首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetyl glyceryl ether phosphorylcholine induces human neutrophil aggregation. Incubation of neutrophils with either prostaglandin I2, or the cyclic AMP-dependent phosphodiesterase inhibitor, RO 20-1724 before the addition of PAF-acether attenuates subsequent aggregation. Paradoxically, a small elevation in cyclic AMP is observed coincident with the initiation of PAF-acether-stimulated aggregation. The elevation in cyclic AMP in response to PAF-acether is amplified by RO 20-1724, and the magnitude of the response is dependent upon the concentration of PAF-acether. The elevation in cyclic AMP is not due to prostaglandins, because indomethacin actually enhances the elevation in cyclic AMP induced by PAF-acether. The involvement of the neutrophil 5-lipoxygenase, and subsequent leukotriene B4 synthesis, is suggested by the observation that 5-lipoxygenase inhibitors limit both the elevation in cyclic AMP induced by PAF-acether, and the indomethacin enhancement. This indirect evidence is supported by the fact that leukotriene B4 itself elevates neutrophil cyclic AMP levels in intact cells, and stimulates the adenylate cyclase in broken cell preparations. Although the elevation in cyclic AMP induced by either PAF-acether or leukotriene B4 is coincident with the onset of neutrophil aggregation, it is not obligatory for aggregation. The adenylate cyclase inhibitor 2′,5′-dideoxyadenosine blocks the PAF-acether-stimulated increase in cyclic AMP, and actually enhances aggregation. It is suggested that the increase in cyclic AMP observed after the addition of PAF-acether is due to concomitant leukotriene B4 synthesis, and is not obligatory for neutrophil aggregation, but is actually part of a feed-back regulatory system through which PAF-acether and leukotriene B4 can limit their own activity in neutrophils.  相似文献   

2.
The relationship of hepatic ornithine decarboxylase (ODC) activity to cyclic AMP levels and nutritional status was studied in the pre-weanling rat. Previous studies demonstrated that 2 hr without food causes a loss of hepatic ODC induction after glucagon or catecholamine injection. Isoproterenol or glucagon administration produced increased hepatic cyclic AMP and tyrosine aminotransferase activity which were not prevented by nutritional deprivation. Blockade of hepatic beta 2 receptors by the selective antagonist ICI 118,551 prevented increased cAMP levels and ODC activity after isoproterenol administration. Blockade of beta 1 receptors by atenolol did not prevent increased cAMP levels or ODC induction by isoproterenol although it did block activation of cardiac ODC. The phosphodiesterase inhibitor RO20-1724 increased hepatic cAMP levels as well as ODC and TAT activities, although the increase in ODC activity was attenuated by nutritional deprivation. RO20-1724 also potentiated the induction of hepatic ODC after glucagon or isoproterenol administration. Administration of 8-bromo cAMP elevated hepatic ODC activity regardless of nutritional status but also elevated serum levels of growth hormone and corticosterone. Hepatic ODC induction by glucagon or beta 2 agonists can be dissociated from changes in cAMP levels during nutritional deprivation.  相似文献   

3.
Acetyl glyceryl ether phosphorylcholine induces human neutrophil aggregation. Incubation of neutrophils with either prostaglandin I2, or the cyclic AMP-dependent phosphodiesterase inhibitor, RO 20-1724 before the addition of PAF-acether attenuates subsequent aggregation. Paradoxically, a small elevation in cyclic AMP is observed coincident with the initiation of PAF-acether-stimulated aggregation. The elevation in cyclic AMP in response to PAF-acether is amplified by RO 20-1724, and the magnitude of the response is dependent upon the concentration of PAF-acether. The elevation in cyclic AMP is not due to prostaglandins, because indomethacin actually enhances the elevation in cyclic AMP induced by PAF-acether. The involvement of the neutrophil 5-lipoxygenase, and subsequent leukotriene B4 synthesis, is suggested by the observation that 5-lipoxygenase inhibitors limit both the elevation in cyclic AMP induced by PAF-acether, and the indomethacin enhancement. This indirect evidence is supported by the fact that leukotriene B4 itself elevates neutrophil cyclic AMP levels in intact cells, and stimulates the adenylate cyclase in broken cell preparations. Although the elevation in cyclic AMP induced by either PAF-acether or leukotriene B4 is coincident with the onset of neutrophil aggregation, it is not obligatory for aggregation. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine blocks the PAF-acether-stimulated increase in cyclic AMP, and actually enhances aggregation. It is suggested that the increase in cyclic AMP observed after the addition of PAF-acether is due to concomitant leukotriene B4 synthesis, and is not obligatory for neutrophil aggregation, but is actually part of a feed-back regulatory system through which PAF-acether and leukotriene B4 can limit their own activity in neutrophils.  相似文献   

4.
K Dismukes  J W Daly 《Life sciences》1975,17(2):199-209
Prostaglandin E1 and E2 and 15(S)-15-methyl PGE2 methyl ester stimulate the accumulation of radioactive cyclic AMP in brain slices from Sprague-Dawley rats, labelled during a prior incubation with [14C] adenine. Prostaglandins A1 and B1 have marginal effects and prostaglandin F has no effect. Relatively high concentrations of about 80 μM PGE1, PGE2 and 15(S)-15-methyl PGE2 are required to elicit a maximal 2–5 fold increase in accumulation of cyclic AMP in slices from cerebrum, but significant increases are elicited by 3.5 μM prostaglandin. Similar increases are elicited in slices from neocortex, striatum or midbrain-thalamus-hypothalamus, while lesser increases pertain in slices from cerebellum, medulla-pons or hippocampus. The accumulation of cyclic AMP elicited by PGE1 in slices from cerebrum was not blocked by naloxone, propranololphentolamine, tetracaine, theophylline, or by nearly equimolar concentrations of either of two prostaglandin antagonists, 7-oxa-13-prostynoic acid and the dibenzoxazepine hydrazide, SC 19220. Morphine potentiated the effects of PGE1. The combination of 85 μM PGE1 with either isoproterenol, norepinephrine, adenosine or veratridin did not increase the accumulation of cycli AMP significantly above those elicited by the isoproterenol, norepinephrine, adenosine or veratridine alone. The combined effect of PGE1 and norepinephrine in the presence of a β-adrenergic antagonist, sotalol, was, however, additive. The results indicate that PGE1 stimulates cyclic AMP formation in rat brain slices, but that it either has antagonist activity with respect to accumulations of cyclic AMP-elicited by other agents or has no detectable agonist activity when cyclases are maximally stimulated by other agents.  相似文献   

5.
Iodide, a substrate of thyroid metabolism, and acetylcholine depress cyclic AMP intracellular content and secretion in dog thyroid slices under TSH stimulation. A direct or indirect pseudocompetitive effect at the level of TSH receptor interaction has been rejected. Iodide and carbachol, both inhibited cyclic AMP accumulation in TSH stimulated dog thyroid slices but only the effect of carbachol was suppressed in the presence of isobutylmethylanthine. Ro 20-1724 did not relieve either inhibitory effect. Carbachol greatly enhanced cyclic AMP disposal in TSH prestimulated slices after the cut off of hormone action by a trypsin treatment. This effect was also suppressed by isobutylmethylxanthine but not by Ro 20-1724. No action of iodide could be evidenced on cyclic AMP disposal in similar slices, although a clear effect after the same time of iodide action was observed on cyclic AMP accumulation. Neither carbachol, nor iodide depresses ATP levels in these slices. The data suggest that carbachol exerts its action through an activation of cyclic AMP disappearance probably by an activation of cyclic AMP phosphodiesterase and that iodide, through an oxidized intermediate, experts its inhibitory effect at the level of cyclic AMP synthesis.  相似文献   

6.
Possible mechanisms accounting for the inhibition of acid secretion by prostaglandins were studied using cells dispersed from canine fundic mucosa by enzymes and enriched in the content of parietal cells by elutriation. The accumulation of 14C-aminopyrine (AP) was used as an index of parietal cell response to stimulation. PGE2 inhibited histamine-stimulated AP uptake, with 50% inhibition (ID50) found at 10 nM, but did not block the response to carbachol, gastrin, or dibuturyl cyclic AMP. PGE2 did, however, inhibit aminopyrine uptake stimulated by carbachol and gastrin when the response to these agents was potentiated by histamine. PGE2, at namomolar concentrations, also inhibited histamine-stimulated cyclic AMP production. When mucosal cells were treated with only PGE2 at concentrations above 1 μM, stimulation of cyclic AMP production was found. In cell separation studies with the elutriator rotor, PGE2 appeared to stimulate cyclic AMP production primarily in nonparietal cells.Prostacyclin (PGI2) and two stable analogues, 6β-PGI1 and the 16-phenoxy analogue (5α)5,9-epoxy-16-phenoxy-PGF1, also specifically inhibited histamine-stimulated AP accumulation. PGI2 required relatively high concentrations for this effect (ID50 = 1 μM), whereas the 16 phenoxy derivative was much more potent in its inhibition of histamine-stimualted AP accumulation (ID50 = 10 nM), with this difference probably accounted for by the rapid degradation of PGI2 compared to the stable 16-phenoxy analogue. All three of these prostanoids also inhibited histamine-stimulated cyclic AMP production. As was found with PGE2, at high concentrations and in the absence of histamine PGI2 and PGI1 also stimulated cyclic AMP production. However, the 16-phenoxy analogue failed to stimulate cyclic AMP production either in the parietal cell enriched fractions or in the nonparietal cell fractions.These data indicate that PGE2 and prostacyclin analogues are potent, direct and specific inhibitors of histamine-stimulated parietal cell function and that it is the inhibition, rather than the stimulation, of cyclic AMP formation that is linked to the antisecretory actions of the prostanoid compounds.  相似文献   

7.
Adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) metabolism in rat renal cortex was examined. Athough the cyclic AMP and cyclic GMP phosphodiesterases are similarly distributed between the soluble and particulate fractions following differential centrifugation, their susceptibility to inhibition by theophylline, dl-4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724), and 1-methyl-3-isobutylxanthine (MIX) are quite different. Ro 20-1724 selectively inhibited both renal cortical-soluble and particulate cyclic AMP degradation, but had little effect on cyclic GMP hydrolysis. Theophylline and MIX effectively inhibited degradation of both cyclic nucleotides, with MIX the more potent inhibitor. Effects of these agents on the cyclic AMP and cyclic GMP content of cortical slices corresponded to their relative potency in broken cell preparations. Thus, in cortical slices, Ro 20-1724 (2 mm) had the least effect on basal (without agonist), carbamylcholine, and NaN3-stimulated cyclic GMP accumulation, but markedly increased basal and (parathyroid hormone) PTH-mediated cyclic AMP accumulation, MIX (2 mm) which was as effective as Ro 20-1724 in potentiating basal and PTH-stimulated increases in cyclic AMP also mediated the greatest augmentation of basal, carbamylcholine, and NaN3-stimulated accumulation of cyclic GMP. By contrast, theophylline (10 mm) which was only 12% as effective as Ro 20-1724 in increasing the total slice cyclic AMP content in the presence of PTH was much more effective than Ro 20-1724 in potentiating carbamylcholine and NaN3-mediated increases in cyclic GMP. These results demonstrate selective inhibition of cyclic nucleotide phosphodiesterase activities in the rat renal cortex and support the possibility of multiple cyclic nucleotide phosphodiesterases in this tissue. Furthermore, both cyclic nucleotides appear to be rapidly degraded in the renal cortex.  相似文献   

8.
Addition of serum-treated zymosan particles to a suspension of human peripheral blood polymorphonuclear leukocytes led to the formation of leukotriene B4. Prostaglandin I2 and RO20-1724 (an inhibitor of cyclic 3′:5′-nucleotide phosphodiesterase) decreased the synthesis of this compound, indicating that cyclic AMP exerts an inhibitory effect on the formation of leukotriene B4.  相似文献   

9.
The effects of elevated intracellular cyclic AMP on the release of neurotransmitters was studied using the clonal pheochromocytoma cell line, PC12, and forskolin, a direct activator of adenylate cyclase. Intracellular cyclic AMP concentrations ranging from 8 to 400 times basal levels were achieved with 0.1 to 100 uM forskolin. Unstimulated release of neurotransmitters was unchanged by any concentration of forskolin. However, K+-stimulated release of both norepinephrine (NE) and acetylcholine was enhanced by 0.1 to 10 uM forskolin. Release of NE elicited by depolarization with carbachol and veratridine also was enhanced by 1 uM forskolin. Enhancement of release was reversed by higher concentrations of forskolin, especially in the presence of a phosphodiesterase inhibitor (RO 20-1724) which caused very large increases in cyclic AMP content. The enhancement of transmitter release from the PC12 cells occurred without concomitant changes in agonist-stimulated ion flux through the acetylcholine receptor ion channel, or in depolarization-dependent uptake of 45Ca++. Thus, increasing the cyclic AMP content of PC12 cells fails to initiate neurosecretion but appears to facilitate some element in the secretion process subsequent to Ca++ influx.  相似文献   

10.
The cyclic AMP level of 17-day-old chick embryo retina increased from 20 to 331 pmol/mg protein when the tissue was incubated for 20 min in the presence of 4-(3-butoxy-4-methoxybenzyl-2-imidozolinone) (RO 20-1724). The addition of 0.5 mM-3-isobutyl-1-methylxanthine (IBMX) or 0.5 units/ml of adenosine deaminase (EC 3.5.4.4) to the medium reduced the increase of cyclic AMP content from 20 to 100 pmol/mg protein. Dipyridamole did not interfere with the rise of the retinal cyclic AMP level observed with RO 20-1724. The EC50 of 6-amino-2-chloropurine riboside (2-chloroadenosine)-elicited accumulation of cyclic AMP of retinas incubated in the presence of RO 20-1724 plus adenosine deaminase was approximately 1 microM. When retina incubation was carried out in the presence of 0.5 mM-IBMX, the 2-chloroadenosine dose-response curve was shifted to the right two orders of magnitude. Maximal stimulation of the cyclic AMP level of 17-day-old chick embryo retina incubated in the presence of 0.5 mM-IBMX was observed at 1 mM-adenosine concentration. This effect was not blocked by dopamine antagonists. Guanosine and adenine did not affect the retinal cyclic AMP level. AMP and ATP had a slight stimulatory effect. Adenosine response of embryonic retina increased sharply from the 14th to the 17th embryonic day. A similar, but not identical adenosine effect was observed in cultured retina cells.  相似文献   

11.
The steroidogenic response to ACTH and prostaglandin E2 (PGE2) was studied in cat adrenocortical cells dispersed with trypsin. The dose-response curves of both agents were qualitatively and quantitatively similar. Exposure to PGE2 or ACTH in the presence of labeled steroid precursor (acetate) resulted in the accumulation of comparable levels of steroid intermediates and end-product. Submaximal or maximal concentrations of ACTH and PGE2 given simultaneously elicited a response which was no greater than that obtained with either stimulant alone. Although calcium was required for optimal PGE2 stimulation of steroid production, this requirement for calcium was less than the requirement with ACTH as the stimulant, but greater than with butyryl cyclic AMP. PGE2-induced increase in the adrenal cyclic AMP was not statistically significant and was small in relation to that found with equipotent steroidogenic ACTH concentrations. The possible relationship between prostaglandins, cyclic AMP, and calcium in the action of ACTH is discussed.  相似文献   

12.
The effect of theophylline and isoproterenol on bovine tracheal smooth muscle tension and cyclic AMP levels was investigated. Concentrations of isoproterenol (4 × 10?6 M) and theophylline (10 mM) that relaxed carbachol-contracted tracheal muscle by 85–95% did not significantly elevate control levels of cyclic AMP. In the absence of carbachol, several-fold increases in cyclic AMP were caused by isoproterenol although no elevations by theophylline were measurable. However, when isoproterenol and theophylline were administered together, theophylline potentiated the rise in cyclic AMP caused by isoproterenol. Phosphodiesterase studies in tracheal muscle showed the presence of a high and a low Km enzyme which were inhibited by theophylline. Cyclic GMP levels were elevated in muscles contracted by carbachol as well as in carbachol-contracted muscles that had been relaxed by theophylline. In non-tension studies, in which the tracheal muscle was not under isometric tension, carbachol or theophylline alone increased cyclic GMP and together they synergistically elevated cyclic GMP. Atropine blocked the elevation caused by carbachol but not that caused by theophylline. In contrast to theophylline, isoproterenol did not elevate cyclic GMP, and in carbachol-contracted muscles that had been relaxed by isoproterenol, cyclic GMP levels were no different from control. Also, in non-tension studies, isoproterenol decreased basal cyclic GMP and antagonized the increase in cyclic GMP due to carbachol.The results indicate that whole-tissue levels of cyclic AMP and cyclic GMP do not correlate with the state of tracheal smooth muscle tension. Cyclic GMP levels do not clearly correlate with either contraction or relaxation. The inhibition by carbachol of increases in cyclic AMP due to isoproterenol and the inhibition by isoproterenol of increases in cyclic GMP due to carbachol provide evidence for a reciprocal cholinergic-adrenergic antagonism of cyclic AMP and cyclic GMP levels. The antagonism did not appear to be due to either cyclic nucleotide affecting the elevation of the other since the levels of both cyclic nucleotides were depressed.  相似文献   

13.
R D Green 《Life sciences》1980,26(5):399-406
The cyclic AMP content of dense cultures of C1300 murine neuroblastoma cells (clone N2a) was elevated after incubation for short periods of time in minimal volumes of serum-free medium (SFM) containing Ro 20 1724, a potent nonxanthine phosphodiesterase inhibitor. This elevation was prevented by theophylline, an adenosine antagonist, and was retarded by dipyridamole or benzylthioinosine, inhibitors of nucleoside transport. Cyclic AMP was also elevated by erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), a potent adenosine deaminase inhibitor. This effect of EHNA was more pronounced in dense cultures, in small volumes of bathing medium, and was antagonized by dipyridamole. The addition of adenosine deaminase to growth medium or SFM lowered the cyclic AMP levels attained after the addition of Ro 20 1724. We conclude that N2a cells continually release adenosine into the growth or bathing medium via the nucleoside transport system and that sufficient concentrations may be achieved to tonically stimulate adenylate cyclase and influence processes controlled by the cyclic AMP:cyclic AMP-dependent protein kinase system.  相似文献   

14.
The effect of prostaglandin E1 (PGE1) on rat anterior pituitary cyclic AMP accumulation and luteinizing hormone (LH) release was studied both in vivo and in vitro. Addition of PGE1 to incubation medium over a concentration range of 10-6 to 10-4 M produced a graded increase in pituitary cyclic AMP. At the lowest concentration (10-6 M) there was no significant increase in LH release, but proportional increments in LH release were seen with increasing concentrations of PGE1.Ten minutes after intravenous administration of 5 μg of PGE1 to adult male rats, pituitary cyclic AMP was substantially increased while serum LH levels were not changed. Administration of a higher dose of PGE1 (20 μg) produced a greater increase in pituitary cyclic AMP; and, at this dose serum LH was significantly increased. These results suggest that the PGE1 effect on LH release is mediated by the adenyl cyclase — cyclic AMP system.  相似文献   

15.
The effect of PGE2 on the conversion of 25-hydroxyvitamin D3 (25 OH D3) to 1,25-dihydroxyvitamin D3 (1,25- (OH) 2D3) by isolated renal tubules from vitamin D deficient chicks was studied under a variety of experimental conditions. In the absence of added vitamin D metabolites, PGE2 (2 × 10−6M) caused an immediate inhibition of formation of 1,25-(OH) 2D3, followed by a delayed stimulation, apparent after 15 h exposure to PGE2. Pretreatment of the tubules with 1,25-(OH) 2D3 prevented the immediate inhibitory action of PGE2, and allowed the stimulation to be apparent after 4 h exposure to PGE2. The cyclic nucleotide phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine (IBMX) significantly stimulated the formation of 1,25-(OH) 2D3. PGE2 significantly inhibited 1,25-(OH) 2D3 formation in tubules which had been stimulated by IBMX. PGE2 stimulated the adenylate cyclase activity in a crude particulate fraction from the chick kidney, and raised cyclic adenosine 3′, 5′-monophosphate (cyclic AMP) levels in the renal tubules.It is concluded that PGE2 can either stimulate or inhibit 1,25-(OH) 2D3 formation in chick renal tubules. The stimulatory effect may be partly due to elevation of cyclic AMP. The mechanism of the inhibitory effect requires further investigation.  相似文献   

16.
The increased levels of NAD(P)H effected by electrical depolarization are markedly augmented in the presence of cyclic AMP, isoproterenol, or RO 20-1724, agents known to elevate cyclic AMP in rat brain slices. The data presented indicate that the cyclic AMP effect on an important component of intermediate metabolism is not an enhancement of a basal response but a separate response that is activated by depolarization, is Ca2+-dependent, regulates cytochrome a-a3 independently of its effects on NAD(P)H levels, and is dependent on a substrate other than glucose.  相似文献   

17.
Prostaglandin E1(PGE1), one of the components in the hormone-supplemented, serum-free medium for Madin Darby Canine Kidney (MDCK) cells (Medium K-1), is required for both long-term growth and for dome formation. Variant cells have been isolated from MDCK populations, which lack the PGE1, requirement for long-term growth in Medium K-1. These variants will be useful in identifying the molecular events initiated by PGE1 which are necessary for the growth response to be observed. The growth and functional properties of five independently isolated PGE1 independent clones have been examined. Normal MDCK cells grew at an equivalent rate in Medium K-1 and in serum-supplemented medium; the growth rate was lower in Medium K-1 lacking PGE1. In contrast, PGE1 independent clone 1 grew at an equivalent rate in Medium K-1 minus PGE1, and in serum-supplemented medium. When PGE1 was added to K-1 minus PGE1, less growth of PGE1 independent clone 1 was observed. A similar observation was made with one other PGE1 independent clone which was studied. A hormone deletion study indicated that PGE1 independent clone 1 still retained growth responses to the other four supplements in Medium K-1 (insulin, transferrin, T3, and hydrocortisone). The molecular alterations associated with loss of the PGE1 requirement for long-term growth were examined. At confluency, all of the PGE1 independent clones studied had higher intracellular cyclic AMP levels following PGE1 treatment, as compared with normal MDCK cells. The increased cyclic AMP levels in the variant cells could result from a number of different types of defects, including reduced cyclic adenylic acid (cyclic AMP) efflux, an increased affinity of PGE2 for the PGE1 receptor, or a defect in cyclic AMP metabolism. However, in all of the variant clones studied a decreased rate of cyclic AMP degradation by cyclic AMP phosphodiesterase was observed. Thus, the increased cyclic AMP levels in the PGE1 independent variants may result from alterations which affect cyclic AMP metabolism. The effect of PGE1 on dome formation by the variant cells was also examined. The frequency of dome formation by PGE1 independent clone 1 was enhanced in a dosage-dependent manner, like normal MDCK cells. This observation suggests that PGE1 affects MDCK cell growth and dome formation by different mechanisms.  相似文献   

18.
The effect of Ca2+ and putative neurotransmitters on formation of cyclic AMP and cyclic GMP has been studied in incubated slices of brain tissue. Cyclic AMP levels in cerebellar slices after about 90 min of incubation ranged from 10 pmol/mg protein in rabbit, to 25 in guinea pig, to 50 in mouse and 200 in rat. Cyclic GMP levels in the same four species showed no correlation with cyclic AMP levels and were, respectively, 1.3, 20, 5 and 30 pmol/mg protein. The absence of calcium during the prolonged incubation of cerebellar slices had little effect on final levels of cyclic AMP, while markedly decreasing final levels of cyclic GMP. Reintroduction of Ca2+ resulted in a rapid increase in cerebellar levels of cyclic GMP which was most pronounced for guinea pig where levels increased nearly 7-fold within 5 min. Prolonged incubation of guinea pig cerebral cortical slices in calcium-free medium greatly elevated cyclic AMP levels apparently through enhanced formation of adenosine, while having little effect on final levels of cyclic GMP. Norepinephrine and adenosine elicited accumulations of cyclic AMP and cyclic GMP in both guinea pig cerebral cortical and cerebellar slices. Glutamate, γ-aminobutyrate, glycine, carbachol, and phenylephrine at concentrations of 1 mM or less had little or noe effect on cyclic nucleotide levels in guinea pig cerebellar slices. Prostaglandin E1 and histamine slightly increased cerebellar levels of cyclic AMP. Isoproterenol increased both cyclic AMP and cyclic GMP. The accumulation of cyclic AMP and cyclic GMP elicited by norepinephrine in cerebellar slices appeared, baed on dose vs. response curves, agonist-antaganonist relationships and calcium dependency, to involve in both cases activation of a similar set of ß-adrenergic receptors. In cerebellar slices accumulations of cyclic AMP and cyclic GMP elicted by norepinephrine and by a depolarizing agent, veratridine, were strongly dependent on the presence of calcium. The stimulatory effects of adenosine on cyclic AMP and cyclic GMP formation were antagonized by theophylline. The lack of correlations between levels of cyclic AMP and cyclic GMP under the various conditions suggested independent activation of cyclic AMP- and cyclic GMP-generating systems in guinea pig cerebellar slices by interactions with Ca2+, norephinephrine and adenosine.  相似文献   

19.
The effect of PGE1 and PGE2 on the induction of acid phosphataseactivity in embryoless barley half-seeds was examined. Thesecompounds were found to promote the total amount of enzyme synthesizedas well as the amount released into the medium to nearly thesame levels obtainable when these seeds are incubated in GA3or cyclic AMP. The enzyme induction by PGE1 and PGE2 was inhibited by cycloheximide,ABA, 6-methyl purine and acetylsalicyclic acid, but not by AMO-1618.A time course for the induction of acid phosphatase activityby PGE1 and PGE2 lagged behind by 9 hr a similar time courseobtained when seeds were incubated in GA3 or cyclic AMP. Someof the implications of these results are discussed. (Received May 6, 1973; )  相似文献   

20.
Prostaglandins E1 or E2 (PGE1, PGE2)1 stimulated adenylate cyclase(s) from particulate fractions of whole liver homogenates 5- to 6-fold, but caused only slight (1.5- to 2-fold) stimulation of the enzyme from homogeneous hepatocytes. In contrast, glucagon stimulated enzyme from hepatocytes 12- to 15-fold and enzyme from whole liver 8- to 10-fold. Accordingly, most of the total prostaglandin-sensitive adenylate cyclase in cell suspensions was recovered in fractions containing non-parenchymal cells, and most of the total glucagon-sensitive activity was recovered with hepatocytes. PGE1 did not change adenosine-3′,5′-monophosphate (cyclic AMP) concentrations, or alter cyclic AMP increases caused by glucagon in hepatocytes. Glucagon consistently increased hepatocyte cyclic AMP concentrations and stimulated glycogenolysis by 35 to 40%. PGE1 did not affect basal or glucagon-stimulated glycogenolysis in the intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号