首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The increasing clinical importance of infections caused by multidrug resistant Acinetobacter baumannii warrants the development of novel approaches for prevention and treatment. In this context, vaccination of certain patient populations may contribute to reducing the morbidity and mortality caused by this pathogen. Vaccines against Gram-negative bacteria based on inactivated bacterial cells are highly immunogenic and have been shown to produce protective immunity against a number of bacterial species. However, the high endotoxin levels present in these vaccines due to the presence of lipopolysaccharide complicates their use in human vaccination. In the present study, we used a laboratory-derived strain of A. baumannii that completely lacks lipopolysaccharide due to a mutation in the lpxD gene (IB010), one of the genes involved in the first steps of lipopolysaccharide biosynthesis, for vaccination. We demonstrate that IB010 has greatly reduced endotoxin content (<1.0 endotoxin unit/106 cells) compared to wild type cells. Immunization with formalin inactivated IB010 produced a robust antibody response consisting of both IgG1 and IgG2c subtypes. Mice immunized with IB010 had significantly lower post-infection tissue bacterial loads and significantly lower serum levels of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6 compared to control mice in a mouse model of disseminated A. baumannii infection. Importantly, immunized mice were protected from infection with the ATCC 19606 strain and an A. baumannii clinical isolate. These data suggest that immunization with inactivated A. baumannii whole cells deficient in lipopolysaccharide could serve as the basis for a vaccine for the prevention of infection caused by A. baumannii.  相似文献   

2.
Acinetobacter baumannii infections have come to the surface in huge numbers in the recent decades. Furthermore, A. baumannii has adopted great ability to nullify the majority of currently available antibiotics. With the purpose of finding a nontoxic and efficient therapeutic agent, we analyzed the activity of Ellagic acid (EA) against the multidrug-resistant A. baumannii. EA not only demonstrated its activity against A. baumannii, but also inhibited the biofilm formation. Since EA shows poor solubility in an aqueous environment, a lipid nanoparticle-based (liposomal) formulation of EA (EA-liposomes) was prepared and its effectiveness was assessed to treat bacterial infection in the immunocompromised murine model. Therapy with EA-liposomes imparted greater protection to infected mice by increasing the survival and decreasing the bacterial load in the lungs. A. baumannii infected mice treated with EA-liposomes (100 mg/kg) showed 60% survival rate as compared to 20% of those treated with free EA at the same dose. The bacterial load was found to be 32778 ± 12232 in the lungs of EA-liposomes (100 mg/kg)-treated mice, which was significantly lower to 165667 ± 53048 in the lung tissues of free EA treated mice. Likewise, EA-liposomes also restored the liver function (AST and ALT) and kidney function parameters (BUN and creatinine). The broncho-alveolar fluid (BALF) from infected mice contained greater quantities of IL-6, IL-1β and TNF-α, which were significantly alleviated in EA-liposomes treated mice. These findings together support the possible implication of EA-liposomes to treat A. baumannii infection, especially in immunocompromised mice.  相似文献   

3.
Exposure to antimicrobials leading to microbiota dysbiosis has been found to be an independent risk factor for extensively drug-resistant Pseudomonas aeruginosa acquisition. Microbiota dysbiosis may induce imbalanced immune responses and can affect disease susceptibility. However, the potential role of commensal microbiota in bacterial pneumonia is poorly defined. The aim of this study was to investigate the mechanistic basis for the defective host defenses against P. aeruginosa pneumonia induced by antibiotic pretreatment perturbing microbiota. We found that antibiotic pretreatment significantly perturbed the composition of intestinal microbiota. The microbiota dysbiosis impaired host defenses against P. aeruginosa pneumonia, as reflected by the increased bacterial burden and dissemination, compromised local inflammatory responses and shortened survival time in microbiota-depleted mice compared with controls. This impairment correlated with a defective γδ T17 cell and downstream neutrophil responses. Anti-TCRγδ-treated mice had changes similar to those in the microbiota-depleted mice. Overall, our results suggest the importance of microbiota in supporting the host defense against pneumonia, define a crucial role for the γδ T cell-neutrophil axis in the potential mechanism, and delineate the deleterious effects of antibiotic treatment on antibacterial defenses.  相似文献   

4.
Acinetobacter baumannii is an important cause of both community-associated and nosocomial pneumonia, which have become increasingly difficult to treat because of the rapid development of resistance to multiple antibiotics. Despite its clinical importance, the pathogenesis of and host defense against respiratory A. baumannii infection remains largely unknown. To examine host factors that could contribute to the defense, we compared the susceptibilities of A/J and C57BL/6 mice to intranasal (i.n.) inoculation with A. baumannii. We found that A/J mice were significantly more susceptible to infection with higher mortality (P < 0.05) and tissue bacterial burdens (P < 0.01) as well as greater histopathology in the lung and spleen than C57BL/6 mice. More importantly, the high susceptibility of A/J mice was associated with a reduced local proinflammatory cytokine/chemokine (particularly IL-1β, MIP-2 and TNF-α) responses and a significant delay and reduction in the early influx of neutrophils in the lung (P < 0.05). Intranasal administration of neutrophil-inducing chemokine MIP-2 to A/J mice enhanced pulmonary neutrophil influx and partially restored host resistance to A. baumannii to a level comparable to the more resistant C57BL/6 mice. Our results imply that the early recruitment of neutrophils into the lung is critical for initiating an efficient host defense against respiratory A. baumannii infection.  相似文献   

5.
Acinetobacter baumannii is an opportunistic Gram-negative bacterial pathogen that poses a threat for frail patients worldwide. The high ability to withstand environmental stresses as well as its resistance towards a broad range of antibiotics make A. baumannii an effective hard-to-eradicate pathogen. One of the key mechanisms mediating tolerance against antibiotic treatment is the formation of biofilms, a process that is controlled by a multitude of different regulatory mechanisms. A key factor with major impact on biofilm formation is cell-to-cell communication by quorum-sensing, which in A. baumannii is mediated by acyl homoserine lactone signaling molecules. Here we show that the Ntn-Hydrolase PvdQ from Pseudomonas aeruginosa can reduce biofilm formation by the A. baumannii ATCC 17978 type strain and several clinical isolates on abiotic surfaces. Further, our study shows that a combination treatment of PvdQ-mediated quorum-quenching with the antibiotic gentamicin has a synergistic effect on the clearance of A. baumannii biofilms and possible biofilm dispersal. Moreover, we demonstrate in a Galleria mellonella larval infection model that PvdQ administration significantly prolongs survival of the larvae. Altogether, we conclude that the acylase-mediated irreversible cleavage of quorum-sensing signaling molecules as exemplified with PvdQ can set a profound limit to the progression of A. baumannii infections.  相似文献   

6.
3′,5′-Cyclic diguanylic acid (cdiGMP) is emerging as a universal bacterial second messenger in regulating bacterial growth on surfaces. It has been recently shown that cdiGMP stimulates innate immunity and enhances antigen-specific humoral and cellular immune responses. We herein report that intranasal (i.n.) administration with cdiGMP induces an acute but transient inflammatory response and activation of dendritic cells in the lungs. Moreover, i.n. immunization of mice with pneumococcal surface adhesion A (PsaA) in conjunction with cdiGMP elicited strong antigen-specific serum immunoglobulin G (IgG) and secretory IgA antibody responses at multiple mucosal surfaces. More importantly, the immunized mice showed significantly reduced nasopharyngeal Streptococcus pneumoniae colonization. These results, for the first time, provide direct evidence for the induction of protection against mucosal bacterial infections by cdiGMP as an adjuvant.  相似文献   

7.
Little is known about the role of gut microbiota in response to live oral vaccines against enteric pathogens. We examined the effect of immunization with an oral live-attenuated Shigella dysenteriae 1 vaccine and challenge with wild-type S. dysenteriae 1 on the fecal microbiota of cynomolgus macaques using 16 S rRNA analysis of fecal samples. Multi-dimensional cluster analysis identified different bacterial community types within macaques from geographically distinct locations. The fecal microbiota of Mauritian macaques, observed to be genetically distinct, harbored a high-diversity community and responded differently to Shigella immunization, as well as challenge compared to the microbiota in non-Mauritian macaques. While both macaque populations exhibited anti-Shigella antibody responses, clinical shigellosis was observed only among non-Mauritian macaques. These studies highlight the importance of further investigation into the possible protective role of the microbiota against enteric pathogens and consideration of host genetic backgrounds in conducting vaccine studies.  相似文献   

8.
Respiratory tract coinfections, specifically involving influenza A virus (IAV) and Streptococcus pneumoniae (S. pneumoniae), remain a major health problem worldwide. Secondary bacterial pneumonia is a common complication and an important cause of mortality related to seasonal and pandemic influenza infections. Vaccination is a basic control strategy against influenza and S. pneumoniae. The fusion protein DnaJ-ΔA146Ply is a vaccine candidate which can induce immune responses against pneumococcal infections via mucosal and subcutaneous immunization in mice. In the present study, we established a co-infection model using mouse-adapted laboratory strains of IAV (PR8) and S. pneumoniae (19F) in mice intranasally and subcutaneously immunized with DnaJ-ΔA146Ply. Our results showed that vaccinated mice suffered decreased weight loss compared with control mice. The survival rates were higher in intranasally and subcutaneously immunized mice than in control mice. In addition, the bacterial loads in nasal washes and lung homogenates were lower in vaccinated mice than in control mice. Furthermore, lung damage was alleviated in vaccinated mice compared with control mice, with less broken alveoli and less proinflammatory cytokine production. Taken together, these results indicate that vaccination with DnaJ-ΔA146Ply shows protective potential against influenza and S. pneumoniae co-infection in mice.  相似文献   

9.
The mortality rates has been increased globally due to multidrug resistant (MDR) E.coli and A.baumanii bacterial strains and also there is an emerging resistance of the Enterobacteriaceae family of bacteria to Carbapenem antibiotics (CRE) in Saudi Arabia. The main aim of our research study is to isolate E.coli and A. baumannii bacterial species from various collected clinical samples and to evaluate the MIC and FICI of Colistin, Ciprofloxacin, Meropenem and ZnO NPs and in combination of Colistin, Ciprofloxacin, Meropenem with ZnO NPs.The clinical isolated strains of A. baumannii (MRO-17-13) and A. baumannii (MRO-17–25) was found to be sensitive towards colistin with 0.5 μg/mL concentration, whereas, all the isolated A. baumannii strains showed similar MIC value 2 mg/mL when tested with ZnO NPs, the MIC value for the ZnO NPs was found to be similar for all the E.coli strains 0.25 mg/mL. The effects of all Ciprofloxacin concentrations used in the study were bacteriostatic against E. coli (01UR19006568-01) strain but 1 mg/mL concentration of ZnO NPs alone is showed bactericidal activity, ZnO NPs effect was found to be concentration dependent, as highest concentration of ZnO NPs showed strongest antibacterial effect. In conclusion, more investigation is required to evaluate the acceptable concentration of Zno NPs and antibiotics selected to avoid toxicity and must be tested against more clinically isolated gram-negative bacterial strains.  相似文献   

10.
Acellular vaccines containing bacterial immunodominant components such as surface proteins may be potent alternatives to live attenuated vaccines in order to reduce salmonellosis risk to human health. invH gene, an important part of needle complex in type three secretion system (TTSS) plays important role in efficient bacterial adherence and entry into epithelial cells. In this work we hypothesize that use of a 15 kDa recombinant InvH as Salmonella enterica serovar Enteritidis surface protein could provoke antibody production in mouse and would help us study feasibility of its potential for diagnosis and/or a recombinant vaccine. The purified InvH provoked significant rise of IgG in mice. Active protection induced by immunization with InvH against variable doses of S. enterica serovar Enteritidis, indicated that the immunized mice were completely protected against challenge with 104 LD50. The immunoreaction of sera from immunized mice with other Salmonella strains or cross reaction with sera of Salmonella strains inoculated mice is indicative of possessing by Salmonella strains of the surface protein, InvH, that can be employed in both prophylactic and diagnostic measures against S. enterica. Bacteria free spleen and ileum of the immunized mice in this study indicate that the invH gene affects bacterial invasion. Efficacy of the virulence protein, InvH, in shuttling into host cells in injectisome of S. enterica serovar Enteritidis and inhibition of this phenomenon by active immunization was shown in this study. In conclusion immunization with InvH protein can develop protection against S. enterica serovar Enteritidis infections. InvH in Salmonella strains can be exploited in protective measures as well as a diagnostic tool in Salmonella infections.  相似文献   

11.
Acinetobacter baumannii infections are difficult to treat due to multidrug resistance. Biofilm formation by A. baumannii is an additional factor in its ability to resist antimicrobial therapy. The antibacterial and antibiofilm activities of the human antimicrobial peptide LL-37 and its fragments KS-30, KR-20 and KR-12 against clinical isolates of multidrug-resistant (MDR) A. baumannii were evaluated. The minimal inhibitory concentration (MIC) of LL-37 against MDR A. baumannii isolates ranged from 16 to 32 μg/mL. The MIC of KS-30 fragment varied from 8.0 to16 μg/mL and the KR-20 fragment MIC ranged from 16 to 64 μg/mL. LL-37 and KS-30 fragment exhibited 100% bactericidal activity against five A. baumannii strains, including four MDR clinical isolates, within 30 min at concentrations of 0.25–1 μg/mL. By 0.5 h, the fragments KR-20 and KR-12 eliminated all tested strains at 8 and 64 μg/mL respectively. LL-37 and its fragments displayed anti-adherence activities between 32-128 μg/mL. A minimum biofilm eradication concentration (MBEC) biofilm assay demonstrated that LL-37 inhibited and dispersed A. baumannii biofilms at 32 μg/mL respectively. Truncated fragments of LL-37 inhibited biofilms at concentrations of 64–128 μg/mL. KS-30, the truncated variant of LL-37, effectively dispersed biofilms at 64 μg/mL. At 24 h, no detectable toxicity was observed at the efficacious doses when cytotoxicity assays were performed. Thus, LL-37, KS-30 and KR-20 exhibit significant antimicrobial activity against MDR A. baumannii. The prevention of biofilm formation in vitro by LL-37, KS-30 and KR-20 adds significance to their efficacy. These peptides can be potential therapeutics against MDR A. baumannii infections.  相似文献   

12.
A. baumannii is one of the most important multidrug-resistant microorganisms in hospital units. It is resistant to many classes of antibiotics and the development of new therapeutic strategies is necessary. The aim of this study was to evaluate the antibacterial activity of a set of piperazine-derived thioureas against 13 clinical strains of colistin-resistant A. baumannii. Six derivatives were identified to inhibit bacterial growth of 46% of the A. baumannii strains at low micromolar concentrations (Minimum Inhibitory Concentration from 1.56 to 6.25 μM). A common structural feature in most active compounds was the presence of a 3,5-bis-trifluoromethyl phenyl ring at the thiourea function. In addition, the ability of the compounds to inhibit production of nitric oxide (NO) was examined in RAW 264.7 murine macrophages, highlighting the potential of piperazine-derived thioureas as promising scaffolds for the design of new combined anti-bacterial/anti-inflammatory agents.  相似文献   

13.
The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii) is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii.  相似文献   

14.
S. aureus and A. baumannii are among the ESKAPE pathogens that are increasingly difficult to treat due to the rise in the number of drug resistant strains. Novel therapeutics targeting these pathogens are much needed. The bacterial enoyl reductase (FabI) is as potentially significant drug target for developing pathogen-specific antibiotics due to the presence of alternate FabI isoforms in many other bacterial species. We report the identification and development of a novel N-carboxy pyrrolidine scaffold targeting FabI in S. aureus and A. baumannii, two pathogens for which FabI essentiality has been established. This scaffold is unrelated to other known antibiotic families, and FabI is not targeted by any currently approved antibiotic. Our data shows that this scaffold displays promising enzyme inhibitory activity against FabI from both S. aureus and A. baumannii, as well as encouraging antibacterial activity in S. aureus. Compounds also display excellent synergy when combined with colistin and tested against A. baumannii. In this combination the MIC of colistin is reduced by 10-fold. Our first generation compound displays promising enzyme inhibition, targets FabI in S. aureus with a favorable selectivity index (ratio of cytotoxicity to MIC), and has excellent synergy with colistin against A. baumannii, including a multidrug resistant strain.  相似文献   

15.
《Phytomedicine》2014,21(2):159-163
Piper longum L. fruits have been traditionally used against snakebites in north-eastern and southern region of India. The aim of the study was to assess the production of antibody response against Russell's viper venom in mice after prophylactic immunization with ethanolic extract of fruits of Piper longum L. and piperine. The mice sera were tested for the presence of antibodies against Russell's viper venom by in vitro lethality neutralization assay and in vivo lethality neutralization assay. Polyvalent anti-snake venom serum (antivenom) manufactured by Haffkine Bio-Pharmaceutical Corporation Ltd. was used as standard. Further confirmation of presence of antibodies against the venom in sera of mice immunized with PLE and piperine was done using indirect enzyme-linked immunosorbent assay (ELISA) and double immunodiffusion test. Treatment with PLE-treated mice serum and piperine-treated mice serum was found to inhibit the lethal action of venom both in the in vitro lethality neutralization assay and in vivo lethality neutralization assay. ELISA testing indicated that there were significantly high (p < 0.01) levels of cross reactions between the PLE and piperine treated mice serum and the venom antigens. In double immunodiffusion test, a white band was observed between the two wells of antigen and antibodies for both the PLE-treated and piperine-treated mice serum. Thus it can be concluded that immunization with ethanolic extract of fruits of Piper longum and piperine produced a high titre antibody response against Russell's viper venom in mice. The antibodies against PLE and piperine could be useful in antivenom therapy of Russell's viper bites. PLE and piperine may also have a potential interest in view of the development of antivenom formulations used as antidote against snake bites.  相似文献   

16.
A rapidly acting, single dose vaccine against Staphylococcus aureus would be highly beneficial for patients scheduled for major surgeries or in intensive care units. Here we show that one immunization with a multicomponent S. aureus candidate vaccine, 4C-Staph, formulated with a novel TLR7-dependent adjuvant, T7-alum, readily protected mice from death and from bacterial dissemination, both in kidney abscess and peritonitis models, outperforming alum-formulated vaccine. This increased efficacy was paralleled by higher vaccine-specific and α-hemolysin-neutralizing antibody titers and Th1/Th17 cell responses. Antibodies played a crucial protective role, as shown by the lack of protection of 4C-Staph/T7-alum vaccine in B-cell-deficient mice and by serum transfer experiments. Depletion of effector CD4+ T cells not only reduced survival but also increased S. aureus load in kidneys of mice immunized with 4C-Staph/T7-alum. The role of IL-17A in the control of bacterial dissemination in 4C-Staph/T7-alum vaccinated mice was indicated by in vivo neutralization experiments. We conclude that single dose 4C-Staph/T7-alum vaccine promptly and efficiently protected mice against S. aureus through the combined actions of antibodies, CD4+ effector T cells, and IL-17A. These data suggest that inclusion of an adjuvant that induces not only fast antibody responses but also IL-17-producing cell-mediated effector responses could efficaciously protect patients scheduled for major surgeries or in intensive care units.  相似文献   

17.
Acinetobacter baumannii is the main causative pathogen of nosocomial infections that causes severe infections in the lungs. In this study, we analyzed the histopathological characteristics of lung infection with two strains of A. baumannii (ATCC 19606 and the clinical isolate TK1090) and Pseudomonas aeruginosa PAO-1 in C3H/HeN mice to evaluate the virulence of A. baumannii. Survival was evaluated over 14 days. At 1, 2, 5, or 14 days postinfection, mice of C3H/HeN were sacrificed, and histopathological analysis of lung specimens was also performed. Histopathological changes and accumulation of neutrophils and macrophages in the lungs after infection with A. baumannii and P. aeruginosa were analyzed. Following intratracheal inoculation, the lethality of ATCC 19606- and TK1090-infected mice was lower than that of PAO-1-infected mice. However, when mice were inoculated with a sub-lethal dose of A. baumannii, the lung bacterial burden remained in the mice until 14 days post-infection. Additionally, histopathological analysis revealed that macrophages infiltrated the lung foci of ATCC 19606-, TK1090-, and PAO-1-infected mice. Although neutrophils infiltrated the lung foci of ATCC 19606- and TK1090-infected mice, they poorly infiltrated the lung foci of PAO-1-infected mice. Accumulation of these cells in the lung foci of ATCC 19606- and TK1090-infected mice, but not PAO-1-infected mice, was observed for 14 days post-infection. These results suggest that A. baumannii is not completely eliminated despite the infiltration of immune cells in the lungs and that inflammation lasts for prolonged periods in the lungs. Further studies are required to understand the mechanism of A. baumannii infection, and novel drugs and vaccines should be developed to prevent A. baumannii infection.  相似文献   

18.
We investigated the induction of protective immunity against bacterial cold-water disease (BCWD) caused by Flavobacterium psychrophilum by warmed water treatment in ayu (Plecoglossus altivelis). Fish were immersed in a live bacterial suspension (107 CFU mL−1) for 30 min and placed in 700 L concrete tanks. The 28 °C warmed water treatment lasted 3 days and began 1, 6, and 24 h after immersion in the live bacterial suspension. A naïve control fish group was immersed in a sterilized modified Cytophaga (MCY) broth instead of the bacterial suspension. Fourteen days after the immersion, agglutination antibody titers against F. psychrophilum were measured by using micro-titer methods. Fish were then exposed to a bacterial bath to infect them with live F. psychrophilum, and cumulative mortality was monitored. Fish treated with warmed water at 1, 6, and 24 h after immersion in the live bacterial suspension had cumulative mortalities of 36%, 30%, and 18%, respectively, all of which were significantly lower than the cumulative mortality of the naïve control fish (90%). Treated fish also showed high antibody titers against F. psychrophilum in agglutination tests. These results demonstrate that warmed water treatment could not only cure BCWD but also immunize the fish against the causative agent F. psychrophilum.  相似文献   

19.
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of children diarrhea in the world. Adhesion of ETEC to small intestine is an important virulence trait. One of the most prevalent colonization factors (CFs) in human is CFA/I fimbriae and CfaE which is the required binding factor for adhesion of ETEC to intestinal mucosa.We optimized cfaE gene codons according to codon bias of E. coli to achieve a high level of recombinant protein expression. The optimized gene was expressed in E. coli and rCFaE protein was used for mice immunization. Blocking activity of the obtained antibody was examined by microplate agglutination inhibition test. SDS-PAGE analysis indicated that the optimized sequence of cfaE produces a suitable amount of rCFaE in comparison with native gene sequence. This optimized rCFaE protein could induces strong humoral response in mice and the antibody obtained against rCFaE inhibited the adhesion of ETEC to human group A erythrocytes. It is concluded that codon optimization is a useful approach for obtaining large quantities of recombinant rCFaE protein. With regard to the results of hemagglutination inhibition test, codon optimization and increased production of recombinant protein expressed in E. coli did not affect the immunogenicity potential of CFaE.  相似文献   

20.
The rate of human health care-associated infections caused by Acinetobacter baumannii has increased significantly in recent years for its remarkable resistance to desiccation and most antibiotics. Phospholipases, capable of destroying a phospholipid substrate, are heterologous group of enzymes which are believed to be the bacterial virulence determinants. There is a need for in silico studies to identify potential vaccine candidates. A. baumannii phospholipase D (PLD) role has been proved in increasing organism’s resistance to human serum, destruction of host epithelial cell and pathogenesis in murine model. In this in silico study high potentials of A. baumannii PLD in elicitation of humoral and cellular immunities were elucidated. Thermal stability, long half-life, non-similarity to human and gut flora proteome and non-allergenicity were in a list of A. baumannii PLD positive properties. Potential epitopic sequences were also identified that could be used as peptide vaccines against A. baumannii and various other human bacterial pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号