首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleocytoplasmic transport of mRNA is essential for eukaryotic gene expression. However, how mRNA is exported from the nucleus is mostly unknown. To elucidate the mechanisms of mRNA transport, we took a genetic approach to identify genes, the products of which play a role in that process. From about 1000 temperature -sensitive (ts- or cs-) mutants, we identified five ts- mutants that are defective in poly(A)+ RNA transport by using a situ hybridization with an oligo(dT)50 as a probe. These mutants accumulate poly(A)+ RNA in the nuclei when shifted to a nonpermissive temperature. All five mutations are tightly linked to the ts- growth defects, are recessive, and fall into four different groups designated as ptr 1-4 (poly(A)+ RNA transport). Interestingly, each group of mutants has a differential localization pattern of poly(A)+ RNA in the nuclei at the nonpermissive temperature, suggesting that they have defects at different steps of the mRNA transport pathway. Localization of a nucleoplasmin-green fluorescent protein fusion suggests that ptr2 and ptr3 have defects also in nuclear protein import. Among the isolated mutants, only ptr2 showed a defect in pre-mRNA splicing. We cloned the ptr2+ and ptr3+ genes and found that they encode Schizosaccharomyces pombe homologues of the mammalian RCC1, a guanine nucleotide exchange factor for RAN/TC4, and the ubiquitin-activating enzyme E1 involved in ubiquitin conjugation, respectively. The ptr3+ gene is essential for cell viability, and Ptr3p tagged with green fluorescent protein was localized in both the nucleus and the cytoplasm. This is the first report suggesting that the ubiquitin system plays a role in mRNA export.  相似文献   

2.
Summary We isolated mutants of Schizosaccharomyces pombe which have deformed cell morphology, are deficient in conjugation and poor in sporulation. This phenotype is characteristic of the ras1 defective mutant previously identified. Tests of the mutants for allelism using cell fusion showed that they define five complementation groups, one of which is ras1 itself. The others are named ral1 through ral4 (ras like). Mutants in ral3 or ral4 conjugate at a very low frequency, while the others apparently do not conjugate at all. Plasmid clones complementing ral1, ral2 or ral3, which apparently carry the respective gene, were isolated from S. pombe genomic libraries. Multiple copies of either the ral2 or the ral3 gene could partially restore mating ability in ral1 strains. Multiple copies of the ras1 gene could partially restore mating ability in ral1 and ral2 strains. These results suggest that the ral1, ral2 and ras1 genes may function in a common pathway in that order. The ral3 gene may influence this pathway. Analysis of these gene products will aid identification of factors which interact with Ras proteins.  相似文献   

3.
New prp (pre-mRNA processing) mutants of the fission yeast Schizosaccharomyces pombe were isolated from a bank of 700 mutants that were either temperature sensitive (ts-) or cold sensitive (cs-) for growth. The bank was screened by Northern blot analysis with probes complementary to S. pombe U6 small nuclear RNA (sn RNA), the gene for which has a splicesomal (mRNA-type) intron. We identified 12 prp mutants that accumulated the U6 snRNA precursor at the nonpermissive temperature. All such mutants were also found to have defects in an early step of TFIID pre-mRNA splicing at the nonpermissive temperature. Complementation analyses showed that seven of the mutants belong to six new complementation groups designated as prp8 and prp10-prp14, whereas the five other mutants were classified into the known complementation groups prp1, prp2 and prp3. Interestingly, some of the isolated prp mutants produced elongated cells at the nonpermissive temperature, which is a phenotype typical of cell division cycle (cdc) mutants. Based on these findings, we propose that some of the wild-type products from these prp + genes play important roles in the cellular processes of pre-mRNA splicing and cell cycle progression.  相似文献   

4.
Invertase (EC 3.2.1.26) was purified to homogeneity from exponentially growing cells of Schizosaccharomyces pombe fully de-repressed for synthesis of the enzyme, and was shown to be a high-molecular-mass glycoprotein that can be dissociated in the presence of 8 M-urea/1% SDS into identical subunits with an apparent molecular mass of 205 kDa. The carbohydrate moiety, accounting for 67% of the total mass, is composed of equimolar amounts of mannose and galactose. There is a small amount of glucosamine, which is probably involved in the linkage to the protein moiety, since the enzyme is sensitive to treatment with endoglycosidase H. The composition of the carbohydrate moiety resembles that found in higher-eukaryotic glycoproteins and differs from glycoproteins found in Saccharomyces cerevisiae. The protein portion of each subunit is a polypeptide of molecular mass 60 kDa, very similar to the invertase of Sacch. cerevisiae. Both proteins cross-react with antibodies raised against the protein fractions of the other, indicating that the two enzymes are similar.  相似文献   

5.
6.
Mutants unable to grow on glycerol were isolated from the fission yeast Schyzosaccharomyces pombe. Two types of mutants were obtained: one type was able to grow on dihydroxyacetone while the other one did not grow on this compound. The first type of mutants was defective in glycerol dehydrogenase while the second one was affected both in the glycerol dehydrogenase and in dihydroxyacetone kinase. It was found that the second type was defective in the derepression of several enzymes. The mutations were nuclear and monogenic and defined two complementation groups. Spontaneous revertants, able to grow on glycerol, were obtained from the first type of mutants. They have regained the glycerol dehydrogenase activity. The results presented provide genetic evidence for a pathway of glycerol catabolism in Sch. pombe involving dehydrogenation of glycerol as the first step followed by phosphorylation of the dihydroxyacetone formed.  相似文献   

7.
We have isolated mutants in the fission yeast Schizosaccharomyces pombe that are defective in protein glycosylation. A collection of osmotically sensitive mutants was prepared and screened for glycosylation defects using lectin staining as an assay. Mutants singly defective in four glycoprotein synthesis genes (gps1-4) were isolated, all of which bind less galactose-specific lectin. Acid phosphatase and other glycoproteins from the gps mutants have increased electrophoretic mobility, suggesting that these mutants make glycans of reduced size. N-linked glycan analysis revealed that terminal oligosaccharide modification is defective in the gps1 and gps2 mutants. Both mutants synthesize the Man9GlcNAc2 core glycan but have reduced amounts of larger structures. Modified core glycans from gps1 cells have normal amounts of galactose (Gal) residues, but reduced amounts of Man, consistent with a defect in a Golgi mannosyltransferase in this mutant. In contrast, N-linked oligosaccharides from gps2 mutants have much less Gal than wild type, because of reduced levels of the Gal donor, UDP-Gal. This reduction is caused by decreased activity of UDP-glucose 4-epimerase, which synthesizes UDP-Gal. Neither the gps1 or gps2 mutations are lethal, although the cells grow at reduced rates. These findings suggest that S. pombe cells can survive with incompletely glycosylated cell wall glycoproteins. In particular, these results suggest that Gal, which comprises approximately 30% by weight of cell wall glycoprotein glycans, is not crucial for cell growth or survival.  相似文献   

8.
J C Ribas  M Diaz  A Duran    P Perez 《Journal of bacteriology》1991,173(11):3456-3462
Schizosaccharomyces pombe thermosensitive mutants requiring the presence of an osmotic stabilizer to survive and grow at a nonpermissive temperature were isolated. The mutants were genetically and biochemically characterized. In all of them, the phenotype segregated in Mendelian fashion as a single gene which coded for a recessive character. Fourteen loci were defined by complementation analysis. Studies of cell wall composition showed a reduction in the amount of cell wall beta-glucan in three strains (JCR1, JCR5, and JCR10) when growing at 37 degrees C. Galactomannan was diminished in two others. Strains JCR1 and JCR5, with mutant alleles cwg1-1 and cwg2-1, respectively, were further studied. The cwg1 locus was mapped on the right arm of chromosome III, 18.06 centimorgans (cM) to the left of the ade5 marker; cwg2 was located on the left arm of chromosome I, 34.6 cM away from the aro5 marker. (1-3)beta-D-Glucan synthase activities from cwg1-1 and cwg2-1 mutant strains grown at 37 degrees C were diminished, as measured in vitro, compared with the wild-type strain; however, Km values and activation by GTP were similar to the wild-type values. Mutant synthases behaved like the wild-type enzyme in terms of thermostability. Analyses of round shape, lytic behavior, and low (1-3)beta-D-glucan synthase activity in cultures derived from ascospores of the same tetrad showed cosegregation of all these characters. Detergent dissociation of (1-3)beta-D-glucan synthase into soluble and particulate fractions and subsequent reconstitution demonstrated that the cwg1-1 mutant was affected in the particulate fraction of the enzymatic activity while cwg2-1 was affected in the soluble component. The antifungal agents Papulacandin B and Aculeacin A had similar effects on the enzymatic activities of the wild type and the cwg2-1 mutant strain, whereas the cwg1-1 mutant, when growing at 37 degrees C, had a more inhibitor-resistant (1,3)beta-D-glucan synthase. It is concluded that the cwg1+ and cwg2+ genes are related to (1,3)beta-D-glucan biosynthesis.  相似文献   

9.
The Schizosaccharomyces pombe acid phosphatase structural gene (PHO 1) was isolated by complementation of an S. pombe acid phosphatase mutant with a wild type S. pombe DNA recombinant plasmid library. Northern analysis indicates that acid phosphatase is encoded by a 1.4-kilobase mRNA of which approximately 100 bases are 3'-poly(A). The gene contains no introns and the 3' and 5' untranslated regions are short. According to DNA and amino acid sequence data, the S. pombe acid phosphatase has a molecular weight of 50,600. An 18-amino acid sequence at the N terminus was found that is similar to previously identified signal peptides in other eukaryotic secretory proteins. This signal peptide is apparently removed during secretion, since it is absent in the mature secreted acid phosphatase. The gene can be induced 2--3-fold by starvation for phosphate. The signals required for this induction are contained on the isolated DNA clone. Although the gene can be expressed in Saccharomyces cerevisiae, secretion is abnormal.  相似文献   

10.
Selenate-resistant mutants were obtained from several strains of Schizosaccharomyces pombe. The obtained mutants all belonged to the same genetic complementation group. They were low in sulphate uptake activity and in ATP sulphurylase activity. They grew on medium containing sulphite, thiosulphate, cysteine or glutathione but not methionine as the sole source of sulphur. From these results, the mutants were concluded to carry mutations in the ATP sulphurylase gene. Inability of the mutants to utilize methionine as a sulphur source is rationalized by the absence of the reverse transsulphurylation pathway in this organism; wild type strains must utilize methionine as a sulphur source after it is degraded to give rise to sulphate.  相似文献   

11.
We showed that in the yeast Schizosaccharomyces pombe, fructose-bisphosphatase is not subject to catabolite inactivation as it was observed in Saccharomyces cerevisiae. However, this enzyme activity is sensitive to catabolite repression in both yeasts. Two mutants lacking completely fructose-bisphosphatase activity were found. They were unable to grow on glycerol medium. They were still respiratory competent and exhibited the ability to derepress partially malate dehydrogenase activity. In glucose exponential phase culture, the parental strain lacks completely the fructosebisphosphatase activity due to catabolite repression. In these conditions, the growth is slowed down only in the mutants eventhough both mutants and their parental strain lack this enzyme activity. Normal sporulation and poor spore germination were observed for one mutant whereas, only in the presence of glucose, normal sporulation and normal spore germination were observed for the second mutant. Mendelian segregation of glycerol growth was found for the well germinating mutant. It is of nuclear heredity. The two mutations appeared to be closely linked.Abbreviations FBPase Fructose-1,6-bisphosphatase - fbp - genetic symbol for FBPase deficiency - glr - symbol for inability to grow on glycerol A. M. Colson is Research Associate au Fonds National de la Recherche Scientifique  相似文献   

12.
Pre-mRNA splicing mutants of Schizosaccharomyces pombe.   总被引:8,自引:1,他引:7       下载免费PDF全文
J Potashkin  R Li    D Frendewey 《The EMBO journal》1989,8(2):551-559
A collection of temperature sensitive (ts-) mutants was prepared by chemical mutagenesis of a wild type Schizosaccharomyces pombe strain. To screen the ts- mutants for pre-mRNA splicing defects, an oligodeoxynucleotide that recognizes one of the introns of the beta-tubulin pre-mRNA was used as a probe in a Northern blot assay to detect accumulation of intron sequences. This screening procedure identified three pre-mRNA splicing mutants from 100 ts- strains. The three mutants are defective in an early step of the pre-mRNA splicing reaction; none accumulate intermediates. The precursors that accumulate at 37 degrees C are polyadenylated. Analysis of the splicing of another pre-mRNA showed that the mutations are not specific for beta-tubulin. The total RNA pattern in the three splicing mutants appears to be normal. In addition, the amounts of the spliceosomal snRNAs are not drastically changed compared to the wild type and splicing of pre-tRNAs is not blocked. Genetic analyses demonstrate that all three splicing mutations are tightly linked to the ts- growth defects and are recessive. Crosses among the mutants place them in three complementation groups. The mutants have been named prp1, prp2 and prp3.  相似文献   

13.
The subcellular localization of the enzyme invertase in Schizosaccharomyces pombe cells, both repressed and derepressed for synthesis of the enzyme, was studied. Most of the invertase was found to be located outside the plasma membrane and only a small percentage was found to be associated to membranes. A substantial portion of the external enzyme remained firmly bound to cell-wall material.All of the invertase recovered in soluble form from cellular extracts reacted with concanavalin A and with the lectin from Bandeiraea simplicifolia seeds, indicating the presence in the enzyme of a carbohydrate moiety which probably contains terminal mannosyl (or structurally related) and galactosyl residues.The possibility of the presence of two different forms of invertase in S. pombe was considered. An intracellular, soluble form of invertase, devoid of carbohydrate, similar to the small invertase of the budding yeast Saccharomyces cerevisiae, was not found in S. pombe. However, the Michaelis constant for sucrose of the enzyme present in repressed cells was smaller than that of the invertase synthesized under derepressing conditions, although this difference could also be the result of a different pattern of glycosylation of the invertase synthesized under different growth conditions.  相似文献   

14.
15.
Schizosaccharomyces pombe synthesize small cadmium-binding peptides cadystin, structure of which is (gamma-Glu-Cys)n-Gly, in response to cadmium. Mutants unable to synthesize cadystin were found in the mutants hypersensitive to cadmium. Some of them lack activity of either gamma-glutamylcysteine synthetase (EC 6.3.2.2) or glutathione synthetase (EC 6.3.2.3), enzyme involved in glutathione biosynthesis. Some mutants have the same activity levels of these enzymes as wild type has. These results indicate that some steps of cadystin biosynthesis are catalyzed by the enzymes catalyzing glutathione biosynthesis.  相似文献   

16.
17.
Phosphoglycerate mutase could be purified to over 95% homogeneity by a single step procedure involving elution from Cibacron Blue-Sepharose by a pulse of cofactor 2,3-bisphosphoglycerate. Although the enzyme has been isolated in only small quantities (c. 100 micrograms), gel filtration and sodium dodecylsulphate polyacrylamide gel electrophoresis indicated that it is monomeric with Mr approximately 23,000, an extremely low value for this enzyme. Preliminary investigations of the kinetic characteristics and the nature of important amino acid side chains have been undertaken.  相似文献   

18.
Seventy-one mutants of the yeast Schizosaccharomyces pombe that were able to grow on complete medium at 25 C but not at 37 C were isolated. Strains selected for further study showed: (i) single gene mutation and (ii) cell lengthening at the restrictive temperature. Preliminary characterization of 13 mutants is reported. Seven of them have a less pronounced synthesis of deoxyribonucleic acid at the restrictive temperature, and four of them seem to be affected in cell division.  相似文献   

19.
In this paper we report the isolation and preliminary characterisation of nuclear mutants with increased mitochondrial mutability in fission yeast. Screening of about 2000 clones after nitrosoguanidine mutagenesis led to the isolation of ten mutator mutants. For one of them (mut-1) we show that the mutation is chromosomally encoded. The activity of the mutator is restricted to the mitochondrial genome, since it increases the mutation rate to mitochondrially encoded drug resistance considerably, whereas the mutability of nuclear genes is not altered.  相似文献   

20.
The ste12+ gene of Schizosaccharomyces pombe codes for a phosphatidylinositol (PI) 3-phosphate 5'-kinase, which is required for efficient mating. Suppressor mutants for sterility of ste12Delta cells were screened for. Most of the mutant genes turned out to be recessive. Six genes were cloned and the open reading frames responsible for the suppressor activity were identified. They included genes coding for proteins with domains homologous to calcium transporters, casein kinase II, UBC13, AMSH, Vps23p, and Vps27p of Saccharomyces cerevisiae. Disruption of these genes resulted in suppression of the defects of the ste12Delta cells, including low mating efficiency and formation of large vacuoles. Since many of these gene products are homologous to the proteins involved in vesicle transport, sterility caused by inactivation of ste12 may be due to a disordered vesicle transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号