首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is concerned with the co-production of alkaline proteases and thermostable α-amylase by some feather-degrading Bacillus strains: B. mojavensis A21, B. licheniformis NH1, B. subtilis A26, B. amyloliquefaciens An6 and B. pumilus A1. All strains produced both enzymes, except B. pumilus A1, which did not exhibit amylolytic activity. The best enzyme co-production was obtained by the NH1 strain when chicken feathers were used as nitrogen and carbon sources in the fermentation medium. The higher co-production of both enzymes by B. licheniformis NH1 strain was achieved in the presence of 7.5 g/l chicken feathers and 1 g/l yeast extract. Strong catabolic repression on protease and α-amylase production was observed with glucose. Addition of 0.5% glucose to the feather medium suppressed enzyme production by B. licheniformis NH1. The growth of B. licheniformis NH1 using chicken feathers as nitrogen and carbon sources resulted in its complete degradation after 24 h of incubation at 37°C. However, maximum protease and amylase activities were attained after 30 h and 48 h, respectively. Proteolytic activity profiles of NH1 enzymatic preparation grown on chicken feather or casein-based medium are different. As far as we know, this is the first contribution towards the co-production of α-amylase and proteases using keratinous waste. Strain NH1 shows potential use for biotechnological processes involving keratin hydrolysis and industrial α-amylase and proteases co-production. Thus, the utilization of chicken feathers may result in a cost-effective process suitable for large-scale production.  相似文献   

2.
【背景】碱性蛋白酶是工业用酶中占比最大的酶类,广泛应用于清洁、食品、医疗等行业。近期研究发现碱性蛋白酶在生产生物活性肽方面有巨大潜力,这将进一步拓宽其在保健食品领域中的应用。【目的】利用枯草芽孢杆菌异源表达地衣芽孢杆菌来源的碱性蛋白酶SubC。【方法】通过筛选3种枯草芽孢杆菌宿主菌株(Bacillus subtilis 1A751、MA07、MA08)和6种信号肽(AmyE、AprE、NprE、Pel、YddT、YoqM),同时优化诱导剂浓度、发酵培养基和发酵时长,最终得到最优重组菌株MA08-AmyE-subCopt。【结果】重组菌株MA08-AmyE-subCopt的胞外酶活力为3.33×103 AU/mL,胞外蛋白分泌量为胞内可溶蛋白表达量的4倍,与携带野生型信号肽的对照组菌株WT相比,酶活提高了73.4%。【结论】异源碱性蛋白酶SubC在枯草芽孢杆菌中成功表达,为碱性蛋白酶SubC的表达和在保健食品领域的工业化应用提供了理论基础。  相似文献   

3.
One of the most common dyeing problems of textile industries is uneven and faulty dyeing over the finished quality of fabrics due to different reasons. These problems are usually tackled through chemical degradation in which uneven and faulty dye is removed from the surface of fiber but fabric quality is compromised. Chemical process also reduces the strength of the fabric and durability of textile material by reduction in reactive dye ability. The fabric cannot be reused due to the reduced strength. To overcome above mentioned problem, biological method of stripping in which enzymes produced by different micro-organisms are used. This process has no harmful effect on the fabric and is safe for environment. In this research work reactive blue 21 dye with 0.5, 2 and 4% shade strengths was used to dye cotton fabric. The Ganoderma lucidum fungal strains were mutated by UV mutagen, and five were selected for further processing. These mutant strains were grown at temperature ranges (20 °C to 40 °C); pH(3–5); inoculum size(1–5 mL) and fermentation time (3–15 days) . The required nutrients media to produce the ligninolytic enzymes was added to the flask. The strain which gave the fast decolourization results was selected for further optimization. Optimization was done by observing the variables: incubation time 12 days, pH 4, temperature 30 °C, and inoculum size 3 mL by applying Response Surface Methodology (RSM) in Central Composite Design (CCD). During the process of fabric color stripping, the enzyme assay revealed that the respective mutant UV-60 strain produced active enzymes with their Vmax, Mnp (427U/mL), LiP (785U/mL), and Lac (75 U/mL) enzymes decolorized 89% of the dye which is 25% more than the parent strain and also the production of enzyme is Mnp (344U/mL), LiP (693U/mL), and Lac (59 U/mL) enzymes which is lower than mutant strain.  相似文献   

4.
冯璨  马香  刘柱  李宏  李娟娟  彭欣  唐燕琼 《微生物学通报》2022,49(10):4291-4304
【背景】微生物蛋白酶在工业生物技术上具有广阔的应用前景。在微生物蛋白酶中,碱性蛋白酶占全球酶总产量的50%以上,获取产碱性蛋白酶的新微生物资源意义重要。【目的】在海南近海贝类养殖基地海泥中筛选获得高产碱性蛋白酶的菌株,对其生长特性进行探究并优化菌株产酶条件,获得新的蛋白酶生产资源。【方法】以酪素培养基为筛选培养基,采用形态学结合系统发育分析鉴定菌株,通过响应面实验优化菌株的产酶条件。【结果】筛选获得一株高产碱性蛋白酶的菌株F3,鉴定为粘质沙雷氏菌(Serratia marcescens)。菌株在最优产酶条件下发酵酶活达到(339.36±4.30) U/mL。【结论】筛选获得的菌株粘质沙雷氏菌F3有较好的产碱性蛋白酶的能力。  相似文献   

5.
《Process Biochemistry》2004,39(11):1331-1339
Bacillus subtilis PE-11 cells were immobilized in calcium alginate and used for the production of alkaline protease. The influence of alginate concentration, different cations, concentration of cation, curing time, bead diameter and nutrient strength on alkaline protease production and stability of biocatalyst were investigated. Repeated batch fermentations of immobilized cells in shake flasks were carried out with the optimized parameters such as; 3% alginate, 0.25 M calcium chloride with 1 h curing time, 3.24 mm bead diameter and 0.75% glucose and 0.75% peptone as nutrients. The results indicated that, a good level of enzyme was maintained for a period of about 9 days. The immobilized cells of B. subtilis PE-11 in calcium alginate are more efficient for the production of alkaline protease with repeated batch fermentation.  相似文献   

6.
Although one of the major factors limiting the application of Bacillus subtilis as an expression host has been its production of at least eight extracellular proteases, researchers have also noticed that some proteases benefited the secretion of foreign proteins at times. Therefore, to maximize the yield of a foreign protein, the proteases should be selectively inactivated. This raises a new question that how to identify the favorable and unfavorable proteases for a target protein. Here, an evaluation system containing nine mutant strains of B. subtilis 168 was developed to address this question. The mutant strain PD8 has all the eight proteases inactivated whereas each of the other eight mutant strains expresses only one kind of these eight proteases. The target protein is secreted in these nine mutant strains; if the production of target protein in a mutant strain is higher than that in strain PD8, the corresponding protease is regarded as favorable. Accordingly, the optimal protease-deficient host is constructed through inactivating the unfavorable proteases. The effectiveness of this system was confirmed by expressing three foreign proteins. This study provides a strategy for improving the secretion of a foreign protein in B. subtilis through tailoring a personalized protease-deficient host.  相似文献   

7.

Bacillusfirmus strain 37 produces the cyclomaltodextrin glucanotransferase (CGTase) enzyme and CGTase produces cyclodextrins (CDs) through a starch cyclization reaction. The strategy for the cloning and expression of recombinant CGTase is a potentially viable alternative for the economically viable production of CGTase for use in industrial processes. The present study used Bacillus subtilis WB800 as a bacterial expression host for the production of recombinant CGTase cloned from the CGTase gene of B. firmus strain 37. The CGTase gene was cloned in TOPO-TA® plasmid, which was transformed in Escherichia coli DH5α. The subcloning was carried out with pWB980 plasmid and transformation in B. subtilis WB800. The 2xYT medium was the most suitable for the production of recombinant CGTase. The enzymatic activity of the crude extract of the recombinant CGTase of B. subtilis WB800 was 1.33 µmol β-CD/min/mL, or 7.4 times greater than the enzymatic activity of the crude extract of CGTase obtained from the wild strain. Following purification, the recombinant CGTase exhibited an enzymatic activity of 157.78 µmol β-CD/min/mL, while the activity of the CGTase from the wild strain was 9.54 µmol β-CD/min/mL. When optimal CDs production conditions for the CGTase from B. firmus strain 37 were used, it was observed that the catalytic properties of the CGTase enzymes were equivalent. The strategy for the cloning and expression of CGTase in B. subtilis WB800 was efficient, with the production of greater quantities of CGTase than with the wild strain, offering essential data for the large-scale production of the recombinant enzyme.

  相似文献   

8.

Background  

Many researchers have reported on the optimization of protease production; nevertheless, only a few have reported on the optimization of the production of organic solvent-tolerant proteases. Ironically, none has reported on thermostable organic solvent-tolerant protease to date. The aim of this study was to isolate the thermostable organic solvent-tolerant protease and identify the culture conditions which support its production. The bacteria of genus Bacillus are active producers of extra-cellular proteases, and the thermostability of enzyme production by Bacillus species has been well-studied by a number of researchers. In the present study, the Bacillus subtilis strain Rand was isolated from the contaminated soil found in Port Dickson, Malaysia.  相似文献   

9.
While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production.  相似文献   

10.
Effects of degU32 (Hy), degR genes from Bacillus subtilis 168 and deg Qa gene from Bacillus amyloliquefaciens on Bacillus subtilis Ki-2-132 cell growth, sporulation and protease fermentation were investigated by introducing these genes into B. subtilis Ki-2-132 chromosome and/or cytoplasm. Although the genes come from different species and strains, they showed pleiotropic effects in B. subtilis Ki-2-132. B. subtilis Ki-2-132degU32 (Hy) showed increased protease production, and when cooperating with deg Qa either in plasmid or in chromosome, further altered cell growth, increased protease production and affected the spore formation in a glucose and dosage dependent manner. By contrast, degR did not significantly affect the protease productivity in degU32 (Hy) mutant, consisting with that DegR was used to stabilise DegU-phosphate, which in degU32 (Hy) strain no longer further amplify the DegU-phosphate effect.  相似文献   

11.

Background

Alkaline amylase has significant potential for applications in the textile, paper and detergent industries, however, low yield of which cannot meet the requirement of industrial application. In this work, a novel ARTP mutagenesis-screening method and fermentation optimization strategies were used to significantly improve the expression level of recombinant alkaline amylase in B. subtilis 168.

Results

The activity of alkaline amylase in mutant B. subtilis 168 mut-16# strain was 1.34-fold greater than that in the wild-type, and the highest specific production rate was improved from 1.31 U/(mg·h) in the wild-type strain to 1.57 U/(mg·h) in the mutant strain. Meanwhile, the growth of B. subtilis was significantly enhanced by ARTP mutagenesis. When the agitation speed was 550 rpm, the highest activity of recombinant alkaline amylase was 1.16- and 1.25-fold of the activities at 450 and 650 rpm, respectively. When the concentration of soluble starch and soy peptone in the initial fermentation medium was doubled, alkaline amylase activity was increased 1.29-fold. Feeding hydrolyzed starch and soy peptone mixture or glucose significantly improved cell growth, but inhibited the alkaline amylase production in B. subtilis 168 mut-16#. The highest alkaline amylase activity by feeding hydrolyzed starch reached 591.4 U/mL, which was 1.51-fold the activity by feeding hydrolyzed starch and soy peptone mixture. Single pulse feeding-based batch feeding at 10 h favored the production of alkaline amylase in B. subtilis 168 mut-16#.

Conclusion

The results indicated that this novel ARTP mutagenesis-screening method could significantly improve the yield of recombinant proteins in B. subtilis. Meanwhile, fermentation optimization strategies efficiently promoted expression of recombinant alkaline amylase in B. subtilis 168 mut-16#. These findings have great potential for facilitating the industrial-scale production of alkaline amylase and other enzymes, using B. subtilis cultures as microbial cell factories.
  相似文献   

12.
Proteases of the genus Bacillus. II. Alkaline proteases   总被引:5,自引:0,他引:5  
The alkaline proteases of B. subtilis NRRL B3411, B. pumilis, and B. licheniformis have been isolated by fractionation followed by ion exchange chromatography and their homogeneity demonstrated. General enzyme properties of the B. sublitis NRRL B3411 alkaline protease have been studied and attempts made to differentiate a group of alkaline proteases. It is clear that the alkaline proteases known as Subtilisins or Subtilopeptidases are not, exclusive to B. subtilis but are common to many Bacilli and therefore the generic name Bacillopeptidases has been proposed. It is clear too that on the basis of the effect of pH on activity, amino acid composition, esterase activity, and immunological cross-reactions the Bacillopeptidases can be divided into two groups or types: (a) Bacillopcptidase A (Subtilisin A or Subtilopeptidase A) which includes Subtilisin Carlsberg, B. licheniformis, and B. pumilis alkaline proteases; ( b ) Bacillopeptidase B (Subtilisin B or Subtilopeptidase B) which includes B subtilis NRRL B3411, Subtilisin Novo, Subtilisin BPN' (Nagarse), alkaline protease Daiwa Kasei, and (probably) B. subtilis var. amylosacchariticus. At present, no further differentiation is possible and whether or not the enzymes within group A or B are identical remains an open question. Methods for examination of crude enzyme mixtures or fermentation beers are described and from the examination of a number of crude enzymes and fermentation beers it appears that organisms producing Bacillopeptidase A do not produce neutral protease or amylase, while organisms producing Bacillopeptidase B produce a neutral protease and amylase as well.  相似文献   

13.
The purpose of this investigation was to study the effect ofBacillus subtilis PE-11 cells immobilized in various matrices, such as calcium alginate, k-Carrageenan, ployacrylamide, agar-agar, and gelatin, for the production of alkaline protease. Calcium alginate was found to be an effective and suitable matrix for higher alkaline protease productivity compared to the other matrices studied. All the matrices were selected for repeated batch fermentation. The average specific volumetric productivity with calcium alginate was 15.11 U/mL/hour, which was 79.03% higher production over the conventional free-cell fermentation. Similarly, the specific volumetric productivity by repeated batch fermentation was 13.68 U/mL/hour with k-Carrageenan, 12.44 U/mL/hour with agar-agar, 11.71 U/mL/hour with polyacrylamide, and 10.32 U/mL/hour with gelatin. In the repeated batch fermentations of the shake flasks, an optimum level of enzyme was maintained for 9 days using calcium alginate immobilized cells. From the results, it is concluded that the immobilized cells ofB subtilis PE-11 in calcium alginate are more efficient for the production of alkaline protease with repeated batch fermentation. The alginate immobilized cells ofB subtilis PE-11 can be proposed as an effective biocatalyst for repeated usage for maximum production of alkaline protease. Published: October 21, 2005  相似文献   

14.
Microbial proteolytic enzyme is one of the most important industrial enzymes that hydrolyze proteins. The applications of proteases under harsh industrial conditions like alkalinity, salinity, and temperature make them inactive and unstable. This suggests need for search for novel microbial sources for protease production having diverse properties. For this purpose, 54 bacterial strains were isolated from different salt mines of Karak, Pakistan and were investigated for their proteolytic activity on skim milk agar plates. The strain which showed maximum protease activity was characterized by 16S rRNA gene sequence analysis. Furthermore, growth and protease production was optimized for the characterized bacteria under different physical factors, i.e., pH, temperature and salinity. The isolate BLK-1.5 exhibited strong protease production and was identified as Bacillus subtilis based on biochemical characteristics and 16S rRNA gene sequence analysis. Maximum production of protease was recorded at pH 10, 37 °C and 7 % (w/v) NaCl. Molecular weight of proteases was estimated 38 kDa and its optimum activity was observed at pH 10, 50 °C and 2 % (w/v) NaCl. In conclusion, the protease produced by halo-tolerant Bacillus subtilis strain BLK-1.5 has diverse characteristics and could be useful in various industrial applications.  相似文献   

15.
Bacillus subtilis, a spore-forming industrial bacterium, is widely used for production of enzymes and valuable chemicals. The spore-formation, however, always results in remarkably reduced cell-density, thereby reducing product yield. Here, we constructed different non-spore-forming B. subtilis mutants via single-gene regulation. During the three spore-forming stages: signal sensing, transduction, and sporulation, we found that deleting only a single gene of sporulation, i.e. spo0A, spoIIIE, and spoIVB, can completely block the spore generation. Interestingly, the engineered non-sporulating mutants exhibited physiological heterogeneity and distinct synthetic capabilities. The spo0A-null spore-free mutant displayed remarkably high enzyme production capacity, such as 194% enhance amylase production. However, the spoIVB-null non-spore-forming mutant was especially efficient in producing secondary metabolites, such as surfactin; its flask titer increased significantly to 16.7 g/L, with the overexpression and Leu addition strategy. Our results offer a new strategy for re-modeling B. subtilis to further improve its fermentation efficiency and application.  相似文献   

16.
A fibrinolytic protease secreting producing Bacillus amyloliquefaciens strain KJ10 was initially screened from the fermented soybean. Maximum productivity was obtained in the culture medium after 40 h incubation, 34 °C incubation temperature at pH 8.0. Fibrinolytic protease production was enhanced in the culture medium with 1% sucrose (3712 ± 52 U/mL), 1% (w/v) yeast extract (3940 ± 28 U/mL) and 0.1% MgSO4 (3687 ± 38 U/mL). Enzyme was purified up to 22.9-fold with 26%recovery after Q-Sepharose HP column chromatography. After three steps purification, enzyme activity was 1606U/mg and SDS-PAGE analysis revealed 29 kDa protein and enzyme band was detected by zymograpy. Enzyme was highly active at pH 8.0, at wide temperature ranges (40 °C ? 55 °C) and was activated by Mn2+ (102 ± 3.1%) and Mg2+ (101.4 ± 2.9%) ions. The purified fibrinolytic enzyme was highly specific against N-Suc-Ala-Ala-Pro-Phe-pNA (189 mmol/min/mL) and clot lytic activity reached 28 ± 1.8% within 60 minin vitro. The purified fibrinolytic enzyme showed least erythrocytic lysis activity confirmed safety to prevent various health risks, including hemolytic anemia. Based on this study, administration of fibrinolytic enzyme from B. amyloliquefaciens strain KJ10 is safe for clinical applications.  相似文献   

17.
《Process Biochemistry》2014,49(4):660-667
This study investigated the novel use of scouring pad cubes as a support matrix for immobilization of fungal cell to enhance the pectinase production. Nylon scouring pad cubes were used for immobilized Aspergillus niger HFD5A-1 cells for pectinase production in flask submerge fermentation system. The enzyme activity of immobilized cell in scouring pad cubes gave higher activity compared to free cells. Various physical parameters for culture condition were studied to evaluate its effects on pectinase production. The maximum enzyme activity obtained was 11.05 U/mL on the 6th day of cultivation after using the optimized parameters of 6 scouring pad cubes, 1 × 107 spores/mL of inoculum size, agitation speed of 150 rpm and incubated at 30 °C. The use of nylon scouring pad cubes gave an increment of about 335.0% of pectinase production (11.05 U/mL) compared to free cells (2.54 U/mL). The results therefore show scouring pad cubes could be a favorable carrier to immobilize the fungal cells for higher enzyme production in submerged fermentation.  相似文献   

18.
In order to achieve the optimal number of colony forming units and a high level of antifungal metabolites synthesis, we carried out the periodic cultivation of the Bacillus subtilis BZR 336 g and Bacillus subtilis BZR 517 strains at various pH and temperature levels. In the experiment for determining the optimal temperature, the maximum titer of B. subtilis BZR 336 g bacterium (1.6–1.7 × 109 CFU/ml) was recorded at a cultivation temperature of 20–25 °C. For B. subtilis BZR 517 strain, the temperature turned out to be optimal at 30 °C: the titer was 8.9 × 108 CFU/ml. The maximum antifungal activity of B. subtilis BZR 336 g strain against the test culture of Fusarium oxysporum var. orthoceras was observed at a cultivation temperature of 20–25 °C; for B. subtilis BZR 517 strain, 25–30 °C. When determining the optimal pH level, it was found that a high titer of B. subtilis BZR 336 g strain cells was determined at pH 8.0 (2.7 × 109 CFU/ml), for B. subtilis BZR 517 strain it was at pH 6.0–8.0 (1.0 × 109 CFU/ml). The maximum antifungal activity was noted with the same indicators. Chromatographic and bioautographic analyses suggest that the synthesized antifungal metabolites belong to surfactin and iturin A. The data obtained in this research can be used in the development of the technology for the production of effective biofungicides to protect crops against Fusarium pathogens.  相似文献   

19.
A protease has been isolated by affinity chromatography from culture filtrates of a strain of Streptococcus faecalis previously shown to produce a flbrinolytic enzyme. The pH optimum, molecular weight, metal ion chelator sensitivity, and peptidase specificity place this enzyme in the class of bacterial neutral metalloendopeptidase typified by thermolysin and the Bacillus subtilis neutral proteases. Differences with respect to chemical modification and thermal stability exist between the S. faecalis enzyme and the latter proteases. The S. faecalis enzyme (designated EM 19000) renders fibrinogen incoagulable by degradation of the B (β) chains.  相似文献   

20.
Two strains of Bacillus, one from a culture collection (B. subtilis ATCC 6633) and a wild type (Bacillus sp. UFLA 817CF) isolated during coffee fermentation in the south of Minas Gerais, Brazil, were evaluated in relation to secretion of alkaline proteases. The strains were grown on nutrient broth, nutrient broth with sodium caseinate and nutrient broth with three different concentrations of cheese whey powder for 72 h. Samples were collected at 24-h intervals to evaluate the proteolytic activity, protein content and cell population. Maximum protease activity was observed after 24-h growth for both the microorganisms, a period that coincided with the end of the exponential phase. The specific activity values were, respectively, 839.8 U/mg for B. subtilis ATCC 6633 and 975.9 U/mg for Bacillus sp. UFLA 817CF. The 60% saturation presented the best results for specific protease activity in all the growth culture media tested with B. sp. UFLA 817CF. Bacillus sp. UFLA 817CF showed highest enzymatic activity at pH 9.0 and 40°C in the three culture media tested. The protease obtained from culture of the wild Bacillus strain presented stability at pH 7.0 and considerable heat stability at 40°C and 50°C, and could be an alternative for the industry to utilize cheese whey to produce proteolytic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号