首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carrot is a vital supply of dietary fiber, vitamins, and carotenoids, and it is also rich in antioxidants and minerals. Soil salinity significantly reduces the yield and quality of carrots. Mycorrhiza inoculum (AMF) is known to improve morphological and biochemical traits of vegetables even under saline conditions. But the role of AMF in combating soil salinity effect in carrot is not studied in detail. Therefore here, in the first set, carrot seeds are inoculated with microbes in a pot experiment under polyhouse condition. In total, we applied 7 treatments with different combinations of Mycorrhiza inoculum (Glomus mosseae (Gm) and Gigaspora gigantea (Gg)) and phosphate solubilizing bacteria (Pseudomonas fluroscens (Pf)). In pot experiment study the best two treatments were the combination of Gm + Pf + GG and Pf + GG. Both of these treatments were selected for validation under the open field conditions. Primarily, there seems to be a promising opportunity for AMF application to carrots under pot culture as well as under field trials because of promising effect towards morphological parameters, especially root weight, and disparities in nutrients and metabolites. Overall, our study highlights mycorrhizal fungi and other microbes' efficacy in achieving a successful carrot production under salinity stress.  相似文献   

2.
Arbuscular mycorrhizal fungi (AMF) improve functioning of legume-Rhizobium symbiosis under salinity. However, plant responses to mycorrhization vary depending on the plant and fungal species. The current study aimed to compare the effectiveness of a native inoculum from saline soil and two exotic isolates, Funneliformis mosseae and Rhizophagus irregularis on two Cajanus cajan (pigeonpea) genotypes (Paras, Pusa 2002) subjected to NaCl stress. Salinity depleted nodulation and nutrient status in both genotypes with higher negative effects in Paras. Although all AM fungi improved growth, R. irregularis performed better by promoting higher biomass accumulation, nodulation, N2 fixation and N, P uptake which correlated with higher AM colonization. R. irregularis inoculated plants also accumulated higher trehalose in nodules due to decreased trehalase and increased trehalose-6-P synthase, trehalose-6-phosphatase activities. The results suggest that higher stability of R. irregularis-pigeonpea symbiosis under salt stress makes it an effective ameliorator for overcoming salt stress in pigeonpea.  相似文献   

3.
Arbuscular mycorrhizal fungi (AMF) colonisation of plant root facilitates the absorption of nutrients such as phosphorus (P) and enhances plant biotic and abiotic resistance generally. However, arbuscular mycorrhiza (AM) colonisation decreases with application of chemical fertiliser. Here, we investigated whether AMF inoculation in nurseries would facilitate AM colonisation and take physiological and ecological functions in watermelon (Citrullus lanatus) in the field. Pot experiments were carried out to study the change of AMF colonised seedling on physiology and gene expression in nursery site. Field experiments were performed to investigate the effect of nursery AMF inoculation on yield, quality and disease resistance of watermelon in the field. The results showed that nursery‐inoculated seedlings produced more dry matter and root surface area than non‐inoculated seedlings. Expression of the secretory purple acid phosphatase (PAP) genes ClaPAP10 and ClaPAP26 was up‐regulated following AMF colonisation. Accordingly, acid phosphatase activities at the root surface and P concentrations in seedling were enhanced. After transplantation to the field, the shoot dry matter and P concentration in old stem were higher in the nursery AMF inoculated seedlings than that in non‐AMF inoculated seedling. AMF inoculation also induced increase of yields and decrease of wilt disease indexes and soluble sugar content. In addition, acid phosphatase activities and AMF spore densities were increased by nursery‐inoculation in watermelon rhizosphere soil in the field. In conclusion, nursery colonisation AMF seedling enhanced watermelon growth and yield by improving the root growth and P acquisition in nursery cultivating stage, as well as optimised soil properties in the field. Nursery cultivation of watermelon seedling with AMF was an effective technique to reduce wilt disease in continuous cropped management in watermelon.  相似文献   

4.
This study investigated the influence of inoculation with a plant growth-promoting rhizobacterium, Pseudomonas mendocina Palleroni, alone or in combination with an arbuscular mycorrhizal (AM) fungus, Glomus intraradices (Schenk & Smith) or Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, on antioxidant enzyme activities (catalase and total peroxidase), phosphatase activity, solute accumulation, growth and mineral nutrient uptake in leaves of Lactuca sativa L. cv. Tafalla affected by three different levels of salt stress. Salinity decreased lettuce growth, regardless of the biological treatment and of the salt stress level. The plants inoculated with P. mendocina had significantly greater shoot biomass than the control plants at both salinity levels, whereas the mycorrhizal inoculation treatments only were effective in increasing shoot biomass at the medium salinity level. At the highest salinity level, the water content was greater in leaves of plants treated with P. mendocina or G. mosseae. At the medium salinity level, G. intraradices- or G. mosseae-colonised plants showed the highest concentrations of foliar P. The P. mendocina- and G. mosseae-colonised plants presented higher concentrations of foliar K and lower concentrations of foliar Na under high salt conditions. Salt stress decreased sugar accumulation and increased foliar proline concentration, particularly in plants inoculated with the PGPR. Increasing salinity stress raised significantly the antioxidant enzyme activities, including those of total peroxidase and catalase, of lettuce leaves compared to their respective non-stressed controls. The PGPR strain induced a higher increase in these antioxidant enzymes in response to severe salinity. Inoculation with selected PGPR could serve as a useful tool for alleviating salinity stress in salt-sensitive plants.  相似文献   

5.
Zinnia (Zinnia elegans) was inoculated with four arbuscular mycorrhizal fungi (AMF) i.e. Gigaspora margarita, Gigaspora rosea, Glomus intraradices, and Glomus mosseae, either singly or mixture of two species of Gigaspora and Glomus. Results indicated that Glomus significantly enhanced the leaf size and the shoot biomass. G. mosseae was more effective than G. intraradices. Only G. mosseae increased number and size of flowers. Mixed inoculations were not much effective in the growth-promotion than the corresponding singly inoculation with Glomus. Comparison of colonization percent demonstrated that the highest colonization by G. mosseae, and followed by G. intraradices and Gigaspora species. In semi-quantitative PCR amplifications, Glomus was dominant in the roots. Our results suggest that G. mosseae is good for inoculation to zinnia and the interaction between different AMF species should be given full consideration in the application.  相似文献   

6.
《Journal of Asia》2022,25(3):101971
The symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) improves plant growth and increases its resistance to pests and diseases. Mycorrhizal fungi are among the specialized fungi associated with the rhizosphere and are completely dependent on plant organic carbon. In this research tomato, Solanum lycopersicum L. was used as the host plant to evaluate the interaction effects between inoculation of tomato plant with AMF and feeding of tomato leaf miner, Tuta absoluta (Meyrick). In addition, plant growth parameters and growth rate of insect were assessed. The mycorrhizal treatment included a mixture of four fungal species (Funneliformis mosseae, Rhizophagus intraradices, R. irregularis and Glomus iranicus). The results of the experiment showed that tomato plant roots were well colonized (66.29%) by AMF and there was a significant mutual relationship between the insects feeding on the plants and the fungi. Feeding by the insects on plants inoculated with the fungus increased percentage of colonization by AMF in plants infested with the insect as compared to the control plants. The results also indicated that growth parameters and phosphorus content of the plants inoculated with fungi significantly increased compared to the control group. Moreover, significantly lower growth rate and consumption index observed in the T. absoluta larvae were fed on the leaves of plants treated with AMF compared to leaves of plants not inoculated with AMF.  相似文献   

7.
Root colonization with arbuscular mycorrhizal fungi (AMF) enhances plant resistance particularly against soil‐borne pathogenic fungi. In this study, mycorrhizal inoculation with Glomus mosseae (Gm) significantly alleviated tomato mould disease caused by the air‐borne fungal pathogen, Cladosporium fulvum (Cf). The disease index (DI) in local leaves (receiving pathogen inoculation) and systemic leaves (just above the local leaf without pathogen inoculation) was 36.4% and 11.7% in mycorrhizal plants, respectively, whereas DI was 59.6% and 36.4% in the corresponding leaves of AMF non‐inoculated plants, after 50 days of Gm inoculation, corresponding to 15 days after Cf inoculation by leaf infiltration. Foliar spray inoculation with Cf also revealed that AMF pre‐inoculated plants had a higher resistance against subsequent pathogen infection, where the DI was 41.3% in mycorrhizal plants vs. 64.4% in AMF non‐inoculated plants. AMF‐inoculated plants showed significantly higher fresh and dry weight than non‐inoculated plants under both control (without pathogen) and pathogen treatments. AMF‐inoculated plants exhibited significant increases in activities of superoxide dismutase and peroxidase, along with decreases in levels of H2O2 and malondialdehyde, compared with non‐inoculated plants after pathogen inoculation. AMF inoculation led to increases in total chlorophyll contents and net photosynthesis rate as compared with non‐inoculated plants under control and pathogen infection. Pathogen infection on AMF non‐inoculated plants led to decreases in chlorophyll fluorescence parameters. However, pathogen infection did not affect these parameters in mycorrhizal plants. Taken together, these results indicate that AMF colonization may play an important role in plant resistance against air‐borne pathogen infection by maintaining redox poise and photosynthetic activity.  相似文献   

8.
山东省不同植被区内野生植物根围AM菌的生态分布   总被引:22,自引:2,他引:22  
AM菌是土壤习居菌 ,生态适应性强 ,可发生在各种生态环境。寄主范围也十分广泛 ,除少量植物如莎草科、苋科、灯心草科、藜科、石竹科等 2 0余科植物不能或不易形成AM外 ,大多数植物包括苔藓、蕨类、裸子植物、被子植物都能被菌根菌侵染。当前人们十分重视对野生植物上AM菌的调查[3 ,4 ,1 0 ,1 1 ,1 4 ]。研究发现 ,野生植物上可能有比栽培作物更多的AM菌种类[1 ]。我国野生植物资源丰富 ,开发和利用野生寄主植物上的AM菌潜力巨大。由于AM菌对寄主植物的选择性及对环境条件的适应性不同 ,或进化过程中的历史原因 ,造成了自然生态…  相似文献   

9.
Salt stress limits crop yield and sustainable agriculture in most arid and semiarid regions of the world. Arbuscular mycorrhizal fungi (AMF) are considered bio-ameliorators of soil salinity tolerance in plants. In evaluating AMF as significant predictors of mycorrhizal ecology, precise quantifiable changes in plant biomass and nutrient uptake under salt stress are crucial factors. Therefore, the objective of the present study was to analyze the magnitude of the effects of AMF inoculation on growth and nutrient uptake of plants under salt stress through meta-analyses. For this, data were compared in the context of mycorrhizal host plant species, plant family and functional group, herbaceous vs. woody plants, annual vs. perennial plants, and the level of salinity across 43 studies. Results indicate that, under saline conditions, AMF inoculation significantly increased total, shoot, and root biomass as well as phosphorous (P), nitrogen (N), and potassium (K) uptake. Activities of the antioxidant enzymes superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase also increased significantly in mycorrhizal compared to nonmycorrhizal plants growing under salt stress. In addition, sodium (Na) uptake decreased significantly in mycorrhizal plants, while changes in proline accumulation were not significant. Across most subsets of the data analysis, identities of AMF (Glomus fasciculatum) and host plants (Acacia nilotica, herbs, woody and perennial) were found to be essential in understanding plant responses to salinity stress. For the analyzed dataset, it is concluded that under salt stress, mycorrhizal plants have extensive root traits and mycorrhizal morphological traits which help the uptake of more P and K, together with the enhanced production of antioxidant enzymes resulting in salt stress alleviation and increased plant biomass.  相似文献   

10.
Effects of arbuscular mycorrhizal fungus (AMF)Glomus mosseae on plant growth, soil microbial populations and enzymes activities of soils were studied in red clover (Trifolium pratense L.) grown in pots at different cultivated densities. Seeds of red clover were sown with 50 g inoculums ofG. mosseae per pot. After a week, the plants were thinned to 20, 30, 40, 50 and 60 seedlings per pot. Three months after treatment, AMF inoculation significantly stimulated plant growth. Quantities of vesicles and spores, arbuscules and hyphae were the highest when 30 and 50 seedlings were grown per pot, respectively. However, no root was infected in control plants. In all the soil sites, the numbers of fungi and bacteria were followed in the order: root > root surface > rhizospheric. It was indicated that arbuscular mycorrhizal fungus decreased the numbers of fungi and bacteria but improved growth of actinomycetes. Compared to control plants, AMF stimulated activities of phosphatase and urease but decreased invertase.  相似文献   

11.
Arbuscular mycorrhizal fungi can increase the host resistance to pathogens via promoted phenolic synthesis, however, the signaling pathway responsible for it still remains unclear. In this study, in order to reveal the signaling molecules involved in this process, we inoculated Trifolium repense L. with an arbuscular mycorrhizal fungus (AMF), Glomus mosseae, and monitored the contents of phenolics and signaling molecules (hydrogen peroxide (H2O2), salicylic acid (SA), and nitric oxide (NO)) in roots, measured the activities of l-phenylalanine ammonia-lyase (PAL) and nitric oxide synthase (NOS), and the expression of pal and chs genes. Results demonstrated that AMF colonization promoted the phenolic synthesis, in parallel with the increase in related enzyme activity and gene expression. Meanwhile, the accumulation of all three signaling molecules was also up-regulated by AMF. This study suggested that AMF increased the phenolic synthesis in roots probably via signaling pathways of H2O2, SA and NO in a signaling cascade.  相似文献   

12.
接种AMF对菌根植物和非菌根植物竞争的影响   总被引:4,自引:0,他引:4  
张宇亭  王文华  申鸿  郭涛 《生态学报》2012,32(5):1428-1435
为了研究丛枝菌根真菌(arbuscular mycorrhizal fungus, AMF)对菌根植物与非菌根植物种间竞争的影响,以玉米(菌根植物)和油菜(非菌根植物)作为供试植物,分别进行间作、尼龙网分隔和单作,模拟这两种植物之间不同的竞争状态,接种丛枝菌根真菌Glomus intraradicesGlomus mosseae,比较菌根植物和非菌根植物的生长和磷营养状况,分析AMF侵染对植物种间竞争作用的影响。结果显示,与单作相比,间作模式下玉米的生物量及磷营养状况有所降低,但其菌根依赖性却有所提高。与不接种相比,接种处理显著降低了间作体系油菜根系的磷含量和磷吸收量,但趋于改善菌根植物玉米的磷营养状况。因此,接种AMF可以降低非菌根植物的磷营养状况及生物量,使得菌根植物的相对竞争能力明显提高,说明AMF在维持物种多样性方面有着重要的作用。  相似文献   

13.
Induction of stress ethylene production in the plant system is one of the consequences of salt stress which apart from being toxic to the plant also inhibits mycorrhizal colonization and rhizobial nodulation by oxidative damage. Tolerance to salinity in pea plants was assessed by reducing stress ethylene levels through ACC deaminase-containing rhizobacteria Arthrobacter protophormiae (SA3) and promoting plant growth through improved colonization of beneficial microbes like Rhizobium leguminosarum (R) and Glomus mosseae (G). The experiment comprised of treatments with combinations of SA3, G, and R under varying levels of salinity. The drop in plant biomass associated with salinity stress was significantly lesser in SA3 treated plants compared to non-treated plants. The triple interaction of SA3 + G + R performed synergistically to induce protective mechanism against salt stress and showed a new perspective of plant-microorganism interaction. This tripartite collaboration increased plant weight by 53%, reduced proline content, lipid peroxidation and increased pigment content under 200 mM salt condition. We detected that decreased ACC oxidase (ACO) activity induced by SA3 and reduced ACC synthase (ACS) activity in AMF (an observation not reported earlier as per our knowledge) inoculated plants simultaneously reduced the ACC content by 60% (responsible for generation of stress ethylene) in SA3 + G + R treated plants as compared to uninoculated control plants under 200 mM salt treatment. The results indicated that ACC deaminase-containing SA3 brought a putative protection mechanism (decrease in ACC content) under salt stress, apart from alleviating ethylene-induced damage, by enhancing nodulation and AMF colonization in the plants resulting in improved nutrient uptake and plant growth.  相似文献   

14.
The purpose of this study was to investigate the mechanisms underlying alleviation of salt stress by mycorrhization. Solanum lycopersicum L. cultivars Behta and Piazar with different salinity tolerance were cultivated in soil without salt (EC?=?0.63 dSm?1), with low (EC?=?5 dSm?1), or high (EC?=?10 dSm?1) salinity. Plants inoculated with the arbuscular mycorrhizal fungi Glomus intraradices (+AMF) were compared to non-inoculated plants (?AMF). Under salinity, AMF-mediated growth stimulation was higher in more salt tolerant Piazar than in sensitive Behta. Mycorrhization alleviated salt-induced reduction of P, Ca, and K uptake. Ca/Na and K/Na ratios were also better in +AMF. However, growth improvement by AMF was independent from plant P nutrition under high salinity. Mycorrhization improved the net assimilation rates through both elevating stomatal conductance and protecting photochemical processes of PSII against salinity. Higher activity of ROS scavenging enzymes was concomitant with lowering of H2O2, less lipid peroxidation, and higher proline in +AMF. Cultivar differences in growth responses to salinity and mycorrhization could be well explained by differences in ion balance, photochemistry, and gas exchange of leaves. Function of antioxidant defenses seemed responsible for different AMF-responsiveness of cultivars under salinity. In conclusion, AMF may protect plants against salinity by alleviating the salt-induced oxidative stress.  相似文献   

15.
Growth of mycorrhizal tomato and mineral acquisition under salt stress   总被引:19,自引:0,他引:19  
 High salt levels in soil and water can limit agricultural production and land development in arid and semiarid regions. Arbuscular mycorrhizal fungi (AMF) have been shown to decrease plant yield losses in saline soils. The objective of this study was to examine the growth and mineral acquisition responses of greenhouse-grown tomato to colonization by the AMF Glomus mosseae [(Nicol. And Gerd.) Gerd. and Trappe] under varied levels of salt. NaCl was added to soil in the irrigation water to give an ECe of 1.4 (control), 4.7 (medium) and 7.4 dS m–1 (high salt stress). Plants were grown in a sterilized, low P (silty clay) soil-sand mix. Mycorrhizal colonization was higher in the control than in saline soil conditions. Shoot and root dry matter yields and leaf area were higher in mycorrhizal than in nonmycorrhizal plants. Total accumulation of P, Zn, Cu, and Fe was higher in mycorrhizal than in nonmycorrhizal plants under both control and medium salt stress conditions. Shoot Na concentrations were lower in mycorrhizal than in nonmycorrhizal plants grown under saline soil conditions. The improved growth and nutrient acquisition in tomato demonstrate the potential of AMF colonization for protecting plants against salt stress in arid and semiarid areas. Accepted: 21 February 2000  相似文献   

16.
The effects of some selected arbuscular mycorrhizal (AM) fungi, Gigaspora margarita and Glomus mossae on the growth and the role of soluble amino acids of two contrasting cocoa cultivars (ICS84 tolerant and SNK10 sensitive) against black pod disease caused by Phytophthora megakarya were investigated. Root colonization by AM fungi is between 50 and 70% 18 weeks after planting. Tested AM fungi significantly increased all the plant growth parameters (height, number of leaves, shoot and root matter) and P uptake as compared to non‐inoculated plants in pot experiments. AM fungi inoculated cocoa reduced the disease severity. Compared to the control, the soluble amino acid levels increased with inoculation of the AM fungi strains in the necrotic stems of disease on inoculated cocoa plants. Significant relationships between amino acids and disease severity observed for two cocoa cultivars imply that the induction of specific amino acids synthesized by leaves, such as arginine, cysteine and glutamic acid, may represent potential candidate molecules for adaptation of such cultivars to P. megakarya disease. Inoculating seedlings with AMF in nurseries could enhance the development of cocoa plants protected against P. megakarya.  相似文献   

17.
A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by Pi fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with Pi or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of Pi concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher Pi levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
从金沙江干热河谷(元谋段)75种植物的根际土壤中分离鉴定了44种丛枝菌根真菌, 分属无梗囊霉属Acaulospora、古孢霉属Archaeospora、内养囊霉属Entrophospora、巨孢囊霉属Gigaspora、球囊霉属Glomus和盾巨孢囊霉属Scutellospora, 其中,球囊霉属和无梗囊霉属为金沙江干热河谷中丛枝菌根真菌的优势属。齿状无梗囊霉A. denticulata、刺状无梗囊霉A. spinosa、瘤状无梗囊A. tuberculata,近明球囊霉Glomus claroideum、明球囊霉G. clarum、根内球囊霉G. intraradices、单孢球囊霉G. monosporum、弯丝球囊霉G. sinuosa是金沙江干热河谷(元谋段)的优势种。金沙江干热河谷土壤中丛枝菌根真菌的孢子密度为5~6400个/100g土壤,平均1504;每个根际土壤中丛枝菌根真菌的物种丰富度1~18种,平均9种。  相似文献   

19.
Eggplant cultivation is subjected to attacks by numbers of pests and diseases from the nursery stage until harvest. Root-knot nematode (M. javanica) is one of the most significant restrictions in the successful cultivation of eggplant as it damages the crop year-round. One of the most essential classes of plant symbionts is arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB), which significantly impact plant development, feeding, disease tolerance, and resistance to M. javanica. Eggplant seedlings were inoculated with two mycorrhizal fungi, Glomus mosseae (Gm) and Gigaspora gigantea (Gg), together with the phosphate-solubilizing bacteria (PSB) Pseudomonas fluorescens (Pf; ATCC-17400) under the presence of nematodes inoculation of Meloidogyne javanica as 1000 eggs of M. javanica in each pot. Observations were recorded for 9 morphological traits, 6 fruit morphometric traits using Tomato Analyzer (version 4) software program, and 4 fruit biochemical traits. Along with the data recorded for mycorrhization (%), number of galls and reaction to RKN. Plants inoculated with the consortium (Pf + Gm + Gg) performed substantially better for most traits. Furthermore, the eggplant plants treated with consortium developed the highest levels of fruit biochemical content along with the highest level of mycorrhization (68.20%). Except for certain fruit morphometric traits, the treatment containing Pf + Gg outperformed the treatment containing Pf + Gm. Overall, this research showed that AM fungi could be a sustainable solution to the eggplant RKN problem.  相似文献   

20.
  • Soil salinity severely affects and constrains crop production worldwide. Salinity causes osmotic and ionic stress, inhibiting gas exchange and photosynthesis, ultimately impairing plant growth and development. Arbuscular mycorrhiza (AM) have been shown to maintain light and carbon use efficiency under stress, possibly providing a tool to improve salinity tolerance of the host plants. Thus, it was hypothesized that AM will contribute to improved growth and yield under stress conditions.
  • Wheat plants (Triticum aestivum L.) were grown with (AMF+) or without (AMF?) arbuscular mycorrhizal fungi (AMF) inoculation. Plants were subjected to salinity stress (200 mm NaCl) either at pre‐ or post‐anthesis or at both stages. Growth and yield components, leaf chlorophyll content as well as gas exchange parameters and AMF colonization were analysed.
  • AM plants exhibited a higher rate of net photosynthesis and stomatal conductance and lower intrinsic water use efficiency. Furthermore, AM wheat plants subjected to salinity stress at both pre‐anthesis and post‐anthesis maintained higher grain yield than non‐AM salinity‐stressed plants.
  • These results suggest that AMF inoculation mitigates the negative effects of salinity stress by influencing carbon use efficiency and maintaining higher grain yield under stress.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号