首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Life for meta-organisms is based on a strong relationship between gut bacteria and body cells. This review summarizes to what extent the microbiota can influence host circadian rhythms via a literature review on the topic. The results show that microbiota can influence the host’s circadian gene expression through direct interactions via immunoreceptors and microbiota-derived metabolites, especially in peripheral tissues. Noteworthy metabolites that are only attributable to the microbiota are short-chain fatty acids and unconjugated bile acids. The microbiota also serves as a mediator for the interplay between the host’s diet and circadian rhythmicity. This work furthermore displays that the microbiota is subject to diurnal variations in terms of structure and function and that the host and the host’s diet influence these fluctuations. As most of these results originate in mouse models, we hope this work stimulates further research in human derived tissue to verify these conclusions.  相似文献   

2.
We performed untargeted metabolomics in plasma of B6 mice with experimental autoimmune encephalitis (EAE) at the chronic phase of the disease in search of an altered metabolic pathway(s). Of 324 metabolites measured, 100 metabolites that mapped to various pathways (mainly lipids) linked to mitochondrial function, inflammation, and membrane stability were observed to be significantly altered between EAE and control (p < 0.05, false discovery rate <0.10). Bioinformatics analysis revealed six metabolic pathways being impacted and altered in EAE, including α-linolenic acid and linoleic acid metabolism (PUFA). The metabolites of PUFAs, including ω-3 and ω-6 fatty acids, are commonly decreased in mouse models of multiple sclerosis (MS) and in patients with MS. Daily oral administration of resolvin D1, a downstream metabolite of ω-3, decreased disease progression by suppressing autoreactive T cells and inducing an M2 phenotype of monocytes/macrophages and resident brain microglial cells. This study provides a proof of principle for the application of metabolomics to identify an endogenous metabolite(s) possessing drug-like properties, which is assessed for therapy in preclinical mouse models of MS.  相似文献   

3.
We have characterized the changes in tissue concentrations of amino acids and biogenic amines in the central nervous system (CNS) of mice with MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model commonly used to study multiple sclerosis (MS). High performance liquid chromatography was used to analyse tissue samples from five regions of the CNS at the onset, peak and chronic phase of MOG35-55 EAE. Our analysis includes the evaluation of several newly examined amino acids including d-serine, and the inter-relations between the intraspinal concentration changes of different amino acids and biogenic amines during EAE. Our results confirm many of the findings from similar studies using different variants of the EAE model as well as those examining changes in amino acid and biogenic amine levels in the cerebrospinal fluid (CSF) of MS patients. However, several notable differences were observed between mice with MOG35-55-induced EAE with findings from human studies and other EAE models. In addition, our analysis has identified strong correlations between different amino acids and biogenic amines that appear to change in two distinct groups during EAE. Group I analyte concentrations are increased at EAE onset and peak but then decrease in the chronic phase with a large degree of variability. Group II is composed of amino acids and biogenic amines that change in a progressive manner during EAE. The altered levels of these amino acids and biogenic amines in the disease may represent a critical pathway leading to neurodegenerative processes that are now recognized to occur in EAE and MS.  相似文献   

4.
Hyaluronan (HA) may have proinflammatory roles in the context of CNS autoimmunity. It accumulates in demyelinated multiple sclerosis (MS) lesions, promotes antigen presentation, and enhances T-cell activation and proliferation. HA facilitates lymphocyte binding to vessels and CNS infiltration at the CNS vascular endothelium. Furthermore, HA signals through Toll-like receptors 2 and 4 to stimulate inflammatory gene expression. We assessed the role of HA in experimental autoimmune encephalomyelitis (EAE), an animal model of MS by administration of 4-methylumbelliferone (4MU), a well established inhibitor of HA synthesis. 4MU decreased hyaluronan synthesis in vitro and in vivo. It was protective in active EAE of C57Bl/6 mice, decreased spinal inflammatory infiltrates and spinal infiltration of Th1 cells, and increased differentiation of regulatory T-cells. In adoptive transfer EAE, feeding of 4MU to donor mice significantly decreased the encephalitogenicity of lymph node cells. The transfer of proteolipid protein (PLP)-stimulated lymph node cells to 4MU-fed mice resulted in a delayed EAE onset and delayed spinal T-cell infiltration. Expression of CXCL12, an anti-inflammatory chemokine, is reduced in MS patients in CSF cells and in spinal cord tissue during EAE. Hyaluronan suppressed production of CXCL12, whereas 4MU increased spinal CXCL12 in naive animals and during neuroinflammation. Neutralization of CXCR4, the most prominent receptor of CXCL12, by administration of AMD3100 diminished the protective impact of 4MU in adoptive transfer EAE. In conclusion, hyaluronan exacerbates CNS autoimmunity, enhances encephalitogenic T-cell responses, and suppresses the protective chemokine CXCL12 in CNS tissue. Inhibition of hyaluronan synthesis with 4MU protects against an animal model of MS and may represent an important therapeutic option in MS and other neuroinflammatory diseases.  相似文献   

5.
Summary Experimental allergic encephalomyelitis (EAE) is induced in susceptible animals by immunodominant determinants of myelin basic protein (MBP). Analogs of these disease-associated peptides have been identified with disease progression upon coimmunization. Usage of peptides, with disease-specific immunomodulatory capacity in vivo is limited, however, due to their sensitivity to proteolytic enzymes. Alternative approaches include the development of mimetic molecules which maintain the biological function of an original peptide, yet are stable and able to elicit their response in pharmacological quantities. A novel technique was employed to design a series of semi-mimetic peptides, based on the guinea pig MBP72–85 peptide used to induce EAE in Lewis rats. We used isonipecotic (iNip) and aminocaproic (Acp) acids as templates. Acp-MBP72–85 peptide derived analogues were effective in inducing EAE compared to iNip-peptide analogues which were ineffective at 350g. These findings suggest that the design and synthesis of semi-mimetic peptide molecules with immunomodulatory potential is possible and that eventually these molecules may form the basis for the development of novel and more effective disease-specific therapeutic agents.  相似文献   

6.
In order to characterize the nature of the active site of cytochrome P450 2E1, the metabolism of various fatty acids with cis/trans geometric configurations has been investigated. A system coupling atmospheric pressure chemical ionization-mass spectrometry detection with HPLC separation was developed as an alternative method for the characterization of hydroxylated metabolites of oleic and elaidic acids in rat and human liver microsomes. Oxidation of oleic and elaidic acids led to the formation of two main metabolites which were identified by LC–MS and GC–MS as ω and (ω-1)-hydroxylated (or 17-OH and 18-OH) fatty acids, on the basis of their pseudo-molecular mass and their fragmentation. The assay was accurate and reproducible, with a detection limit of 25 ng per injection, a linear range from 25 to 1128 ng per injection, no recorded interference, intra-day and inter-day precision with variation coefficients <14%. This LC–MS method was validated with oleic acid by using both radiometric and mass spectrometric detections. A significant correlation was found between the two methods in human (r=0.86 and 0.94 with P<0.05 and 0.01) and rat liver microsomes (r =0.90 and 0.85 with P<0.01 and 0.05) for 17-OH and 18-OH metabolites, respectively. HPLC coupled to mass spectrometry for the analysis of hydroxylated metabolites of elaidic acid offers considerable advantages since the method does not require use of a radioactive molecule, completely separates the two hydroxymetabolites, confirms the identification of each metabolite, and is as sensitive as the radiometric analysis method. This method allowed the comparative study of oleic and elaidic acid hydroxylations by both human and rat liver microsomal preparations.  相似文献   

7.
The interaction between gut microbiota and the host has gained widespread concern. Gut microbiota not only provides nutrients from the ingested food but also generates bioactive metabolites and signalling molecules to impact host physiology, especially in chronic kidney disease (CKD). The development of CKD, accompanied by changed diet and medication, alters the gut flora and causes the effect in distant organs, leading to clinical complications. Vascular calcification (VC) is an actively regulated process and a high prevalence of VC in CKD has also been linked to an imbalance in gut microbiota and altered metabolites. In this review, we focused on gut microbiota-derived metabolites involved in VC in CKD and explained how these metabolites influence the calcification process. Correcting the imbalance of gut microbiota and regulating microbiota-derived metabolites by dietary modification and probiotics are new targets for the improvement of the gut-kidney axis, which indicate innovative treatment options of VC in CKD.  相似文献   

8.
Summary Biomedical literature and database annotations, available in electronic forms, contain a vast amount of knowledge resulting from global research. Users, attempting to utilize the current state-of-the-art research results are frequently overwhelmed by the volume of such information, making it difficult and time-consuming to locate the relevant knowledge. Literature mining, data mining, and domain specific knowledge integration techniques can be effectively used to provide a user-centric view of the information in a real-world biological problem setting. Bioinformatics tools that are based on real-world problems can provide varying levels of information content, bridging the gap between biomedical and bioinformatics research. We have developed a user-centric bioinformatics research tool, called BioMap, that can provide a customized, adaptive view of the information and knowledge space. BioMap was validated by using inflammatory diseases as a problem domain to identify and elucidate the associations among cells and cellular components involved in multiple sclerosis (MS) and its animal model, experimental allergic encephalomyelitis (EAE). The BioMap system was able to demonstrate the associations between cells directly excavated from biomedical literature for inflammation, EAE and MS. These association graphs followed the scale-free network behavior (average γ = 2.1) that are commonly found in biological networks.  相似文献   

9.
Zhu CS  Hu XQ  Xiong ZJ  Lu ZQ  Zhou GY  Wang DJ 《Life sciences》2008,83(11-12):404-412
Previous studies have shown that vascular endothelial growth factor (VEGF) expression is up-regulated in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), a model for MS, and may exacerbate the disease. However, it remains unknown whether anti-VEGF modalities could serve as a potential treatment for such central nervous system (CNS) autoimmune diseases. We constructed a recombinant adenoviral vector carrying FLAG-tagged sFlt-1(1-3) (the first three extracellular domains of Flt-1, the hVEGF receptor-1). Intramuscular transfection of the recombinant adenoviral vector suppressed VEGF-induced inflammatory cell infiltration in matrigel plugs. When given intracerebrally to EAE rats, recombinant sFlt-1(1-3) adenoviral vector significantly reduced disease severity compared to untreated rats. sFlt-1(1-3) gene transfer blocked VEGF and greatly reduced the number of cells that express VEGF and ED1-positive cells in CNS in EAE rats. This study demonstrates that sFlt-1(1-3) gene transfer into the brain ameliorates the severity of EAE by inhibiting monocyte recruitment in the CNS of dark Agouti rats.  相似文献   

10.
Multiple sclerosis (MS) is a CNS autoimmune disease believed to be triggered by T cells secreting Th1-specific proinflammatory cytokines, such as GM-CSF. In the animal model of MS, experimental autoimmune encephalomyelitis (EAE), Th1 but not Th2 cells have been shown to induce disease; however, to date, no single encephalitogenic T cell-derived cytokine has been shown to be required for EAE onset. Because GM-CSF-deficient mice have been shown to be resistant to EAE following immunization with myelin self-Ag, we investigated the cellular source of the required GM-CSF and found that GM-CSF production by encephalitogenic T cells, but not CNS resident or other peripheral cells, was required for EAE induction. Furthermore, we showed that microglial cell activation, but not peripheral macrophage activation, was a GM-CSF-dependent process. Activation of microglial cells by the injection of LPS abrogated the GM-CSF requirement for EAE induction, suggesting that microglial cell activation is required for EAE onset. These data also demonstrate that GM-CSF is a critical Th1 cell-derived cytokine required for the initiation of CNS inflammation associated with EAE, and likely MS.  相似文献   

11.

Background

Clinical studies of B cell depletion in Multiple Sclerosis (MS) have revealed that B Lymphocytes are involved in the neuro-inflammatory process, yet it remains unclear how B cells can exert pro- and anti-inflammatory functions during MS. Experimental Autoimmune Encephalomyelitis (EAE) is an animal model of MS whereby myelin-specific T cells become activated and subsequently migrate to the Central Nervous System (CNS) where they perform pro-inflammatory functions such as cytokine secretion. Typically EAE is induced by immunization of mice of a susceptible genetic background with peptide antigen emulsified in Complete Freund''s Adjuvant. However, novel roles for B-lymphocytes in EAE may also be explored by immunization with full-length myelin oligodendrocyte glycoprotein (MOG) that contains the B cell conformational epitope. Here we show that full length MOG immunization promotes a chronic disease in mice that depends on antigen-driven secondary diversification of the B cell receptor.

Methods

Activation-Induced Deaminase (AID) is an enzyme that is essential for antigen-driven secondary diversification of the B cell receptor. We immunized AID−/− mice with the extracellular domain (amino acids 1–120) of recombinant human MOG protein (rhMOG) and examined the incidence and severity of disease in AID−/− versus wild type mice. Corresponding with these clinical measurements, we also evaluated parameters of T cell activation in the periphery and the CNS as well as the generation of anti-MOG antibodies (Ab).

Conclusions

AID−/− mice exhibit reduced severity and incidence of EAE. This suggests that the secondary diversification of the B cell receptor is required for B cells to exert their full encephalogenic potential during rhMOG-induced EAE, and possibly also during MS.  相似文献   

12.
Although typically associated with onset in young adults, multiple sclerosis (MS) also attacks the elderly, which is termed late‐onset MS. The disease can be recapitulated and studied in a mouse model, experimental autoimmune encephalomyelitis (EAE). The onset of induced EAE is delayed in aged mice, but disease severity is increased relative to young EAE mice. Given that CD4+FoxP3+ regulatory T (Treg) cells play an ameliorative role in MS/EAE severity, and the aged immune system accumulates peripheral Treg (pTreg) cells, failure of these cells to prevent or ameliorate EAE disease is enigmatic. When analyzing the distribution of Treg cells in EAE mice, the aged mice exhibited a higher proportion of polyclonal (pan‐) pTreg cells and a lower proportion of antigen‐specific pTreg cells in the periphery but lower proportions of both pan‐ and antigen‐specific Treg cells in the central nervous system (CNS). Furthermore, in the aged inflamed CNS, CNS‐Treg cells exhibited a higher plasticity, and T effector (CNS‐Teff) cells exhibited greater clonal expansion, disrupting the Treg/Teff balance. Transiently inhibiting FoxP3 or depleting pTreg cells partially corrected Treg distribution and restored the Treg/Teff balance in the aged inflamed CNS, thereby ameliorating the disease in the aged EAE mice. These results provide evidence and mechanism that accumulated aged pTreg cells play a detrimental role in neuronal inflammation of aged MS.  相似文献   

13.
Multiple sclerosis (MS) is a devastating neuroinflammatory disorder of the central nervous system (CNS) in which T cells that are reactive with major components of myelin sheaths have a central role. The receptor for advanced glycation end products (RAGE) is present on T cells, mononuclear phagocytes and endothelium. Its pro-inflammatory ligands, S100-calgranulins, are upregulated in MS and in the related rodent model, experimental autoimmune encephalomyelitis (EAE). Blockade of RAGE suppressed EAE when disease was induced by myelin basic protein (MBP) peptide or encephalitogenic T cells, or when EAE occurred spontaneously in T-cell receptor (TCR)-transgenic mice devoid of endogenous TCR-alpha and TCR-beta chains. Inhibition of RAGE markedly decreased infiltration of the CNS by immune and inflammatory cells. Transgenic mice with targeted overexpression of dominant-negative RAGE in CD4+ T cells were resistant to MBP-induced EAE. These data reinforce the importance of RAGE-ligand interactions in modulating properties of CD4+ T cells that infiltrate the CNS.  相似文献   

14.

Background

Regulatory T (Treg) cells can be induced with DNA vaccinations and protect mice from the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Tacrolimus (FK506) has been shown to have functions on inducing immunosuppression and augmenting apoptosis of pathologic T cells in autoimmune disease. Here we examined the therapeutic effect of DNA vaccine in conjunction with FK506 on EAE.

Methodology/Principal Findings

After EAE induction, C57BL/6 mice were treated with DNA vaccine in conjunction with FK506. Functional Treg cells were induced in treated EAE mice and suppressed Th1 and Th17 cell responses. Infiltrated CD4 T cells were reduced while Treg cells were induced in spinal cords of treated EAE mice. Remarkably, the activated CD4 T cells augmented apoptosis, but the induced Treg cells resisted apoptosis in treated EAE mice, resulting in alleviation of clinical EAE severity.

Conclusions/Significance

DNA vaccine in conjunction with FK506 treatment ameliorates EAE by enhancing apoptosis of CD4 T cells and resisting apoptosis of induced Treg cells. Our findings implicate the potential of tolerogenic DNA vaccines for treating MS.  相似文献   

15.
Targeting pathogenic immune cell trafficking poses an attractive opportunity to attenuate autoimmune disorders such as multiple sclerosis (MS). MS and its animal model, experimental autoimmune encephalomyelitis (EAE), are characterized by the immune cells-mediated demyelination and neurodegeneration of the central nervous system (CNS). Our previous study has proven that dietary naringenin ameliorates EAE clinical symptoms via reducing the CNS cell infiltration. The present study examined the beneficial effects of naringenin on maintaining the blood-brain barrier in EAE mice via dietary naringenin intervention. The results showed that naringenin-treated EAE mice had an intact blood-CNS barrier by increasing tight junction-associated factors and decreasing Evans Blue dye in the CNS. Naringenin decreased the accumulation and maturation of conventional dendritic cells (cDCs), CCL19, and CCR7 in the CNS. Also, naringenin blocked the chemotaxis and antigen-presenting function of cDCs that resulted in reducing T-cell secreting cytokines (IFN-γ, IL-17, and IL-6) in the spleen. Importantly, naringenin blocked pathogenic T cells infiltrated into the CNS and attenuates passive EAE. Therefore, by blocking chemokine-mediated migration of DCs and pathogenic T cells into the CNS, naringenin attenuates EAE pathogenesis and might be a potential candidate for the treatment of autoimmune diseases, such as MS and other chronic T-cell mediated autoimmune diseases.  相似文献   

16.
A solvent system that extracts a maximum number of metabolites belonging to diverse chemical classes from complex biofluids, such as plasma, may offer useful inputs to understand the metabolic and physiological state of an individual. The present study compared seven solvent systems for extraction of metabolites from plasma. The extracts were analyzed by mass spectrometry (MS) and MS/MS (MS2) using a quadrupole time-of-flight liquid chromatography/MS system in positive and negative modes of ionization. Metabolites with molecular mass below 400 were identified using Human Metabolome Database MS2 and MS search interfaces. The acetone/isopropanol (2:1) system yielded promising results in positive ionization mode, as the maximum number of MS and MS2 features was detected in the extract. It was found to be superior in extraction of various classes of metabolites, especially organic acids, nucleosides and nucleoside derivatives, and heterocyclic molecules. Glycerophosphocholines in the mass range of 400–700 were found to be efficiently extracted by the methanol/chloroform/water (8:1:1) system. In negative mode as well, the maximum number of MS2 features was detected in methanol/chloroform/water and acetone/isopropanol extracts. The fingerprints of molecular features obtained in the negative and positive modes differed from each other to a significant extent.  相似文献   

17.
Experimental allergic encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system (CNS) which has many clinical and pathological features in common with multiple sclerosis (MS). Comparison of the histopathology of EAE and MS reveals a close similarity suggesting that these two diseases share common pathogenetic mechanisms. Immunologic processes are widely accepted to contribute to the initiation and continuation of the diseases and recent studies have indicated that microglia, astrocytes and the infiltrating immune cells have separate roles in the pathogenesis of the MS lesion (1,2). The role of cytokines as important regulatory elements in these immune processes has been well established in EAE and the presence of cytokines in cells at the edge of MS lesions has also been observed (3–7). However, the role of chemokines in the initial inflammatory process as well as in the unique demyelinating event associated with MS and EAE has only recently been examined. A few studies have detected the transient presence of selected chemokines at the earliest sign of leukocyte infiltration of CNS tissue and have suggested astrocytes as their cellular source (8–10). Based on these studies, chemokines have been postulated as a promising target for future therapy of CNS inflammation. This review summarizes the events that occur during the inflammatory process in EAE and discusses the roles of cytokine and chemokine expression by the resident and infiltrating cells participating in the process. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

18.
F Mei  S Guo  Y He  L Wang  H Wang  J Niu  J Kong  X Li  Y Wu  L Xiao 《PloS one》2012,7(8):e42746
Quetiapine (Que), a commonly used atypical antipsychotic drug (APD), can prevent myelin from breakdown without immune attack. Multiple sclerosisis (MS), an autoimmune reactive inflammation demyelinating disease, is triggered by activated myelin-specific T lymphocytes (T cells). In this study, we investigated the potential efficacy of Que as an immune-modulating therapeutic agent for experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. Que treatment was initiated on the onset of MOG(35-55) peptide induced EAE mice and the efficacy of Que on modulating the immune response was determined by Flow Cytometry through analyzing CD4(+)/CD8(+) populations and the proliferation of effector T cells (CD4(+)CD25(-)) in peripheral immune organs. Our results show that Que dramatically attenuates the severity of EAE symptoms. Que treatment decreases the extent of CD4(+)/CD8(+) T cell infiltration into the spinal cord and suppresses local glial activation, thereby diminishing the loss of mature oligodendrocytes and myelin breakdown in the spinal cord of EAE mice. Our results further demonstrate that Que treatment decreases the CD4(+)/CD8(+) T cell populations in lymph nodes and spleens of EAE mice and inhibits either MOG(35-55) or anti-CD3 induced proliferation as well as IL-2 production of effector T cells (CD4(+)CD25(-)) isolated from EAE mice spleen. Together, these findings suggest that Que displays an immune-modulating role during the course of EAE, and thus may be a promising candidate for treatment of MS.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号