 1 g TN m−2 y−1, and peaked at S. maritimus salt marsh with 7 ± 1 g TN m−2 y−1. The contribution of allochthonous sources to the sedimentary organic matter decreased with elevation, from 72% in C. prolifera to 33% at S. maritimus. Our results highlight the need of using habitat-specific OC and TN stocks and burial rates to improve our ability to predict OC and TN sequestration capacity of vegetated coastal habitats at the seascape level. We also demonstrated that the stocks and burial rates in C. prolifera habitats were within the range of well-accepted blue carbon ecosystems such as seagrass meadows and salt marshes.

  相似文献   

19.
20.
Research into utilization of monosodium glutamate industrial wastewater (MSGW) as a plant nutrient source was undertaken. The physico-chemical and microbiological characteristics of MSGW were analyzed in detail. Effect of MSGW on early growth of Chinese cabbage (Brassica rapa L. cv. Pekinensis) and maize (Zea mays L. cv. Bright Jean) was tested by the seed germination bioassay. Subsequently, in a greenhouse pot experiment using the same plant species, effects of MSGW application rates on the plant biomass yield, nitrogen content and soil properties were analyzed. The MSGW was characterized by high levels of N (56.7 g l?1), organic C (344.6 g l?1), total solids (600 g l?1) and other minerals. At MSGW concentrations below 1%, germination indices for both the plant species were significantly (p < 0.01) higher than the control. Further, the greenhouse study results indicated significant increase in the plant biomass yield at MSGW application rates of 5000 and 7500 l ha?1. As the MSGW dose increased, the biomass yield decreased, decreasing the N-use efficiency. Maize showed significantly higher wastewater N-use efficiency compared to the Chinese cabbage. Although the total culturable bacterial and fungal counts in the raw MSGW were low, addition of MSGW to the soil increased the soil microbial activities and soil respiration. Soil organic C was also increased by the addition of MSGW, due to the presence of significant amounts of organic C in the wastewater. This preliminary study demonstrates that by proper management of the pH and optimization of application rate, MSGW can be utilized as a nutrient source for plant growth. Further long-term field studies to evaluate the environmental impact of MSGW usage in agriculture are being designed to reduce the environmental risks associated with the reuse of this underutilized wastewater in the agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号