首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The changes in the levels of protein kinase C [PKC(alpha, beta II, gamma)] were studied in cytosolic and particulate fractions of striatal homogenates from rats subjected to 15 min of cerebral ischemia induced by bilateral occlusion of the common carotid arteries and following 1 h, 6 h, and 48 h of reperfusion. During ischemia the levels of PKC(beta II) and -(gamma) increased in the particulate fraction to 390% and 590% of control levels, respectively, concomitant with a decrease in the cytosolic fraction to 36% and 20% of control, respectively, suggesting that PKC is redistributed from the cytosol to cell membranes. During reperfusion the PKC(beta II) levels in the particulate fraction remained elevated at 1 h postischemia and decreased to below control levels after 48 h reperfusion, whereas PKC(gamma) rapidly decreased to subnormal levels. In the cytosol PKC(beta II) and -(gamma) decreased to 25% and 15% of control levels at 48 h, respectively. The distribution of PKC(alpha) did not change significantly during ischemia and early reperfusion. The PKC activity in the particulate fraction measured in vitro by histone IIIS phosphorylation in the presence of calcium, 4 beta-phorbol 13-myristate 12-acetate, and phosphatidylserine (PS) significantly decreased by 52% during ischemia, and remained depressed over the 48-h reperfusion period. In the cytosolic fraction PKC activity was unchanged at the end of ischemia, and decreased by 47% after 6 h of reperfusion. The appearance of a stable cytosolic 50-kDa PKC-immunoreactive peptide or an increase in the calcium- and PS-independent histone IIIS phosphorylation was not observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Peng L  Gu L  Hu X  Zhao L  Hertz L 《Neurochemical research》2008,33(2):328-335
We previously showed that cultured mouse cerebellar granule cells during incubation in glutamine-replete medium respond to 45 mM [K+]e after 20 and 60 min incubation with extracellular-signal regulated kinase 1 and 2 (ERK1/2) phosphorylation which is mainly, but probably not exclusively, secondary to glutamate release and transactivation of epidermal growth factor (EGF) receptors. In the present study the response after 20 min was shown to be abolished by protein kinase C (PKC) inhibition, whereas that at 60 min was PKC-independent. Addition of 50 μM glutamate to the cells caused ERK1/2 phosphorylation already after 5 min most of which was sensitive to PKC inhibition although a minor part was PKC inhibition-resistant. Exposure to [K+]e during incubation in glutamine-depleted medium caused no stimulated release of glutamate but a transactivation-independent ERK1/2 phosphorylation at 20 and 60 min. The response at 20 min was insensitive to PKC inhibition. The potential importance of these complex responses for synaptic plasticity is discussed. Special issue article in honor of Dr. Frode Fonnum.  相似文献   

3.
Abstract: The time course for the ischemia-induced changes in the subcellular distribution of protein kinase C (PKC) (α), (β311). and (γ) and the activity of PKC were studied in the neocortex of rats subjected to 1, 2, 3, 5, 10, and 15 min of global cerebral ischemia. In the particulate fraction, a 14-fold increase in PKC (γ) levels was seen at 3 min of ischemia, which further increased at 5–15 min of ischemia. At 15 min of ischemia, PKC (γ) and (βll) levels had increased two- and six-fold, respectively. In the cytosolic fraction, a transient early 1.4-fold increase in PKC (βll) and PKC (γ) levels was seen, whereas no change in the levels PKC (α) was noted. PKC (γ) levels then progressively declined, reaching 50% at 15 min of ischemia. At 5 min of ischemia, a 43% decrease in PKC activity was seen in the particulate fraction, reaching 50% at 15 min of ischemia concomitant with a 27% decrease in the cytosolic fraction. There was no change in the activator-independent PKC activity. Pretreatment with the ganglioside AGF2 prevented the redistribution of PKC (γ) in the particulate fraction at 5 min. but not at 10 min of ischemia. The observed time course for the translocation of PKC (γ) parallels the ischemia-induced release of neurotransmitters and increased levels of diacylglycerols, arachidonate, and intra-cellular calcium and delineates this subspecies as especially ischemia-sensitive. Ganglioside pretreatment delayed the translocation of PKC (γ), possibly by counteracting the effects of ischemia-induced factors that favor PKC binding to cell membranes.  相似文献   

4.
Ding HL  Zhu HF  Dong JW  Zhu WZ  Zhou ZN 《Life sciences》2004,75(21):2587-2603
The aim of this study was to investigate whether and how protein kinase C (PKC) was involved in the protection afforded by intermittent hypoxia (IH) and the subcellular distribution of different PKC isozymes in rat left ventricle. Post-ischemic recovery of left ventricular developed pressure and +/-dP/dtmax in IH hearts were higher than those of normoxic hearts. Chelerythrine (CHE, 5 microM), a PKC antagonist, significantly inhibited the protective effects of IH, but had no influence on normoxic hearts. CHE significantly reduced the effect of IH on the time to maximal contracture (Tmc), but had no significant effect on the amplitude of maximal contracture (Amc) in IH group. In isolated normoxic cardiomyocytes, [Ca(2+)](i), measured as arbitrary units of fluorescence ratio (340 nm/380 nm) of fura-2, gradually increased during 20 min simulated ischemia and kept at high level during 30 min reperfusion. However, [Ca(2+)](i) kept at normal level during simulated ischemia and reperfusion in isolated IH cardiomyocytes. In normoxic myocytes, [Na(+)](i), indicated as actual concentration undergone calibration, gradually increased during 20 min simulated ischemia and quickly declined to almost the same level as that of pre-ischemia during 30 min simulated reperfusion. However, in IH myocytes, [Na(+)](i) increased to a level lower than the corresponding of normoxic myocytes during simulated ischemia and gradually reduced to the similar level as that of normoxic myocytes after simulated reperfusion. 5 microM CHE greatly increased the levels of [Ca(2+)](i) and [Na(+)](i) during ischemia and reperfusion in normoxic and IH myocytes. In addition, we demonstrated that IH up-regulated the baseline protein expression of particulate fraction of PKC-alpha, epsilon, delta isozymes. There is no significant difference of protein expression of PKC-alpha, epsilon, delta isozymes in cytosolic fraction between IH and normoxic group. The above results suggested that PKC contributed to the cardioprotection afforded by IH against ischemia/reperfusion (I/R) injury; the basal up-regulation of the particulate fraction of PKC-alpha, epsilon, delta isozymes in IH rat hearts and the contribution of PKC to the elimination of calcium and sodium overload might underlie the mechanisms of cardioprotection by IH.  相似文献   

5.
The aim of the current study was to characterize the effects of chemical ischemia and reperfusion at the transductional level in the brain. Protein kinase C isoforms (α, β1, β2, γ, δ and ɛ) total levels and their distribution in the particulate and cytosolic compartments were investigated in superfused rat cerebral cortex slices: (i) under control conditions; (ii) immediately after a 5-min treatment with 10 mM NaN3, combined with 2 mM 2-deoxyglucose (chemical ischemia); (iii) 1 h after chemical ischemia (reperfusion). In control samples, all the PKC isoforms were detected; immediately after chemical ischemia, PKC β1, δ and ɛ isoforms total levels (cytosol + particulate) were increased by 2.9, 2.7 and 9.9 times, respectively, while α isoform was slightly reduced and γ isoform was no longer detectable. After reperfusion, the changes displayed by α, β1, γ, δ and ɛ were maintained and even potentiated, moreover, an increase in β2 (by 41 ± 12%) total levels became significant. Chemical ischemia-induced a significant translocation to the particulate compartment of PKC α isoform, which following reperfusion was found only in the cytosol. PKC β1 and δ isoforms particulate levels were significantly higher both in ischemic and in reperfused samples than in the controls. Conversely, following reperfusion, PKC β2 and ɛ isoforms displayed a reduction in their particulate to total level ratios. The intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, 1 mM, but not the N-methyl-d-asparate receptor antagonist, MK-801, 1 μM, prevented the translocation of β1 isoform observed during ischemia. Both drugs were effective in counteracting reperfusion-induced changes in β2 and ɛ isoforms, suggesting the involvement of glutamate-induced calcium overload. These findings demonstrate that: (i) PKC isoforms participate differently in neurotoxicity/neuroprotection events; (ii) the changes observed following chemical ischemia are pharmacologically modulable; (iii) the protocol of in vitro chemical ischemia is suitable for drug screening.  相似文献   

6.
The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species-dependent increase in phosphatase and tensin homolog activity in reperfusion period relieves ERK1/2 from inhibition of AKT.  相似文献   

7.

Aim

Excess mitochondrial reactive oxygen species (mROS) play a vital role in cardiac ischemia reperfusion (IR) injury. P66Shc, a splice variant of the ShcA adaptor protein family, enhances mROS production by oxidizing reduced cytochrome c to yield H2O2. Ablation of p66Shc protects against IR injury, but it is unknown if and when p66Shc is activated during cardiac ischemia and/or reperfusion and if attenuating complex I electron transfer or deactivating PKCβ alters p66Shc activation during IR is associated with cardioprotection.

Methods

Isolated guinea pig hearts were perfused and subjected to increasing periods of ischemia and reperfusion with or without amobarbital, a complex I blocker, or hispidin, a PKCβ inhibitor. Phosphorylation of p66Shc at serine 36 and levels of p66Shc in mitochondria and cytosol were measured. Cardiac functional variables and redox states were monitored online before, during and after ischemia. Infarct size was assessed in some hearts after 120 min reperfusion.

Results

Phosphorylation of p66Shc and its translocation into mitochondria increased during reperfusion after 20 and 30 min ischemia, but not during ischemia only, or during 5 or 10 min ischemia followed by 20 min reperfusion. Correspondingly, cytosolic p66Shc levels decreased during these ischemia and reperfusion periods. Amobarbital or hispidin reduced phosphorylation of p66Shc and its mitochondrial translocation induced by 30 min ischemia and 20 min reperfusion. Decreased phosphorylation of p66Shc by amobarbital or hispidin led to better functional recovery and less infarction during reperfusion.

Conclusion

Our results show that IR activates p66Shc and that reversible blockade of electron transfer from complex I, or inhibition of PKCβ activation, decreases p66Shc activation and translocation and reduces IR damage. These observations support a novel potential therapeutic intervention against cardiac IR injury.  相似文献   

8.
Exogenously administered adenosine agonist will protect myocardium against infarction during ischemia. However, long-term exposure to adenosine agonists is associated with loss of this protection. To determine why this protection is lost, isolated, perfused rabbit hearts were studied after administration of R(-)-N6-(2-phenylisopropyl)adenosine (PIA), 0.25 mg/h IP, for 3-4 days to intact animals. All hearts experienced 30 min of regional ischemia and 120 min of reperfusion. Control groups 1 and 2 were untreated. In group 1 this ischemia/reperfusion was the only intervention, whereas group 2 hearts were preconditioned with a cycle of 5 min global ischemia/10 min reperfusion preceding the 30 min regional ischemia. Groups 3-5 had been chronically exposed to PIA. Group 3 hearts had 1 preconditioning ischemia/reperfusion cycle before the prolonged ischemia. Group 4 received a 5 min infusion of 0.1 mol/L phenylephrine in lieu of global ischemia, whereas group 5 was instead treated with 1 mol/L carbachol. Infarct size averaged 32% of the risk zone in group 1, whereas ischemic preconditioning limited infarction to 8.2 in group 2. Prolonged exposure of group 3 hearts to PIA resulted in the inability of preconditioning with 5 min global ischemia to protect (28.7 ± 4.4% infarction). However, protection was restored by either phenylephrine, an agonist of 1-adrenergic receptors which couple to Gq and stimulate PKC, or carbachol, an agonist of M2-muscarinic receptors which couple instead to Gi as do adenosine A1 receptors (5.2 ± 1.7% and 9.2 ± 2.1% infarction, resp.). Therefore, cross tolerance to ischemic preconditioning develops after chronic PIA infusion. Since both the Gi and the PKC components of the preconditioning pathway were shown to be intact, tolerance must have been related to downregulation or desensitization of the A1 adenosine receptor.  相似文献   

9.
Phospholipases A2 in Ischemic and Toxic Brain Injury   总被引:3,自引:0,他引:3  
Phospholipases A2 (PLA2s) regulate hydrolysis of fatty acids, including arachidonic acid, from the sn-2 position of phospholipid membranes. PLA2 activity has been implicated in neurotoxicity and neurodegenerative processes secondary to ischemia and reperfusion and other oxidative stresses. The PLA2s constitute a superfamily whose members have diverse functions and patterns of expression. A large number of PLA2s have been identified within the central nervous systems of rodents and humans. We postulated that group IV large molecular weight, cytosolic phospholipase A2 (cPLA2) has a unique role in neurotoxicity associated with ischemic or toxin stress. We created mice deficient in cPLA2 and tested this hypothesis in two injury models, ischemia/reperfusion and MPTP neurotoxicity. In each model cPLA2 deficient mice are protected against neuronal injury when compared to their wild type littermate controls. These experiments support the hypothesis that cPLA2 is an important mediator of ischemic and oxidative injuries in the brain.  相似文献   

10.
The hypothesis that oxygen-derived free radicals play an important role in myocardial ischemic and reperfusion injury has received a lot of support. In the presence of catalytic amounts of transition metals such as iron, superoxide anions, and hydrogen peroxide can be transformed into a highly reactive hydroxyl radical °OH (Haber-Weiss reaction). In view of this, we have undertaken this study to investigate whether iron is involved in the reperfusion syndrome and therefore could aggravate free radicals injury. Coronary effluent iron concentrations and cardiac cytosolic iron levels were evaluated in rat hearts subjected to an ischemia/reperfusion sequences. In the case of total ischemia, iron concentration in coronary effluents peaked immediately in the first sample collected upon reperfusion. However, in the case of partial ischemia, iron concentration in coronary effluents peaked rather exclusively during ischemia period. Cardiac cytosolic iron level augmented significantly after 30 min of total ischemia and non significantly in the other ischemia protocols compared to perfused control hearts. It also appears that the iron released is not protein-bound, and could therefore have a marked catalytic activity. The results of the present study suggest that in the oxygen paradox, iron plays an important role in inducing alterations during reoxygenation.  相似文献   

11.
The activation of corticotrophin-releasing hormone receptor (CRHR) 1 is implicated in neuronal injury in experimental stroke. However, little is known about the relationship between CRHR1 activation and brain endothelial barrier impairment after ischemia and reperfusion (I/R). Recently we have demonstrated that the activation of extracellular signal-regulated kinase (Erk) 1/2 as well as p38 is required for hydrogen peroxide (H2O2)-increased cytosolic phospholipase A2 (cPLA2) phosphorylation in bEnd3 cells. Using this in vitro ischemic-like model, we found that both blockade and interference of CRHR1 inhibited H2O2-enhancd p38, Erk1/2 and cPLA2 phosphorylation and in turn suppressed monolayer hyperpermeability and ZO-1 redistribution. Then using the transient middle cerebral artery occlusion (tMCAO) mouse model, we revealed that CRHR1 antagonist NBI27914 pretreatment attenuated cPLA2 phosphorylation, Evans blue dye (EBD) extravasation, tight junction disruption and mitochondrial cytochrome c release. CRHR1 interference also inhibited cortical vascular hyperpermeability. Furthermore, NBI27914 administration attenuated neurovascular injury. After 30 min MCAO with 7 days reperfusion CRHR1 interference alleviated hippocampal blood-brain barrier (BBB) leakage and improved spatial cognitive dysfunction. Thus, our study demonstrates that during ischemic stroke the activation of endothelial CRHR1 contributes to BBB impairment via cPLA2 phosphorylation.  相似文献   

12.
Energy failure and oxidative stress have been implicated in the pathogenesis of ischemia. Here, we report a potential link between cytosolic phospholipase A2 (cPLA2) activation and energy failure/oxidative stress‐induced astrocyte damage involving reactive oxygen species (ROS), protein kinase C‐α (PKC‐α), Src, Raf, and extracellular signal‐regulated kinase (ERK) signaling and concurrent elevation of endogenous chelatable zinc. Energy failure and oxidative stress were produced by treating astrocytes with glycolytic inhibitor iodoacetate and glutathione chelator diethylmaleate, respectively. Diethylmaleate and iodoacetate in combination caused augmented damage to astrocytes in a time‐ and concentration‐dependent manner. The cell death caused by diethylmaleate/iodoacetate was accompanied by increased ROS generation, PKC‐α membrane translocation, Src, Raf, ERK, and cPLA2 phosphorylation. Pharmacological studies revealed that these activations all contributed to diethylmaleate/iodoacetate‐induced astrocyte death. Intriguingly, the mobilization of endogenous chelatable zinc was observed in diethylmaleate/iodoacetate‐treated astrocytes. Zinc appears to act as a downstream mediator in response to diethylmaleate/iodoacetate treatment because of the attenuating effects of its chelator N,N,N′,N′‐tetrakis(2‐pyridylmethyl)ethylenediamine. These observations indicate that ROS/PKC‐α, Src/Raf/ERK signaling and cPLA2 are active participants in diethylmaleate/iodoacetate‐induced astrocyte death and contribute to a vicious cycle between the depletion of ATP/glutathione and the mobilization of chelatable zinc as critical upstream effectors in initiating cytotoxic cascades.

  相似文献   


13.
Xue  Di  Xu  Jianfeng  McGuire  Susan O.  Devitre  David  Sun  Grace Y. 《Neurochemical research》1999,24(10):1285-1291
Besides playing an important role in the maintenance of cell membrane phospholipids, phospholipases A2 (PLA2) are responsible for the release of arachidonic acid (AA) which is a precursor for prostaglandin biosynthesis. The cytosolic PLA2 has been the focus of recent studies, probably due to its ability to respond to protein kinases and changes in intracellular calcium levels. In this study, we examined agents for stimulation of the cytosolic phospholipase A2 in immortalized astrocytes (DITNC). Incubation of DITNC cells with [14C]arachidonic acid (AA) resulted in a time-dependent uptake of the label into phospholipids (PL) and neutral glycerides. In prelabeled cells, release of labeled AA could be stimulated by calcium mobilizing agents such as calcium ionophore A23187 (4–20 M) and thimerosal (100 M), and by phorbol myristate acetate (PMA, 100 nM), an agent for activation of protein kinase C. The release of AA could also be stimulated by ATP (200 M), probably through activation of the purinergic receptor but not by glutamate (1 mM). The stimulated release of AA was dependent on extracellular Ca2+ and was inhibited by mepacrine (50 M), a non-specific PLA2 inhibitor. Western blot analysis further confirmed the presence of an 85 kDa cPLA2 in both membrane and cytosol fractions of these cells and stimulation by A23187 resulted in translocation of this protein to the membrane fraction. Besides labeled fatty acids, A23187 also stimulated the concomitant release of labeled PL into the culture medium and this event was accompanied by the increased release in lactate dehydrogenase (LDH). Results thus revealed that besides activation of cPLA2, the calcium ionophore A23187 is capable of perturbating cell membrane integrity.  相似文献   

14.
We have recently shown that the protective mechanism of ischemic preconditioning (PC) is impaired in the myocardium that survived infarction and underwent postinfarct ventricular remodeling. In this study, we examined the hypothesis that failure of PC to activate PKC- underlies the refractoriness of the remodeling heart to PC. Circumflex coronary arteries were ligated in rabbits to induce infarction and subsequent ventricular remodeling, and only sham operations were performed in controls. Hearts were isolated before (i.e. 4 days later) or after (i.e. 2 weeks later) remodeling of the left ventricle and used for isolated buffer-perfused heart experiments. Myocardial infarction was induced in isolated hearts by 30 min global ischemia/2 h reperfusion, and its size was measured by tetrazolium staining. Using separate groups of hearts, tissue biopsies were taken before and after PC, and PKC translocation was assessed by Western blotting. Areas infarcted in vivo by coronary ligation (CL) were excluded from subsequent infarct size/PKC analyses. In the hearts 4 days after CL, PC with 2 cycles of 5 min ischemia/5 min reperfusion induced PKC- translocation from cytosol to particulate fractions and limited infarct size to 40% of control value. In the hearts remodeled 2 weeks after CL, PC failed to induce PKC- translocation and infarct size limitation. In this group, PKC activity and hemodynamic responses to adenosine were similar to those in sham-operated controls. When remodeling after CL was prevented by valsartan infusion (10 mg/kg/day), an angiotensin II type 1 (AT1) receptor blocker, PC could induce both infarct limitation and PKC- translocation. The present results suggest that persistent activation of AT1 receptors during remodeling disturbed the PC signaling between G proteins and PKC-, which underlies the refractoriness of the remodeled myocardium to PC.  相似文献   

15.
Abstract: It is well established that ischemia-induced release of glutamate and the subsequent activation of postsynaptic glutamate receptors are important processes involved in the development of ischemic neuronal damage. Moderate intraischemic hypothermia attenuates glutamate release and confers protection from ischemic damage, whereas mild intraischemic hyperthermia increases glutamate release and augments ischemic pathology. As protein kinase C (PKC) is implicated in neurotransmitter release and glutamate receptor-mediated events, we evaluated the relationship between intraischemic brain temperature and PKC activity in brain regions known to be vulnerable or nonvulnerable to transient global ischemia. Twenty minutes of bilateral carotid artery occlusion plus hypotension were induced in rats in which intraischemic brain temperature was maintained at 30°C, 37°C, or 39°C. Prior to and following ischemia, brain temperature was 37°C in all groups. Cytosolic, membrane-bound, and total PKC activities were determined in hippocampal, striatal, cortical, and thalamic homogenates at the end of ischemia and at 0.25–24 h of recirculation. PKC activity of control rats varied by region and were affected by altered brain temperature. For both membrane-bound and cytosolic PKC, there was a significant temperature effect, and for membrane-bound PKC there was also a significant effect of region. Rats with normothermic ischemia (37°C) showed extensive depressions of all PKC fractions. Hippocampus and striatum were noteworthy for depressions in PKC activity extending from the earliest (15 min) to the latest (24 h) recirculation times studied, whereas cortex showed PKC depressions chiefly during the first hour of recirculation, and the thalamic pattern was inconsistent. In contrast, in rats with hypothermic ischemia (30°C), significant overall effects were noted only for total PKC in thalamus, which showed depressed levels at both 1 and 24 h of recirculation. Rats with hyperthermic (39°C) ischemia also showed significant overall effects for the time course of membrane-bound, cytosolic, and total PKC activities in the hippocampus, striatum, and cortex. However, no significant reductions in PKC indices were observed in the thalamus. For membrane-bound PKC, significant temperature effects were noted for hippocampus, striatum, and cortex, but not for thalamus. For cytosolic, as well as total PKC, activity, significant temperature effects were noted for all four brain regions. Our results indicate that ischemia, followed by reperfusion, induces a significant reduction in PKC activity and that this process is highly influenced by the brain temperature during ischemia. Furthermore, our data also establish that differences exist in the response of PKC to ischemia/recirculation in vulnerable versus non-vulnerable brain regions. These results suggest that PKC alterations may be an important factor involved in the modulatory effects of temperature on the outcome following transient global ischemia.  相似文献   

16.
17.
Attachment of HeLa cells to gelatin induces the release of arachidonic acid (AA), which is essential for cell spreading. HeLa cells spreading in the presence of extracellular Ca2+ released more AA and formed more distinctive lamellipodia and filopodia than cells spreading in the absence of Ca2+. Addition of exogenous AA to cells spreading in the absence of extracellular Ca2+ restored the formation of lamellipodia and filopodia. To investigate the role of cytosolic phospholipase A2 (cPLA2) in regulating the differential release of AA and subsequent formation of lamellipodia and filopodia during HeLa cell adhesion, cPLA2 phosphorylation and translocation from the cytosol to the membrane were evaluated. During HeLa cell attachment and spreading in the presence of Ca2+, all cPLA2 became phosphorylated within 2 min, which is the earliest time cell attachment could be measured. In the absence of extracellular Ca2+, the time for complete cPLA2 phosphorylation was lengthened to <4 min. Maximal translocation of cPLA2 from cytosol to membrane during adhesion of cells to gelatin was similar in the presence or absence of extracellular Ca2+ and remained membrane associated throughout the duration of cell spreading. The amount of total cellular cPLA2 translocated to the membrane in the presence of extracellular Ca2+ went from <20% for unspread cells to >95% for spread cells. In the absence of Ca2+ only 55–65% of the total cPLA2 was translocated to the membrane during cell spreading. The decrease in the amount translocated could account for the comparable decrease in the amount of AA released by cells during spreading without extracellular Ca2+. Although translocation of cPLA2 from cytosol to membrane was Ca2+ dependent, phosphorylation of cPLA2 was attachment dependent and could occur both on the membrane and in the cytosol. To elucidate potential activators of cPLA2, the extracellular signal-related protein kinase 2 (ERK2) and protein kinase C (PKC) were investigated. ERK2 underwent a rapid phosphorylation upon early attachment followed by a dephosphorylation. Both rates were enhanced during cell spreading in the presence of extracellular Ca2+. Treatment of cells with the ERK kinase inhibitor PD98059 completely inhibited the attachment-dependent ERK2 phosphorylation but did not inhibit cell spreading, cPLA2 phosphorylation, translocation, or AA release. Activation of PKC by phorbol ester (12-O-tetradecanoylphorbol-13-acetate) induced and attachment-dependent phosphorylation of both cPLA2 and ERK2 in suspension cells. However, in cells treated with the PKC inhibitor Calphostin C before attachment, ERK2 phosphorylation was inhibited, whereas cPLA2 translocation and phosphorylation remained unaffected. In conclusion, although cPLA2-mediated release of AA during HeLa cell attachment to a gelatin substrate was essential for cell spreading, neither ERK2 nor PKC appeared to be responsible for the attachment-induced cPLA2 phosphorylation and the release of AA.  相似文献   

18.
In immortalized rat brain endothelial cells (GP8.39), we have previously shown that oxidized LDL (oxLDL), after 24-h treatment, stimulates arachidonic acid release and phosphatidylcholine hydrolysis by activation of cytosolic phospholipase A2 (cPLA2). A putative role for MAPKs in this process has emerged. Here, we studied the contribution of Ca2+-independent phospholipase A2 (iPLA2), and the role of the MAP kinase family as well as both cPLA2 and iPLA2 mRNA expression by RT-PCR in oxLDL toxicity to GP8.39 cells in vitro. The activation of extracellular signal-regulated kinases ERK1/2, p38 and c-Jun NH2-terminal kinase (JNK) was assessed with Western blotting and kinase activity assays. iPLA2 activity, which was found as a membrane-associated enzyme, was more stimulated by oxLDL compared with native LDL. The phosphorylation of ERK1/2, p38 and JNKs was also significantly enhanced in a dose-dependent manner. PD98059, an ERK inhibitor, SB203580, a p38 inhibitor, and SP600125, an JNK inhibitor, abolished the stimulation of all three members of the MAPK family by oxLDL. Confocal microscopy analysis and subcellular fractionation confirmed either an increase in phosphorylated form of ERKs, p38 and JNKs, or their nuclear translocation upon activation. A strong inhibition of MAPK activation was also observed when endothelial cells were treated with GF109203X, a PKC inhibitor, indicating the important role of both PKC and all three MAPKs in mediating the maximal oxLDL response. Finally, compared with samples untreated or treated with native LDL, treatment with oxLDL (100 μM hydroperoxides) for 24 h significantly increased the levels of constitutively expressed iPLA2 protein (by 5.1-fold) and mRNA (by 3.1-fold), as well as cPLA2 protein (by 4.4-fold) and mRNA (by 1.5-fold). Together, these data link the stimulation of PKC–ERK–p38–JNK pathways and PLA2 activity by oxLDL to the prooxidant mechanism of the lipoprotein complex, which may initially stimulate the endothelial cell reaction against noxious stimuli as well as metabolic repair, such as during inflammation and atherosclerosis.  相似文献   

19.
The effect of hypothermia on the ischemia-induced changes in the subcellular distribution of protein kinase C (PKC) (gamma), -(beta II), and -(alpha) and the activity of PKC was studied in striatal homogenates of rats subjected to 20 min of cerebral ischemia. The effect of postischemic cooling was also studied. During normothermic ischemia, PKC(gamma) and -(beta II) increased 3.9- and 2.9-fold, respectively, in the particulate fraction, signifying a translocation of PKC to cell membranes. The levels of PKC(alpha) did not change significantly. PKC activity decreased during ischemia by 52% and 47% (p less than 0.05) in the particulate and cytosolic fractions, respectively, and remained inhibited for the 1 h recovery period. In hypothermic animals, there was no evidence of translocation, and the inhibition of PKC activity was completely abolished. Hypothermia induced in the recovery phase, however, did not affect PKC distribution or activity. The protective effect of intraischemic hypothermia may in part be due to the prevention of the ischemia-induced translocation and subsequent downregulation of PKC, possibly through a temperature-dependent modification of the cell membranes.  相似文献   

20.
The activities of rat hepatic subcellular antioxidant enzymes were studied during hepatic ischemia/reperfusion. Ischemia was induced for 30 min (reversible ischemia) or 60 min (irreversible ischemia). Ischemia was followed by 2 or 24 h of reperfusion. Hepatocyte peroxisomal catalase enzyme activity decreased during 60 min of ischemia and declined further during reperfusion. Peroxisomes of normal density (d = 1.225 gram/ml) were observed in control tissues. However, 60 min of ischemia also produced a second peak of catalase specific activity in subcellular fractions corresponding to newly formed low density immature peroxisomes (d = 1.12 gram/ml). The second peak was also detectable after 30 min of ischemia followed by reperfusion for 2 or 24 h. Mitochondrial and microsomal fractions responded differently. MnSOD activity in mitochondria and microsomal fractions increased significantly (p < 0.05) after 30 min of ischemia, but decreased below control values following 60 min of ischemia and remained lower during reperfusion at 2 and 24 h in both organelle fractions. Conversely, mitochondrial and microsomal glutathione peroxidase (GPx) activity increased significantly (p < 0.001) after 60 min of ischemia and was sustained during 24 h of reperfusion. In the cytosolic fraction, a significant increase in CuZnSOD activity was noted following reperfusion in animals subjected to 30 min of ischemia, but 60 min of ischemia and 24 h of reperfusion resulted in decreased CuZnSOD activity. These studies suggest that the antioxidant enzymes of various subcellular compartments respond to ischemia/reperfusion in an organelle or compartment specific manner and that the regulation of antioxidant enzyme activity in peroxisomes may differ from that in mitochondria and microsomes. The compartmentalized changes in hepatic antioxidant enzyme activity may be crucial determinant of cell survival and function during ischemia/reperfusion. Finally, a progressive decline in the level of hepatic reduced glutathione (GSH) and concomitant increase in serum glutamate pyruvate transaminase (SGPT) activity also suggest that greater tissue damage and impairment of intracellular antioxidant activity occur with longer ischemia periods, and during reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号