首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Applied Phycology - Extracellular polymeric substances (EPSs) produced by the filamentous cyanobacterium identified as Leptolyngbya sp. IkmLPT16 were isolated and characterized...  相似文献   

2.
The cyanobacterial genus Leptolyngbya is widely distributed throughout terrestrial environments and freshwater. Because environmental factors, such as oxygen level, available water content, and light intensity, vary between soil surface and water bodies, terrestrial Leptolyngbya should have genomic differences with freshwater species to adapt to a land habitat. To study the genomic features of Leptolyngbya species, we determined the complete genome sequence of the terrestrial strain Leptolyngbya sp. NIES-2104 and compared it with that of the near-complete sequence of the freshwater Leptolyngbya boryana PCC 6306. The greatest differences between these two strains were the presence or absence of a nitrogen fixation gene cluster for anaerobic nitrogen fixation and several genes for tetrapyrrole synthesis, which can operate under micro-oxic conditions. These differences might reflect differences in oxygen levels where these strains live. Both strains have the genes for trehalose biosynthesis, but only Leptolyngbya sp. NIES-2104 has genetic capacity to produce a mycosporine-like amino acid, mycosporine-glycine. Mycosporine-glycine has an antioxidant action, which may contribute to adaptation to terrestrial conditions. These features of the genomes yielded additional insights into the classification and physiological characteristics of these strains.  相似文献   

3.
Current cyanobacterial model organisms were not selected for their growth traits or potential for the production of renewable biomass, biofuels, or other products. The cyanobacterium strain BL0902 emerged from a search for strains with superior growth traits. Morphology and 16S rRNA sequence placed strain BL0902 in the genus Leptolyngbya. Leptolyngbya sp. strain BL0902 (hereafter Leptolyngbya BL0902) showed robust growth at temperatures from 22°C to 40°C and tolerated up to 0.5 M NaCl, 32 mM urea, high pH, and high solar irradiance. Its growth rate under outdoor conditions rivaled Arthrospira ("pirulina" strains. Leptolyngbya BL0902 accumulated higher lipid content and a higher proportion of monounsaturated fatty acids than Arthrospira strains. In addition to these desirable qualities, Leptolyngbya BL0902 is amenable to genetic engineering that is reliable, efficient, and stable. We demonstrated conjugal transfer from Escherichia coli of a plasmid based on RSF1010 and expression of spectinomycin/streptomycin resistance and yemGFP reporter transgenes. Conjugation efficiency was investigated in biparental and triparental matings with and without a "elper"plasmid that carries DNA methyltransferase genes, and with two different conjugal plasmids. We also showed that Leptolyngbya BL0902 is amenable to transposon mutagenesis with a Tn5 derivative. To facilitate genetic manipulation of Leptolyngbya BL0902, a conjugal plasmid vector was engineered to carry a trc promoter upstream of a Gateway recombination cassette. These growth properties and genetic tools position Leptolyngbya BL0902 as a model cyanobacterial production strain.  相似文献   

4.
Akihiko Yamagishi  Sakae Katoh 《BBA》1984,765(2):118-124
The Photosystem-II reaction-center complex of the thermophilic cyanobacterium Synechococcus sp. was resolved into two complemental chlorophyll-protein complexes, CP2b which contained a chlorophyll-binding 47 kDa polypeptide, two polypeptides in the 28–31 kDa region and a 9 kDa polypeptide, and CP2c which had only a chlorophyll-binding 40 kDa polypeptide. CP2b was found to be highly active in photoreduction of 2,6-dichlorophenolindophenol with diphenylcarbazide as an electron donor. The activity was insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea and ioxynil but was half inactivated by the treatment of the complex at 50°C for 5 min, or on addition of 0.001% sodium dodecyl sulfate, indicating its dependence on the protein conformation. CP2c also showed a low activity of the dye photoreduction, which was insensitive to heat and enhanced at high concentrations of sodium dodecyl sulfate. The quantum yield of the photoreduction was estimated to be 0.12 for CP2b and 0.002 for CP2c. It is concluded that the 47 kDa polypeptide is the site of the Photosystem-II reaction center and the 40 kDa polypeptide is not required for the Photosystem-II-driven electron transport.  相似文献   

5.
AIM: To stimulate poly-beta-hydroxybutyrate (PHB) accumulation in Synechocystis sp. PCC 6803 by manipulating culture conditions. METHODS AND RESULTS: Stationary phase cultures of Synechocystis sp. PCC 6803 were subjected to N- and P-deficiency, chemoheterotrophy and limitations of gas-exchange. Enhanced PHB accumulation was observed under all the above conditions. However, interaction of P-deficiency with gas-exchange limitation (GEL) in the presence of exogenous carbon boosted PHB accumulation maximally. CONCLUSIONS: Combined effects of P-deficiency and GEL boosted PHB accumulation up to 38% (w/w) of dry cell weight (dcw) in Synechocystis sp. PCC 6803 in the presence of fructose and acetate. This value is about eightfold higher as compared with the accumulation under photoautotrophic growth condition. SIGNIFICANCE AND IMPORTANCE OF THE STUDY: These results showed a good potential of Synechocystis sp. PCC 6803 in accumulating poly-beta-hydroxybutyrate, an appropriate raw material for biodegradable and biocompatible plastic. Poly-beta-hydroxybutyrate could be an important material for plastic and pharmaceutical industries.  相似文献   

6.
《Process Biochemistry》2014,49(1):110-119
The current work is aimed to evaluate the degradation of triazo textile dye Acid Black 210 (AB210) by Providencia sp. SRS82 that degrade 100 mg/L dye within 90 min under optimum conditions and was also found tolerant to as high as 2000 ppm of dye AB210. Optimum conditions for decolourization and degradation of AB210 with the isolate were viz. temperature 30 °C, pH 8, NaCl concentration 2.5% (w/v) and initial cell load of 8 × 108 cells/mL under static condition. Induction of intracellular and extracellular lignin peroxidase, intracellular laccase and tyrosinase, azoreductase, and DCIP reductase indicated their contribution in the biodegradation of AB210. The products obtained from Providencia sp. SRS82 degradation was monitored through UV–Vis spectrophotometer and were characterized by FTIR, HPTLC, HPLC, GC/MS and LCMS. The proposed metabolic pathway for the biodegradation of AB210 is elucidated for the first time, which showed production of 4 molecules of benzene, one of naphthalene and 4-aminophenyl-N-(4-amino phenyl) benzene sulphonamide. Microbial toxicity and cytotoxicity studies revealed the comparatively less toxic nature of metabolites generated after degradation of AB210. Providencia sp. SRS82 was found competent to degrade actual effluent and diverse dyes that could be present in textile industry effluent showing usefulness of the organism for possible commercial application.  相似文献   

7.
In the present investigation, two fungal strains were exploited to evaluate their degradation capability on Synozol Red, Yellow, and Navy-Blue dyes which gave the utmost decolorization such as 40%, 70%, 90% by Aspergillus niger, and 36%, 73%, 87% by Trichoderma viride, respectively for 60 days. The Gas Chromatography-Mass Spectrometry (GC–MS) analysis of the decolorized dyes suggested that various compounds such as Caprolactam, Furazan-3-carboxamide, oxime, 4-amino-N, N-dimethyl, 6H-Pyrazolo[1,2-a] [1,2,4,5]tetrazine, Hexahydro-2,3-dimethyl, Benzene, 1-propenyl, Dihydroxymaleic acid, Arsenous acid, tris(trimethylsilyl) ester were produced by the fungi which helped in the removal of dyes from the wastewater. The laccase activity of the degraded dyes was proof that both of the strains positively produced the enzyme that helped in the biodegradation of carcinogenic dyes into less harmful products. The A. niger extracted laccase relative activity was 262%, 265%, and 145.7% for Synozol Yellow, Synozol Red, and Navy Blue, respectively. Similarly, laccase, obtained from T. viride, showed relative activity of 187.5% against Synozol Yellow, 215% against Synozol Red, and 202% against Navy Blue. Furthermore, the supernatant extracted from fungi-decolorized wastewater was used to check phytotoxicity on Vigna radiata, which gave excellent results. Both fungal strains, on the basis of their dye degradation potential, can be used to ameliorate wastewater contaminated with azo dyes.  相似文献   

8.
Phenolic constituents and essential oil from the aerial parts of Cistus creticus subsp. eriocephalus (Viv.) Greuter et Burdet growing in central Italy were analysed by HPLC-MSn and GC–MS, respectively. Furthermore, six constituents were isolated by semipreparative HPLC from the methanol extract and their structures were determined on the basis of 1D and 2D NMR measurements as well as MS spectra. Isolated compounds were one new natural product, i.e. the shikimic acid ester 3,5-diihydroxy-4-(O-β-d-glucopyranosyl)-cyclohex-1-en-1-(O-β-d-glucopyranosyl)-ester (27), and six flavonoid glycosides, namely quercetin-3-O-β-D glucopyranoside (16), quercetin-3-O-rhamnoside (17), tricetin-4′-O-β-D glucopyranoside (24), tricetin-4′-O-β-D rutinoside (21), 3′-methoxy-quercetin-3-O-(3-β-Dglucopyranosyl-2-rhamnopyranosil-4-glucopyranosyl-2-rhamnopyranosil)-glucoside (25) and 3′,4′dimethoxyquercetin-3-O-rhamnopyranoside (26). GC–MS analysis of the essential oil highlighted the occurrence of aliphatic compounds, mainly fatty acids, whereas labdane-type compounds were very scant. Our results showed that C. creticus subsp. eriocephalus has a different chemical profile with respect to the other subspecies due to the lack of labdane derivatives. On the other hand, this subspecies contains several phenolic constituents like ellagitannins, gallotannins and flavonoids, some of which can be of chemotaxonomic value.  相似文献   

9.
《FEBS letters》1987,219(1):207-211
Two different, highly active O2-evolving photosystem II complexes were purified from the cyanobacterium Synechococcus sp. in the presence of the non-ionic detergent β-dodecyl-D-maltoside. Both complexes are homogeneous and have molecular masses of approx. 300 and 500 kDa, respectively. By electron microscopy it was found that both complexes have the shape of an elliptical disk, with a thickness of about 6.5 nm and top view dimensions of 10.5 × 15.5 nm for the 300 kDa particle and 18.5 × 15 nm for the 500 kDa particle. It is concluded that the particles represent monomeric and dimeric forms of photosystem II.  相似文献   

10.
《BBA》1986,851(2):202-208
Photoaffinity labeling of Synechococcus Photosystem (PS) II preparations with radioactive azido-derivatives of three herbicides and of plastoquinone was carried out to identify herbicide and plastoquinone-binding proteins. [14C]Azido-atrazine and [14C]azido-monuron specifically labeled the 28 kDa polypeptide of the PS II reaction center complex, which is sensitive to 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). No specific labeling of this polypeptide with azido-atrazine was found in CP2-b (PS II reaction center lacking the 40 kDa subunit) which is insensitive to DCMU. [3H]Azido-dinoseb reacted with the 28 kDa polypeptide and the 47 kDa chlorophyll-carrying protein. The labeling with [3H]azido-plastoquinone resulted in the incorporation of the radioactivity exclusively into the 47 kDa polypeptide. It is concluded that the 28 kDa polypeptide is the herbicide-binding protein of the cyanobacterium and that the 47 kDa polypeptide has a binding site for plastoquinone and for phenol-type herbicides.  相似文献   

11.
We studied the interactions of the CO(2)-concentrating mechanism and variable light in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696 acclimated to low light (15 μmol m(-2) s(-1) PPFD) and low inorganic carbon (50 μM Ci). Mass spectrometric and polarographic analysis revealed that mediated CO(2) uptake along with both active Na(+)-independent and Na(+)-dependent HCO(3)(-) transport, likely through Na(+)/HCO(3)(-) symport, were employed to concentrate Ci internally. Combined transport of CO(2) and HCO(3)(-) required about 30 kJ mol(-1) of energy from photosynthetic electron transport to support an intracellular Ci accumulation 550-fold greater than the external Ci. Initially, Leptolyngbya rapidly induced oxygen evolution and Ci transport to reach 40-50% of maximum values by 50 μmol m(-2) s(-1) PPFD. Thereafter, photosynthesis and Ci transport increased gradually to saturation around 1,800 μmol m(-2) s(-1) PPFD. Leptolyngbya showed a low intrinsic susceptibility to photoinhibition of oxygen evolution up to PPFD of 3,000 μmol m(-2) s(-1). Intracellular Ci accumulation showed a lag under low light but then peaked at about 500 μmol photons m(-2) s(-1) and remained high thereafter. Ci influx was accompanied by a simultaneous, light-dependent, outward flux of CO(2) and by internal CO(2)/HCO(3)(-) cycling. The high-affinity and high-capacity CCM of Leptolyngbya responded dynamically to fluctuating PPFD and used excitation energy in excess of the needs of CO(2) fixation by increasing Ci transport, accumulation and Ci cycling. This capacity may allow Leptolyngbya to tolerate periodic exposure to excess high light by consuming electron equivalents and keeping PSII open.  相似文献   

12.
13.
14.
Leonotis leonurus widely used by traditional healers in southern Africa for treatment of various ailments, is well known for its reported psychoactive properties. The present study was undertaken to investigate the variation in essential oil composition between geographically distinct populations of L. leonurus in South Africa using gas chromatography. Plant material (n = 50) was collected from three provinces of South Africa. Essential oils of the aerial parts were obtained by hydrodistillation and analysed using one and two dimensional gas chromatography. Twenty-six compounds accounted for more than 80% of the total composition of the oil. Eight major constituents in the oil, representing about 50% of the total oil composition, were identified by both GC–MS–FID and GCxGC–ToF–MS. These major compounds were trans-β-ocimene (0.1–5.0%), cis-β-ocimene (0.1–31.5%), β-caryophyllene (0.3–15.0%), caryophyllene oxide (0.1–5.0%), α-humulene (0.4–18.2%), γ-elemene (0.4–10.6%), α-cubebene (0.2–12.0%) and germacrene D (0.1–22.1%). Marked similarities exist in the essential oil composition between populations; differences are mostly quantitative when determined by GC–MS–FID, while GCxGC–ToF–MS data reveals both quantitative and qualitative differences.Untargeted multivariate analysis was performed using SIMCA-P + 14.0 PCA and OPLS-DA methods, identifying two distinct clusters, inland and coastal populations.  相似文献   

15.
《Fungal biology》2023,127(3):927-937
Filamentous fungi are being globally explored for the production of industrially important bioactive compounds including pigments. In the present study, a cold and pH tolerant fungus strain Penicillium sp (GEU_37), isolated from the soil of Indian Himalaya, is characterized for the production of natural pigments as influenced by varying temperature conditions. The fungal strain produces a higher sporulation, exudation, and red diffusible pigment in Potato Dextrose (PD) at 15 °C as compared to 25 °C. In PD broth, a yellow pigment was observed at 25 °C. While measuring the effect of temperature and pH on red pigment production by GEU_37, 15 °C and pH 5, respectively, were observed to be the optimum conditions. Similarly, the effect of exogenous carbon and nitrogen sources and mineral salts on pigment production by GEU_37 was assessed in PD broth. However, no significant enhancement in pigmentation was observed. Chloroform extracted pigment was separated using thin layer chromatography (TLC) and column chromatography. The two separated fractions i.e., fractions I and II with Rf values 0.82 and 0.73, exhibited maximum light absorption, λmax, at 360 nm and 510 nm, respectively. Characterization of pigments using GC–MS showed the presence of the compounds such as phenol, 2,4-bis (1,1-dimethylethyl) and eicosene from fraction I and derivatives of coumarine, friedooleanan, and stigmasterole in fraction II. However, LC-MS analysis detected the presence of derivatives of compound carotenoids from fraction II as well as derivative of chromenone and hydroxyquinoline as major compounds from both the fractions along with other numerous important bioactive compounds. The production of such bioactive pigments under low temperature conditions suggest their strategic role in ecological resilience by the fungal strain and may have biotechnological applications.  相似文献   

16.
Forty endophytic fungi isolated from ginseng plants were screened to identify metabolites that had antifungal activity against ginseng microbial pathogens. The metabolites from the fungi were extracted from the liquid culture filtrates using ethyl acetate and then evaluated in vitro for antimicrobial activity against ginseng pathogens (Alternaria panax, Botrytis cinerea, Colletotrichum panacicola, Cylindrocarpon destructans, Rhizoctonia solani, and Phytophthora cactorum). Six of the fungi (Colletotrichum pisi, Fusarium oxysporum, Fusarium solani, Phoma terrestris, unknown 1 and 2) showed effective antimicrobial activity against all or some of the ginseng pathogens, with the extract of P. terrestris showing the strongest antimicrobial activity. The extract also showed inhibitory activity against spore germination of the pathogens. Gas chromatography–mass spectrometry (GC–MS) analysis of P. terrestris extract revealed that forty-one compounds were present in metabolites containing mainly N-amino-3-hydroxy-6-methoxyphthalimide (32% of the total metabolites) and 5H-dibenz [B, F] azepine (7%). Treatment with P. terrestris extract also caused morphological changes and reduced expression of the genes involved in mycelial growth and virulence. Treatment also induced defense-related genes in detached Arabidopsis leaves that were inoculated with the pathogens. These results indicate the antimicrobial potential for use of metabolites extracted from the ginseng endophytic fungi as alternatives to chemicals for biocontrol.  相似文献   

17.
《BBA》2023,1864(2):148955
Cyanobacteria inhabiting desert biological soil crusts face the harsh conditions of the desert. They evolved a suite of strategies toward desiccation-hydration cycles mixed with high light irradiations, etc. In this study we purified and characterized the structure and function of Photosystem I (PSI) from Leptolyngbya ohadii, a desiccation-tolerant desert cyanobacterium. We discovered that PSI forms tetrameric (PSI-Tet) aggregate. We investigated it by using sucrose density gradient centrifugation, clear native PAGE, high performance liquid chromatography, mass spectrometry (MS), time-resolved fluorescence (TRF) and time-resolved transient absorption (TA) spectroscopy. MS analysis identified the presence of two PsaB and two PsaL proteins in PSI-Tet and uniquely revealed that PsaLs are N-terminally acetylated in contrast to non-modified PsaL in the trimeric PSI from Synechocystis sp. PCC 6803. Chlorophyll (Chl) a fluorescence decay profiles of the PSI-Tet performed at 77 K revealed two emission bands at ~690 nm and 725 nm with the former appearing only at early delay time. The main fluorescence emission peak, associated with emission from the low energy Chls a, decays within a few nanoseconds. TA studies demonstrated that the 725 nm emission band is associated with low energy Chls a with absorption band clearly resolved at ~710 nm at 77 K. In summary, our work suggests that the heterogenous composition of PsaBs and PsaL in PSI-Tet is related with the adaptation mechanisms needed to cope with stressful conditions under which this bacterium naturally grows.  相似文献   

18.
Meiko Aoki  Sakae Katoh 《BBA》1982,682(3):307-314
The I-D dip, an early transient of the fluorescence induction, was examined as a means to monitor redox changes of plastoquinone in cells of a cyanobacterium, Synechococcus sp. That the occurrence of the dip depends upon the reduced state of the plastoquinone pool was indicated by observations that 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 3-(3,4-dichlorophenyl)-1,1-dimethylurea did not affect the initial rise to I but abolished the subsequent decline from I to D and that illumination of the cells with light 1, prior to fluorescence measurements, eliminated the transient. The I-D dip was prominent in freshly harvested cells containing abundant endogenous substrates, disappeared slowly as the cells were starved by aeration but reappeared on addition of fructose to the starved cells in the dark. The dip that had been induced by a brief illumination of the starved cells with light 2 was rapidly diminished in the dark and KCN inhibited the dark decay of the transient. The results indicate that plastoquinone is reduced with endogenous as well as exogenous substrates and oxidized by a KCN-sensitive oxidase in the dark, thus providing strong support for the view that plastoquinone of photosynthetic electron transport also functions in respiration. In addition, the occurrence of a cyclic pathway of electrons from Photosystem I to plastoquinone, possibly via ferredoxin or NADP, was suggested. Several lines of evidence indicate that, under a strong light 2, Photosystem I-dependent oxidation of plastoquinone predominates over Photosystem II-dependent reduction of the quinone in the cyanobacterium which contains Photosystem I more abundantly than Photosystem II.  相似文献   

19.
Cinnamomum is the largest genus of Lauraceae family and has been used as spices, food, and food additives by the people. Total 15 Cinnamomum species are distributed in different parts of Indian sub-continent. Different parts (leaves, stem bark, stem wood, roots, flowers, and fruits) of these species were shade-dried and used for the determination of essential oils. A total of 19 essential oils were identified and quantified from the different parts of (leaf, stem bark, stem wood, root, flower, and fruit) of 15 Cinnamomum species. The stem bark of C. altissimum was rich in the presence of essential oils (52.2 %) whereas minimum levels of essential oils were recorded in roots (17.9 %). The γ-terpinene (11.1 %) was reported as the major component essential oil in C. subavenium flowers. Methanol extract of C. camphora stem wood showed stronger lowest minimum inhibitory concentration against S. aureus (25 ± 0.01 μg/ml), H. pylori (29 ± 0.05 μg/ml), B. subtilis (31 ± 0.03 μg/ml), E. faecalis (33 ± 0.01 μg/ml), C. albicans (38 ± 0.03 μg/ml) when compared to amoxycillin (S. aureus 56 ± 0.05 μg/ml; B. subtilis 27 ± 0.04 μg/ml, E. faecalis 22 ± 0.01 μg/ml), streptomycin (H. pylori 38 ± 0.02 μg/ml) and fluconazole (C. albicans 56 ± 0.01 μg/ml). Methanolic extract of C. camphora stem wood demonstrated maximum antimicrobial activity against S. aureus, H. pylori, B. subtilis, E. faecalis and C. albicans. The essential oil of C. altissimum stem bark displayed significant lowest MIC against S. aureus (21 ± 0.03 μg/ml), E. coli (22 ± 0.03 μg/ml), E. cloacae (37 ± 0.06 μg/ml), L. monocytogenes (47 ± 0.08 μg/ml), and P. chrysogenum (101 ± 0.07 μg/ml) when compared to amoxycillin (E. coli 18 ± 0.01 μg/ml, E. cloacae 21 ± 0.05 μg/ml, L. monocytogenes 31 ± 0.03 μg/ml), and fluconazole (P. chrysogenum 101 ± 0.07 μg/ml). The essential oil of C. altissimum stem bark displayed maximum antimicrobial activity against S. aureus, E. coli, E. cloacae, L. monocytogenes, and P. chrysogenum. Cinnamomum essential oils may be used as an alternative source of antibacterial and antifungal compounds in the treatment of various types of infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号