首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic amendments and botanical extracts are considered as some of the eco-friendly alternatives to chemical pesticide in suppressing plant pathogenic nematodes (PPN). Root-knot nematode (RKN) is the most important group of PPN distributed globally causing both qualitative and quantitative damage to many crops. Vermicompost and biogas digestate (BD) are two forms of organic amendments reported to have potential to limit RKN infestation. Likewise, marigold (Tagates spp.) and cabbage (Brassica oleracea) are two widely studied botanicals having shown their potential to control RKN. However, there was not much in vitro research related to organic amendments and botanicals targeting a particular species of RKN to observe their nematicidal effect. An in vitro experiment was undertaken to evaluate the effect of these organic amendments and botanical extracts at different concentrations (10.0%, 25.0%, 50.0% and 100.0%) on the hatching and mortality of Meloidogyne javanica at different time spans. Mortality of J2 and inhibition of hatching of egg mass of M. javanica differed significantly (p < 0.0001) among the interaction effect of treatments and incubation time for both organic amendments and botanical extracts. Findings of this experiment indicated that potentiality for increasing mortality and inhibition of hatching was higher and steadier in botanical extracts than those of organic amendments.  相似文献   

2.
Summary Growth response ofRhizoctonia solani Kühn, the damping-off fungus, to metabolites of selected antagonistic rhizospheric bacteria and fungi of some Egyptian cotton varieties, namely, two strains ofBacillus subtilis Cohn,Aspergillus terreus Thom, andAspergillus flavus Link produced in culture media containing nitrate- or ammonium-nitrogen sources, proved the potency ofB. subtilis metabolites in inhibitingR. solani mycelial growth whether from nitrate- or ammonium-nitrogen culture media. Metabolite filtrates ofB. subtilis (II) are more potent than those ofB. subtilis (I). Increasing concentration of bacterial metabolite filtrates resulted in a decreased mycelial dry weight ofR. solani. The bacterial inhibitory factor forR. solani mycelial growth is partially affected by heat. Metabolite filtrates ofA. terreus from nitrate-nitrogen are slightly more potent than from ammonium-nitrogen culture media while an opposite relation is evident withA. flavus metabolites. Growth responses ofR. solani to different experimental dilutions of metabolite filtrates ofA. terreus andA. flavus proved the intervention of the nutritive factor in witholding growth of the damping-off fungus.  相似文献   

3.
Thirty-one endophytic bacteria isolated from healthy leaves of Centella asiatica were screened in vitro for their ability to reduce the growth rate and disease incidence of Colletotrichum higginsianum, a causal agent of anthracnose. Isolates of Cohnella sp., Paenibacillus sp. and Pantoea sp. significantly stimulated the growth rate of C. higginsianum MUCL 44942, while isolates of Achromobacter sp., Acinetobacter sp., Microbacterium sp., Klebsiella sp. and Pseudomonas putida had no influence on this plant pathogen. By contrast, Bacillus subtilis BCA31 and Pseudomonas fluorescens BCA08 caused a marked inhibition of C. higginsianum MUCL 44942 growth by 46 and 82 %, respectively. Cell-free culture filtrates of B. subtilis BCA31 and P. fluorescens BCA08 were found to contain antifungal compounds against C. higginsianum MUCL 44942. Inoculation assays on in vitro-cultured plants of C. asiatica showed that foliar application of B. subtilis BCA31, three days before inoculation with C. higginsianum MUCL 44942, significantly reduced incidence and severity of the disease. The role of endophytic bacteria in maintaining the apparent inactivity of C. higginsianum MUCL 44942 in C. asiatica grown in the wild is discussed.  相似文献   

4.
A microplot study under field conditions was carried out during 2 consecutive years to assess the effect of root-knot nematode infection (2,000 Meloidogyne incognita eggs/kg soil) on three winter ornamental plants: hollyhock (Althea rosea), petunia (Petunia hybrida), and poppy (Papaver rhoeas). Effects of root-dip treatment with the biocontrol agents Pochonia chlamydosporia, Bacillus subtilis, and Pseudomonas fluorescens and the nematicide fenamiphos were tested. The three ornamental species were highly susceptible to M. incognita, developing 397 and 285 (hollyhock), 191 and 149 (petunia), and 155 and 131 (poppy) galls and egg masses per root system, respectively, and exhibited 37% (petunia), 29% (poppy), and 23% (hollyhock) (P = 0.05) decrease in the flower production. Application of fenamiphos, P. chlamydosporia, P. fluorescens, and B. subtilis suppressed nematode pathogenesis (galls + egg masses) by 64%, 37%, 27%, and 24%, respectively, leading to 14% to 29%, 7% to 15%, 14% to 36%, and 7% to 33% increase in the flower production of the ornamental plants, respectively. Treatment with P. fluorescens also increased the flowering of uninfected plants by 11% to 19%. Soil population of M. incognita was decreased (P = 0.05) due to various treatments from 2 months onward, being greatest with fenamiphos, followed by P. chlamydosporia, B. subtilis, and P. fluorescens. Frequency of colonization of eggs, egg masses, and females by the bioagents was greatest by P. chlamydosporia, i.e., 25% to 29%, 47% to 60%, and 36% to 41%, respectively. Colonization of egg masses by B. subtilis and P. fluorescens was 28% to 31% and 11% to 13%, respectively, but the frequency was 0.3% to 1.3% in eggs. Rhizosphere population of the bioagents was increased (P = 0.05) over time, being usually greater in the presence of nematode.  相似文献   

5.
Bacterial biological control agents (BCAs) are largely used as live products to control plant pathogens. However, due to variable environmental and ecological factors, live BCAs usually fail to produce desirable results against foliar pathogens. In this study, we investigated the potential of cell-free culture filtrates of 12 different bacterial BCAs isolated from flower beds for controlling foliar diseases caused by Alternaria spp. In vitro studies showed that culture filtrates from two isolates belonging to Bacillus subtilis and Bacillus amyloliquefaciens displayed strong efficacy and potencies against Alternaria spp. The antimicrobial activity of the culture filtrate of these two biological control agents was effective over a wider range of pH (3.0 to 9.0) and was not affected by autoclaving or proteolysis. Comparative liquid chromatography-mass spectrometry (LC-MS) analyses showed that a complex mixture of cyclic lipopeptides, primarily of the fengycin A and fengycin B families, was significantly higher in these two BCAs than inactive Bacillus spp. Interaction studies with mixtures of culture filtrates of these two species revealed additive activity, suggesting that they produce similar products, which was confirmed by LC-tandem MS analyses. In in planta pre- and postinoculation trials, foliar application of culture filtrates of B. subtilis reduced lesion sizes and lesion frequencies caused by Alternaria alternata by 68 to 81%. Taken together, our studies suggest that instead of live bacteria, culture filtrates of B. subtilis and B. amyloliquefaciens can be applied either individually or in combination for controlling foliar diseases caused by Alternaria species.  相似文献   

6.
The root-knot nematode Meloidogyne spp. includes important plant pathogens worldwide. This study has considered nematode Meloidogyne javanica second stage larvae activity in the extracts of Pseudomonas fluorescens strains UTPF5 and cytotoxic effect of the strain on the nematode. The movement of second stage larvae of nematodes in water agar medium at four concentrations of bacterial extracts and second stage larvae mortality rate of hatching nematode and bacterial strains in vitro were affected. Different concentrates of the strain UTPF5 effect nematode larvae movement and disposal of the same. Bacterial extraction kills almost 100% of the larvae hatching after 24?h and a complete ban on egg hatch of biocontrol nematodes and nematode indicated that root-knot nematode larvae movement on the right attract the bacteria P. fluorescens to extract in the first place.  相似文献   

7.
A gene encoding chitinase from B. subtilis has been isolated after optimization of PCR conditions. It was cloned with two different prometers, T7 promoter of the pJET1.2/blunt cloning vector and the SP6 promoter of pGEM®-T Easy vector. After transforming E. coli DH5α, two transformants were selected, CHI-NRC-4 from the first vector and T-CHI-NRC-6 from the second vector, and used for further studies. The complete CDS sequence of chitinase gene was determined and submitted to GenBank with the accession number KX268692.1. Culture supernatants of E. coli (CHI-NRC-4) and E. coli (T-CHI-NRC-6) were investigated for their inhibitory effect on M. javanica egg hatch under laboratory conditions. Result showed up to 96% inhibition in egg hatching due to both E. coli transformants as compared to control which reflect the same expression efficiency of both used prometers. A greenhouse experiment was carried out to evaluate the nematicidal effect of culture supernatants of the two transformts E. coli (CHI-NRC-4) and E. coli (T-CHI-NRC-6) against M. javanica infected eggplant. Obtained results showed a significant reduction in nematode population in soil and roots and enhancement in eggplant growth parameters as compared to control.  相似文献   

8.
The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.  相似文献   

9.
Culture filtrates of Beauveria bassiana at different concentrations were evaluated for nematicidal activity against the northern root knot nematode (Meloidogyne hapla); bioassays included egg hatching, mortality and infectivity on tomato plants in pots under glasshouse conditions. The percentage mortality and inhibition of hatching of root-knot nematode were directly proportional to the concentration of culture filtrates of B. bassiana. Soil drenching with culture filtrate of B. bassiana significantly reduced nematode population densities in soil and in the roots and subsequent gall formation and egg-mass production by M. hapla under glasshouse conditions.  相似文献   

10.
The plant growth promoting rhizobacterium, Pseudomonas fluorescens strains PF1, TDK1, and PY15 were evaluated individually and in combinations for their efficacy against root-knot nematode, Meloidogyne graminicola, in rice plants under in vitro, glass house and field conditions. Culture filtrates of these strains either individually or as mixture inhibited egg hatching and caused mortality of juveniles of M. graminicola in vitro. The efficacy was more pronounced when filtrates of the strain were used as mixtures than as individual strains. Mixtures of P. fluorescens strains signficantly reduced M. graminicola infestation when applied as bacterial suspensions through seed treatment. The higher activity of peroxidase and chitinase enzymes was observed in plants treated with P. fluorescens mixtures than the plants treated with individual strains, two strain mixtures and untreated control. In field trials on rice, talc formulations of the P. fluorescens strains individually as well as mixtures were evaluated as seed treatment, soil treatment and combination of both. A mixture of the three strains was the most effective when applied either as seed + soil treatment or as seed treatment alone. The introduced P. fluorescens strains survived endophytically on rice roots. The application of the P. fluorescens mixture PF1 + TDK1 + PY15 in seed + soil treatment resulted in higher grain yield which provided a 27.3% increase over the control followed by P. fluorescens mixture PF1 + TDK1 + PY15 in seed treatment alone, which increased the grain yield of rice by 24.7% compared to the control.  相似文献   

11.
In a mixed batch culture, Alcaligenes xylosoxidans subsp. xylosoxidans 260 transformed maleic acid into malic acid. Bacillus subtilis 271 used malic acid as a substrate, thus stimulating further transformation of maleic acid. Both bacterial cultures dissociated with the formation of R, S, and M forms. At a concentration of 5.0 g/l, maleic acid was utilized maximally by RS and SS forms of the association A. xylosoxidans and B. subtilis. At concentrations 15.0 and 25.0 g/l, maleic acid was utilized maximally by SS and MS forms of the mixed culture, respectively. Association of bacteria A. xylosoxidans and B. subtilis was not stable under flow conditions of water.  相似文献   

12.
The root-galling index of tomatoes inoculated with Meloidogyne javanica was decreased 70% when collagen was used as a soil amendment (0.1% w/w) and 90% when the amendment was supplemented with the collagenolytic fungus Cunninghamella elegans. The root-galling index was reduced 80% when the fungus was homogenized in collagen culture medium and added to soil without collagen supplement. Culture filtrates of the fungus C. elegans, grown on collagen as a single source of carbon and nitrogen, immobilized M. javanica second-stage juveniles and inhibited egg hatch. Root galling was reduced when tomato plants were inoculated with filtrate-treated juveniles. Culture filtrates reduced the motility of Rotylenchulus reniformis and Xiphinema index, but they had less effect on Anguina tritici and almost no effect on Ditylenchus dipsaci. Cunninghamella elegans had collagenolytic, elastolytic, keratinolytic, and nonspecific proteolytic activities when grown on collagen media, but only chitinolytic activity when grown on chitin media.  相似文献   

13.
The purpose of this study was to investigate the diversity of cultivable phosphate solubilising (PSB) and total bacteria originated from 384 rhizospheric acidic soils samples of tea plants grown at 32 locations. Over 900 rhizoplane bacteria were randomly selected from agar-solidified trypticase soy broth, and identified using fatty acid methyl ester (FAME) profiles. Based on FAME profiles, 53 bacterial genera were identified with a similarity index >0.3, but 60.3% of the identified isolates belonged to five genera: Bacillus (34.6%), Pseudomonas (8.9%), Stenotrophomonas (6.1%), Paenibacillus (5.9%) and Arthrobacter (4.8%). The bacilli group comprised many different species, with the most abundant being B. cereus, B. megaterium and B. sphaericus. The main identified Pseudomonads included P. fluorescens, P. putida, and P. alcaligenes. About 30.4% of the bacterial isolates could not be classified to genus since their similarity indices were <0.3 indicating no close matches. Most of the total and P-solubilizing bacteria isolated were Gram positive (61.3 and 52.3%), and Gram negative constituted only 38.7 and 47.7%. Out of the 214 PSB from a pool of 506 bacterial isolates recovered on the selective media from the rhizosphere of tea, 74 of them were characterized by carbon sources using BIOLOGM GN2 and GP2 plates. Bacillus, Pseudomonas, Paenibacillus and Stenotrophomonas genera were the most prominent P-solubilizing groups in the rhizosphere and soil populations analyzed. B. cereus, P. fluorescens, S. maltophilia, B. megaterium, P. putida, B. sphaericus and Paenibacillus polymyxa were the most frequent P-solubilizing species in the acidic tea rhizosohere soils. Selected Gram-positive PSB appeared to favour carbohydrates, and Gram-negative bacteria appeared to favour carboxylic acids, amino acids and carbohydrates as carbon sources. Selected phosphate solubilizing acid tolerant strains showed high variability in utilizing various carbon sources.  相似文献   

14.
This study examined (1) the effect of the accelerated seed ageing on cucumber germination with treatments: Bacillus subtilis QST713 or Pseudomonas fluorescens CA in 1% methylcellulose and fungicides difenoconazole, carboxin or pyraclostrobin in 5% polyvinyl alcohol, and (2) the impact on disease severity of gummy stem blight (GSB) caused by Didymella bryoniae by the seed treatments and foliar spray application of methylcellulose-formulated B. subtilis or P. fluorescens. Difenoconazole, pyraclostrobin and microorganisms suppressed growth of D. bryoniae in a laboratory dual culture; carboxin had no effect on D. bryoniae growth. Germination of fungicide-treated seed was unaffected by accelerated seed ageing. Greenhouse: GSB disease severity with PVA and non-treated seed was 89% and 84%, respectively, whereas, difenoconazole, carboxin and pyraclostrobin, was significantly reduced, 56%, 53% and 40%, respectively. Germination of Bacillus-treated seed was unaffected by accelerated seed ageing, but was significantly reduced with Pseudomonas-treated seed. GSB disease severity with B. subtilis or P. fluorescens-treated seed was inconsistent; however, foliar spray application of B. subtilis significantly reduced GSB. Accelerated seed ageing exposed a significant negative impact on seed germination with P. fluorescens. Based on the accelerated ageing test, P. fluorescens-treated cucumber seed is detrimental to seed survival and therefore, is not a candidate for biocontrol activities for cucumber requiring seed storage.  相似文献   

15.
The fungus Monilinia vaccinii-corymbosi infects blueberry flowers via the stigma-style ovary pathway to cause mummy berry disease. Previous laboratory experiments documented considerable activity of stigma-applied biofungicides containing the bacteria Bacillus subtilis and, to a lesser extent, Pseudomonas fluorescens against flower infection by the pathogen. However, adequate and targeted delivery of the biocontrol agents to the stigmatic surfaces of open flowers in the field has remained problematic. Here we consider the application of the biofungicides Serenade AS (containing B. subtilis QST713) and BlightBan A506 (containing P. fluorescens A506) to blueberry flowers by air-assisted electrostatic spraying. In laboratory experiments with typical field-use rates, viability of B. subtilis and P. fluorescens was unaffected by different levels of induction-charging voltage (0–1.2 kV) and atomizing pressure (138–276 kPa) applied to an electrostatic spray-charging nozzle, showing that the bacteria in both formulations readily survived exposure to the intense electrical fields and near-sonic atomizing air shear encountered during electrostatic spraying. Electrostatically charged application significantly (P<0.0001) increased deposition of B. subtilis on the stigmatic surfaces of detached blueberry flower clusters by a factor of 4.5 compared with conventional hydraulic spraying; a similar comparison showed that population densities of P. fluorescens on the stigma were increased by a factor of 2.9, but this effect was not statistically significant (P=0.1487). For Serenade, the increased coverage and/or retention on the flower stigma, along with the excellent bacterial survival, portend well for electrostatic application for mummy berry disease control in the field.  相似文献   

16.
Eggplant cultivation is subjected to attacks by numbers of pests and diseases from the nursery stage until harvest. Root-knot nematode (M. javanica) is one of the most significant restrictions in the successful cultivation of eggplant as it damages the crop year-round. One of the most essential classes of plant symbionts is arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB), which significantly impact plant development, feeding, disease tolerance, and resistance to M. javanica. Eggplant seedlings were inoculated with two mycorrhizal fungi, Glomus mosseae (Gm) and Gigaspora gigantea (Gg), together with the phosphate-solubilizing bacteria (PSB) Pseudomonas fluorescens (Pf; ATCC-17400) under the presence of nematodes inoculation of Meloidogyne javanica as 1000 eggs of M. javanica in each pot. Observations were recorded for 9 morphological traits, 6 fruit morphometric traits using Tomato Analyzer (version 4) software program, and 4 fruit biochemical traits. Along with the data recorded for mycorrhization (%), number of galls and reaction to RKN. Plants inoculated with the consortium (Pf + Gm + Gg) performed substantially better for most traits. Furthermore, the eggplant plants treated with consortium developed the highest levels of fruit biochemical content along with the highest level of mycorrhization (68.20%). Except for certain fruit morphometric traits, the treatment containing Pf + Gg outperformed the treatment containing Pf + Gm. Overall, this research showed that AM fungi could be a sustainable solution to the eggplant RKN problem.  相似文献   

17.
Myzus persicae (Sulzer) is a polyphagous aphid that causes chlorosis, necrosis, stunting, and reduce growth rate of the host plants. In this research, the effects of Zinc sulfate and vermicompost (30%), Bacillus subtilis, Pseudomonas fluorescens, Glomus intraradices, G. intraradices × B. subtilis, and G. intraradices × P. fluorescens compared to control was investigated on the growth characters of Capsicum annuum L. and biological parameters of M. persicae. Different fertilizers caused a significant effect on growth characters of C. annuum and biological parameters of M. persicae. The highest plant growth was observed on Zinc sulfate and B. subtilis treated plants, and the lowest was on control. Increase in the amount of specific leaf area (SLA) (0.502 mm2 mg?1) was significantly higher in the B. subtilis than other fertilizer treatments. The longest (10.3 days) and the shortest (5.3 days) developmental times of M. persicae nymphs were observed on 30% vermicompost and Zinc sulfate treatments, respectively. The lowest adult longevity periods of M. persicae (11.2 and 11.3 days) were observed on G. intraradices × B. subtilis and 30% vermicompost treatments, respectively, and the longest ones (16.4 days) on Zinc sulfate. The highest rate of nymphal mortality and the lowest amount of nymphal growth index (NGI) were recorded on 30% vermicompost. The nymphs reared on Zinc sulfate treatment had the lowest rate of nymphal mortality and the highest amount of NGI. Thus, amending the soil with 30% vermicompost had a significantly negative effect on the biological parameters of M. persicae that can be used as an ecological control tactic for this pest.  相似文献   

18.
19.
Aqueous solutions of technical-grade phenamiphos [ethyl 3-methyl-4-(methylthio) phenyl (1-methylethyl) phosphoratnidale] were used in hatching chambers to test, under laboratory tory conditions, the effect of phenamiphos on the hatching and movement of Meloiclogyne javanica and Heterodera schachtii. Hatch of M. javanica and H. schachtii eggs was depressed 70 and 88% by nematicide at 0.48 and 4.80 μg/ml, respectively. The infectivity of second-stage larvae of both species was affected by concentrations as low as 0.01 μg/ml. At least 0.5 μg/ml was required to decrease the movement of larvae of M. javanica and H. schachtii. To decrease the movement of H. schachtii males toward females, 10 μg/ml was required. In a field experiment using a 15% granular formulation, 5 kg/ha a.i. significantly reduced infection of sugarbeet roots by H. schachtii.  相似文献   

20.
The xylanolytic enzymes produced by Trichoderma reesei QM 9414, Aspergillus awamori VTT-D-75028, Fusarium oxysporum VTT-D-80134, Bacillus subtilis ATCC 12711 and Streptomyces olivochromogenes ATCC 21713 differed with respect to β-xylosidase activity and side-group cleaving activities. The highest xylanase activity was produced by T. reesei. All the fungi produced β-xylosidase, whereas in the bacterial culture filtrates β-xylosidase activity was negligible. T. reesei culture filtrate contained all the side-group cleaving activities assayed (acetyl esterase, α-glucuronidase and α-arabinosidase) and those of F. oxysporum and S. olivochromogenes contained esterase. All the side-group cleaving activities were low in the culture filtrates of A. awamori and B. subtilis.The differences between the xylanolytic systems were reflected in the hydrolysis of steamed birchwood hemicellulose. The xylose yields obtained ranged from 0 (with B. subtilis) to 90% (with T. reesei) of the theoretical maximum. The best enzyme for complete hemicellulose hydrolysis was therefore that of T. reesei. However, in some applications in which complete hydrolysis is not needed or in which hydrolysis of cellulose is to be avoided, one of the other xylanases may be more suitable than that of T. reesei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号