首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The course of the differentiation and proliferation of the human erythroid burst-forming units (BFU-E) to colony-forming units (CFU-E) was directly investigated using a combination of highly purified BFU-E, a liquid culture system, and the following clonal assay. Highly purified human blood BFU-E with a purity of 45-79% were cultured in liquid medium with recombinant human erythropoietin (rEP) and recombinant human interleukin-3 (rIL-3) to generate more differentiated erythroid progenitors. The cultured cells were collected daily for investigating the morphology, the increment in the number of cells and the clonality. Ninety percent of purified BFU-E required not only rEP but also rIL-3 for clonal development. By 7 days of liquid culture, the total cell number increased 237 +/- 20-fold above the starting cells, while erythroid progenitors increased 156 +/- 74-fold. As the incubation time in liquid culture increased, the cells continuously differentiated in morphology. Replating experiments with rEP combined with or without rIL-3 showed the following: 1) The number of erythroblasts that were part of erythroid colonies decreased with accompanying erythroid progenitor differentiation and proliferation. 2) As the incubation time in liquid culture increased, erythroid progenitors had a graded loss of their dependency on rIL-3 and a complete loss of dependency was observed after 3 days of liquid culture. At that time 85% of the erythroid progenitors gave rise to colonies of more than 100 erythroblasts which were equivalent to mature BFU-E. These studies provide a quantitative assessment of the loss of IL-3 dependency by BFU-E and indicate that the size of the generated erythroid colonies and their IL-3 requirement correlate with the erythroid differentiated state.  相似文献   

2.
To clarify the manner by which erythropoietin (EP), stem cell factor (SCF), or insulin-like growth factor I (IGF-I) regulate erythropoiesis, apoptosis of human erythroid progenitor cells was investigated. Human burst-forming units-erythroid (BFU-E) partially purified from peripheral blood were cultured for 6 days to generate erythroid colony-forming cells (ECFC), which consist mainly of colony-forming units-erythroid (CFU-E). The cells were labeled with [3H]thymidine, incubated in serum-free liquid media, at 37°C, for 16 h, and the pattern of DNA breakdown was analyzed by agarose gel electrophoresis. When these cells were incubated without EP, 70% of the total cellular DNA was broken down into DNA fragments of less than 5 kilobases and nuclear condensation and fragmentation, characteristic of apoptosis, were evident. While EP greatly reduced the amount of DNA breakdown to 23%, SCF and IGF-I each reduced the amount of DNA breakdown to 38–46% and, when added together, to 24%. Dose-response experiments with SCF and IGF-I showed a dose-dependent reduction in DNA fragmentation at concentrations that stimulate colony formation in serum-free semisolid cultures. Finally, assays of ECFC performed by the plasma clot method, after serum-free liquid culture, at 37°C, for 16 h, demonstrated marked protection of erythroid colony-forming capacity by SCF or IGF-I in the absence of EP, as well as by EP itself. These data indicate that human erythroid progenitor cells undergo apoptosis which is reduced by SCF and IGF-I as well as EP and suggest that the control of apoptosis by each of these factors has a prominent role in the regulation of erythropoiesis. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Highly purified human blood burst-forming units-erythroid (BFU-E) were used to study the effects of interferon γ (IFNγ). IFNγ inhibited erythroid colony formation, cell proliferation, and differentiation of day 3 to day 6 mature BFU-E in a dose-dependent manner. The primitive BFU-E (day 1 and day 2 cells) and later day 7 cells were less affected. IFNγ dose-response experiments demonstrated that the number and size of erythroid colonies were reduced at a concentration of 500 U/ml with more complete inhibition at 1,000 U/ml. Inhibition of day 4 to day 6 erythroid progenitors was first noted by 72 h of incubation with IFNγ, and target cell growth and differentiation continued to decrease with further incubation. IFNγ also induced erythroblast apoptosis which was demonstrated by both nuclear condensation and fragmentation plus flow cytometry with in situ end-labelling. Because day 3 to day 6 cells need stem cell factor (SCF) for development in serum-free culture, the relationship of IFNγ inhibition to this growth factor was investigated. The reduction in the number of erythroid colonies by IFNγ was reversed by SCF although the colony size was not completely re-established. In contrast, interleukin-3 did not have the capacity to overcome the inhibitory effects of IFNγ. Since IFNγ blood levels are elevated in some anemias of chronic disease, IFNγ may have a role in promoting this anemia and its inhibitory effect might be better overcome by SCF plus EP. However, the mechanism by which these growth factors overcome the inhibition of IFNγ, or vice versa, is unknown at the present time. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Highly purified human erythroid colony-forming cells (ECFC), which consist predominately of colony-forming units-erythroid (CFU-E), were prepared from human blood and used to study the binding and processing of erythropoietin (Ep). When radioiodinated human recombinant Ep (125I-rEp) was incubated with these cells, binding was specific and saturable. Specific binding was directly proportional to cell concentration and did not occur with other human cells. Saturation of specific binding at 3 degrees C occurred at 1 nM (3.9/U/ml), and Scatchard analysis revealed two classes of binding sites on the cell surface. Of a total of 1,050 binding sites per ECFC, one-fifth had a Kd of 0.10 nM, while the remainder had a Kd of 0.57 nM. Specific binding was twofold greater at 37 degrees C than at 3 degrees C, and removal of surface-bound Ep with acid indicated that 125I-rEp was internalized into the cells after incubation at 37 degrees C. Further incubation at this temperature showed a decline of cellular radioactivity, with a release of small molecular weight degradation fragments into the medium. These studies demonstrate two classes of receptors for Ep on normal human ECFC. Internalization and degradation of EP occur, and the biologic effect of the hormone is produced by a small number of Ep molecules, as demonstrated in murine erythroid progenitor cells.  相似文献   

5.
Transformation in vitro of bone marrow cells by avian erythroblastosis virus (AEV) gives rise to rapidly growing cells of erythroid nature. Target cells of neoplastic transformation by AEV are recruited among the early progenitors of the erythroid lineage, the burst-forming units-erythroid (BFU-E). They express a brain-related antigen at a high level and an immature antigen at a low level. We show that AEV-transformed cells express low levels of the brain antigen and high levels of the immature antigen. Their response to specific factors regulating the erythroid differentiation indicates that they are very sensitive to erythropoietin. Furthermore, cells transformed by a temperature-sensitive mutant of AEV differentiate into hemoglobin-synthesizing cells 4 days after being shifted to the nonpermissive temperature. All these properties are similar to those of late progenitors of the erythroid lineage, the colony-forming units-erythroid (CFU-E). These results indicate that the AEV-transformed cells are blocked in their differentiation at the CFU-E stage.  相似文献   

6.
Erythroid progenitors from normal human marrow were purified by a two-step immune panning method permitting both the enrichment of erythroid progenitors (plating efficiency up to 10%) and the separation of CFU-E from BFU-E. The purified erythroid progenitors were grown in serum-replaced conditions; in some experiments at an average of one cell per well. Human recombinant granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin 3 (IL3), erythroid potentiating activity (EPA), and human erythropoietin (Epo) either recombinant or homogenous native were tested for their effect on CFU-E growth. Epo was an absolute requirement for CFU-E growth and was sufficient to obtain colony formation at the unicellular level whereas GM-CSF and IL3 did not further increase the plating efficiency. EPA potentiated the effect of Epo on this progenitor only in experiments performed at unicellular level. Human recombinant GM-CSF, IL3, Interleukin 1 alpha (IL1 alpha), and Epo were subsequently tested for their ability to promote BFU-E growth. GM-CSF and IL3 supported the growth of erythroid bursts in the presence of Epo, even at the unicellular level. However, IL3 promoted a higher number of bursts than GM-CSF under all conditions tested. These two growth factors have no or very small additive effects when tested in combination. IL1 alpha added to Epo alone had no effect on the growth of BFU-E whereas it potentiated the combined action of IL3 and GM-CSF on the primitive BFU-E. In conclusion, this study confirms at the unicellular level and under serum-free conditions that erythroid progenitors are regulated by multipotential growth factors in early phases of erythropoiesis and become sensitive only to Epo in later phases of differentiation.  相似文献   

7.
Transforming growth factor-beta (TGF beta) regulates cell growth and differentiation in numerous cell systems, including several hematopoietic lineages. We used in vitro cultures of highly enriched hematopoietic progenitor cells stimulated by natural and recombinant growth factors to investigate the biologic effects of TGF beta 1 and TGF beta 2 on erythroid (CFU-E and burst-forming unit (BFU)-E), granulocyte-macrophage (CFU-GM) and multilineage (i.e., granulocyte, erythroid, macrophage, and megakaryocyte; CFU-GEMM) colony-forming cells. In the absence of exogenous CSF, neither TGF beta 1 nor TGF beta 2 supported progenitor cell growth. In the presence of recombinant or natural CSF, picomolar concentrations of TGF beta 1 inhibited growth of CFU-E, BFU-E, and CFU-GEMM and enhanced growth of day 7 CFU-GM. Inhibition of CFU-E and BFU-E by human and porcine TGF beta 1 was similar, ranging from 17 to 73% over a concentration range of 0.05 to 1.0 ng/ml, and was largely independent of the type of burst-promoting activity used (rIL-3 vs cell line 5637-conditioned medium). Inhibition of CFU-GEMM ranged from 79 to 98% over a concentration range of 0.25 to 1.0 ng/ml. The inhibitory effect of TGF beta 1 was progressively lost when its addition was delayed for 40 to 120 h, suggesting a mode of action during early cell divisions. In contrast, growth of CFU-GM stimulated by plateau concentrations of human rG-CSF, rGM-CSF, and rIL-3 was enhanced up to 154 +/- 22% by human TGF beta 1. Porcine platelet-derived TGF beta 2 was essentially without effect on the progenitor populations examined. These results support the hypothesis that TGF beta may play role in the regulation of hematopoietic progenitor cell proliferation by differentially affecting individual lineages and is apparently capable of doing so in the relative absence of marrow accessory cells.  相似文献   

8.
N Maruo  M Ozawa  M Kondo  S Fujita 《Histochemistry》1990,94(3):257-262
A new method has been developed for the precise identification of human bone marrow colony forming unit erythroid (CFU-E) and burst forming unit erythroid (BFU-E) colonies, and for determination of the hemoglobin contents using microcytofluorometry. The method relies on a photochemical reaction in which intracellular hemoglobin is converted into fluorescent porphyrin under violet light (lambda = 405 nm) in the presence of an SH-donor (mercaptoethylamine hydrochloride). The CFU-E and BFU-E colonies showed red fluorescence with two spectrum peaks at 600 and 650 nm when illuminated by violet light. These two peaks are consistent with those of porphyrin fluorescence. The porphyrin fluorescence was not inducible in colony forming unit granulocyte-macrophage (CFU-GM) colonies, while 20% of the CFU-GM colonies were false positive with respect to the conventional benzidine reaction. The photochemically inducible fluorescence began to appear in BFU-E colonies on the 4th day of culture, while the same colonies started to be positive for the benzidine reaction on the 9th day. Therefore, the photochemical reaction was more specific and sensitive than the benzidine reaction for the identification of CFU-E and BFU-E colonies. In addition, this method enabled us to measure the hemoglobin level in the cells forming the colonies because the intensity of the fluorescence was proportional to the amount of hemoglobin when the photochemical reaction was carried out for 50 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To determine the quantitative effects of iron deficiency on erythropoiesis and to assess the response of erythroid progenitors to sustained anemia, we developed quantitative assays for various hematopoietic progenitors in the adult, Sprague-Dawley rat including erythroid colony- and burst-forming cells (CFU-E and BFU-E), granulocyte/macrophage colony-forming cells (CFU-GM), and megakaryocytic colony-forming cells (CFU-Meg). CFU-E were cultured in methylcellulose and grew best in the presence of fetal calf serum. CFU-GM, BFU-E, and CFU-Meg grew better in normal rat plasma and required the presence of pokeweed mitogen-stimulated rat spleen cell conditioned medium. The numbers of progenitors and nucleated erythroblasts in total marrow were estimated by the ratios of radioactivity in the humerus to the total skeleton as determined by radioiron dilution. The numbers of progenitors and erythroblasts in the spleen were measured by simple dilution. Sustained anemia was brought about through chronic iron deficiency. The response to iron deficiency anemia (IDA) was monitored by the numbers of the various progenitors and their cell cycle characteristics as measured by the tritiated thymidine suicide technique. With IDA, the number of CFU-F in the body (marrow plus spleen) was increased to 3.5 times control, whereas the numbers of BFU-E and CFU-GM were unchanged. There was no difference in the percentage of CFU-E, BFU-E, and CFU-GM in DNA synthesis (68%, 19.4%, and 18.8%, respectively). With iron therapy of IDA, CFU-E numbers in marrow began to decrease by day 1 and fell in a manner reciprocal to changes in the hematocrit. Marrow and spleen erythroblasts, 1.7 times control in IDA, increased further to 3.9 times control by the fourth day after iron administration. There was no change in BFU-E or CFU-GM numbers in response to iron repletion, although the fraction of progenitors increased in the spleen. Thus, IDA does not limit the increase in CFU-E seen with anemia, but does restrict erythroid maturation. Furthermore, the increase in CFU-E and the state of chronic anemia occur without detectable changes in the number of cell cycle state of the more primitive BFU-E.  相似文献   

10.
Conditioned media (CM) from allogeneic stimulated cultures of light density cells (less than 1.08 g/cm3) from the peripheral blood of normal dogs were used to stimulate the growth of erythroid burst-forming units (BFU-E) in bone marrow from normal dogs. Maximum numbers of BFU-E were obtained when 5% (vol/vol) 3 X CM and 2 U/ml erythropoietin were added to plasma clot cultures of bone marrow cells. In addition, the radiation sensitivity (D0 value) was determined for CFU-E and for BFU-E in bone marrow cells exposed in vitro to 1 MeV fission neutron radiation or 250 kVp X rays. BFU-E were more sensitive than CFU-E to the lethal effects of both types of radiation. For bone marrow cells exposed to 1 MeV neutron radiation, the D0 for CFU-E was 0.27 +/- 0.01 Gy, and the D0 for BFU-E was 0.16 +/- 0.03 Gy. D0 values for CFU-E and BFU-E were, respectively, 0.61 +/- 0.05 Gy and 0.26 +/- 0.09 Gy for cells exposed to X rays. The neutron RBE values for the culture conditions described were 2.3 +/- 0.01 for CFU-E and 1.6 +/- 0.40 for BFU-E.  相似文献   

11.
Cats viremic with feline leukemia virus subgroup C (FeLV-C) develop pure red cell aplasia (PRCA) characterized by the loss of detectable late erythroid progenitors (CFU-E) in marrow culture. Normal numbers of early erythroid progenitors (BFU-E) and granulocyte-macrophage progenitors (CFU-GM) remain, suggesting that the maturation of BFU-E to CFU-E is impaired in vivo. We have examined the cell cycle kinetics of BFU-E and their response to hematopoietic growth factor(s) to better characterize erythropoiesis as anemia develops. Within 3 weeks of FeLV-C infection, yet 6-42 weeks before anemia, the traction of BFU-E in DNA synthesis as determined by tritiated thymidine suicide increased to 43 +/- 4% (normal 23 +/- 2%) while there was no change in the cell cycle kinetics of CFU-GM. In additional studies, we evaluated the response of marrow to the hematopoietic growth factor(s) present in medium conditioned by FeLV-infected feline embryonic fibroblasts (FEA/FeLV CM). With cells from normal cats or cats viremic with FeLV-C but not anemic, a 4-fold increase in erythroid bursts was seen in cultures with 5% FEA/FeLV CM when compared to cultures without CM. However, just prior to the onset of anemia, when the numbers of detectable CFU-E decreased, BFU-E no longer responded to FEA/FeLV CM in vitro. BFU-E from anemic cats also required 10% cat or human serum for optimal in vitro growth. These altered kinetics and in vitro growth characteristics may relate to the in vivo block of BFU-E differentiation and PRCA. Finally, when marrow from cats with PRCA was placed in suspension culture for 2 to 4 days in the presence of cat serum and CM, the numbers of BFU-E increased 2- to 4-fold although no CFU-E were generated. By 4 to 7 days, CFU-E were detected, suggesting that conditions contributing to the block of erythroid maturation did not persist. The suspension culture technique provides an approach to study further the defect in erythroid differentiation characteristic of feline PRCA.  相似文献   

12.
This study was designed to determine the stage in haemopoietic cell differentiation from multipotential stem cells at which erythropoietin becomes physiologically important. The responses of haemopoietic precursor cells were monitored in the bone marrow of mice under conditions of high (after bleeding) and low (after hypertransfusion) ambient erythropoietin levels. The number of relatively mature erythroid precursors (CFU-E), detected by erythroid colony formation after 2 days of culture, increased three-fold in marrow by the fourth day after bleeding, and decreased three-fold after hypertransfusion. Assessed by sensitivity to killing by a brief exposure to tritiated thymidine (3H-TdR) in vitro, the proliferative activity of CFU-E was high (75% kill) in untreated and bled animals, and was slightly lower (60% kill) after hypertransfusion. The responses of more primitive erythroid progenitors (BFU-E), detected by erythroid colony formation after 10 days in culture, presented a contrasting pattern. After hypertransfusion they increased slightly, while little change was noted until the fourth day after bleeding, when they decreased in the marrow. The same response pattern was observed for the progenitors (CFU-C) detected by granulocyte/macrophage colony formation in culture. The sensitivity of BFU-E to 3H-TdR was normally 30%, and neither increased after bleeding nor decreased after hypertransfusion. However, in regenerating marrow the 3H-TdR sensitivity of BFU-E increased to 63%, and this increase was not affected by hypertransfusion. These results are interpreted as indicating (1) that physiological levels of erythropoietin do not influence the decision by multipotential haemopoietic stem cells to differentiate along the erythroid pathway as opposed to the granulocyte/macrophage pathway; (2) that early erythroid-committed progenitors themselves do not respond to these levels of erythropoietin, but rather are subject to regulation by erythropoietin-independent mechanisms; and (3) that physiological regulation by erythropoietin commences in cells at a stage of maturation intermediate between BFU-E and CFU-E.  相似文献   

13.
Adult susceptible mice (DBA/2J) infected with MPSV (myeloproliferative sarcoma virus), a defective RNA tumour virus, develop splenomegaly and progressive disruption of the haematologic system culminating in death. The present study was specifically directed toward determining the effects of the virus on erythroid differentiation. Early and late precursor cells (erythroid burst-forming units; BFU-E and colony-forming units; CFU-E, respectively) were evaluated by the ability of bone marrow and spleen cells to form colonies of fully differentiated erythroid cells in vitro. MPSV caused substantial modification of both the BFU-E and CFU-E populations in the bone marrow and spleen of infected animals. Changes were detected in the CFU-E population preceding any significant increase in spleen weight. In the bone marrow, the proportion of CFU-E cells increased almost twofold by days 5-10 after virus infection but decreased by day 15. In the spleen, CFU-E frequency rose 40-fold by days 10-15 and then declined steadily prior to death. At the peak of CFU-E expansion, a small proportion of the population appeared to be erythropoietin (Ep) independent, although there was no evidence of a complete switch to Ep-independence which occurs in Friend virus-induced erythroleukemia. Dose-response curves showed that none of these data could be explained in terms of a changing responsiveness to Ep. However, evidence is presented that indicates that BFU-E from MPSV-infected animals lose or have a reduced requirement for burst-promoting activity (BPA) relative to normal cells although their progeny still need Ep for terminal erythroid differentiation.  相似文献   

14.
The expression of c-myc was analyzed in murine and human erythroblasts throughout their differentiation in vitro into reticulocytes. The murine cells were splenic erythroblasts from animals infected with the anemia strain of Friend virus (FVA cells). In FVA cells cultured without EPO, the c-myc mRNA and protein levels decrease sharply within 3 to 4 h, showing that continual EPO stimulation is required to maintain c-myc expression. When cultured with EPO, the c-myc mRNA level of FVA cells is raised within 30 min of exposure. The c-myc mRNA and protein reach maxima at 1 to 3 h, then decline slowly to very low levels by 18 h. In contrast, c-fos and c-jun mRNA levels are not regulated by EPO in FVA cells. The human cells analyzed were colony-forming units-erythroid, CFU-E, derived in vitro by the culture of peripheral blood burst-forming units-erythroid (BFU-E). When grown in EPO and insulin-like growth factor 1 (IGF-1) these cells differentiate into reticulocytes over 6 days rather than the 2 days required for murine cells, but the c-myc mRNA kinetics and response to EPO parallel those of mouse cells at similar stages of differentiation. Both IGF-1 and c-kit ligand (SCF) cause an additive increase in c-myc mRNA in human CFU-E in conjunction with EPO. These additive effects suggest that EPO, IGF-1, and SCF affect c-myc mRNA accumulation by distinct mechanisms. Addition of an antisense oligonucleotide to c-myc in cultures of human CFU-E specifically inhibited cell proliferation but did not affect erythroid cell differentiation or apoptosis. When human cells were grown in high SCF concentrations, an environment which enhances proliferation and retards differentiation, antisense oligonucleotide to c-myc strongly inhibited proliferation, but such inhibition did not induce differentiation. This latter result indicates that differentiation requires signals other than depression of c-myc and resultant depression of proliferation. © 1996 Wiley-Liss, Inc.  相似文献   

15.
The aim of the study was to further delineate the erythropoietin (Ep) dependence of the mature Burst Forming Unit-Erythroid - BFU-E(d4). Experiments were performed in normal and polycythemic CBA mice. BFU-E(d4) were determined by means of the methylcellulose culture technique. It was demonstrated that in plethoric mice the number of BFU-E(d4) is reduced from 9 000/femur and 30 000/spleen found in normal mice to less than 1 000/femur and 2 000/spleen on day 6 post-hypoxia. The number of BFU-E(d4) remained low both in the bone marrow and spleen in mice with posthypoxic polycythemia between days 6 and 11 post-hypoxia. When exogenous Ep was injected into the plethoric mice the number of BFU-E(d4) increased after 24 h both in the bone marrow and spleen. In Ep stimulated polycythemic mice the CFU-E:BFU-E(d4) ratio did not achieve normal values, indicating that although Ep stimulation increased the number of BFU(d4), the number of CFU-E produced per BFU-E(d4) was lower than in normal nonpolycythemic mice. The results obtained indicate that BFU-E(d4) population size depends on the effect of Ep on differentiation and proliferation of erythroid committed precursors.  相似文献   

16.
We studied the effect of natural and synthetic androgens on children's erythropoietic precursor cells in culture. Cultures of normal marrow were carried out according to a miniaturized methylcellulose method in the presence of erythropoietin. We then evaluated the effects of testosterone, nortestosterone, fluoxymesterone and etiocholanolone (10(-9)-10(-6) M) on erythroid colony-forming units (CFU-E) and burst-forming units (BFU-E). Androgen-induced growth of erythroid progenitors was quantified by directly scoring colonies and by a biochemical determination of the uroporphyrinogen I synthase activity (UROS). We observed a significant increase (p less than or equal to 0.05) in the number of CFU-E and BFU-E and in the UROS activity of derived colonies in the presence of androgens (10(-8) or 10(-7)M). This microculture assay could be useful not only to study the effect of androgens on erythroid progenitor cells in culture, but also to predict the best androgenic treatment of anemia in children and adults.  相似文献   

17.
Target cells for Friend virus-induced erythroid bursts in vitro   总被引:9,自引:0,他引:9  
T A Kost  M J Koury  W D Hankins  S B Krantz 《Cell》1979,18(1):145-152
Erythropoietin (Epo) acts on mouse bone marrow cells in vitro in plasma clot or methyl cellulose culture systems to induce the formation of single erythroid colonies, or clusters of erythroid colonies termed bursts. Our laboratory has recently reported the observation that infection of mouse bone marrow cells in vitro with the polycythemia-inducing strain of Friend virus (FV) resulted in the formation of erythroid bursts after 5 days in plasma clot culture in the absence of added Epo. We have now used this system to characterize the target cells for this FV-induced erythroid transformation. The greatest number of FV bursts were observed when marrow cells were obtained from mice whose erythropoiesis had been stimulated by bleeding or phenylhydrazine treatment. Bleeding also resulted in an increase in the number of FV bursts following the infection of spleen cells in vitro. Hypertransfusion of mice, which results in decreased erythropoiesis, yielded a reduced number of FV bursts in vitro, as did prior treatment with actinomycin D. Cell separation studies using velocity sedimentation at unit gravity showed that the cells, which give rise to FV bursts, sedimented with a modal sedimentation velocity between 5.1–8.5 mm/hr. The Epo-dependent colony-forming unit erythroid (CFU-E), which gives rise to a single erythroid colony, also sediments with a modal velocity between 5.1–8.5 mm/hr, while the Epo-dependent day 8 burst-forming unit erythroid (day 8 BFU-E) sediments with a modal velocity between 3.0–6.0 mm/hr. A 20 min incubation of marrow cells with high specific activity 3H-thymidine, prior to virus infection, resulted in a 75–80% reduction in the number of FV bursts. Mixing cells from the upper portion of the gradient, which yielded no FV bursts, with cells from an area in which high numbers of FV bursts were observed did not result in the inhibition of burst formation. These experiments indicate that the primary target cells for FV bursts in vitro are most probably erythroid precursor cells that have matured beyond the day 8 BFU-E and are closely related to the CFU-E.  相似文献   

18.
To evaluate whether the response of hematopoietic cells to interleukin-17 (IL-17) depends on the tissue microenvironment in which hematopoiesis occurs, the influence of recombinant mouse IL-17 on spleen hematopoietic cells and cytokine release was assessed in normal mice in vitro and in vivo. In vitro, IL-17 did not significantly affect the growth of granulocyte-macrophage (CFU-GM) and erythroid (BFU-E and CFU-E) derived colonies. A single injection of IL-17 in vivo exhibited stimulatory effects on hematopoietic cells from both granulocytic and erythroid lineages. The increased number of metamyelocytes 48 h after treatment imply to the IL-17-induced stimulation of granulopoiesis. The number of BFU-E was increased at 24 h, while the number of CFU-E increased 6 h and 24 h after treatment. Since the same treatment in the bone marrow decreased the number of CFU-E, it may be concluded that the local microenvironment plays an important role in IL-17-mediated effects on CFU-E. IL-17 increased the release of IL-6 both in vitro and in vivo, but showed tendency to suppress the constitutive secretion of IL-10 by spleen cells. Our results suggest the complexity of target cell response and interplay of secondary induced cytokines by IL-17 in different hematopoietic organs.  相似文献   

19.
In order to gain more insight into mechanisms operating on the haematopoietic activity of the T-cell-derived cytokine, interleukin-17 (IL-17) and target cells that first respond to its action in vivo, the influence of a single intravenous injection of recombinant mouse IL-17 on bone marrow progenitors, further morphologically recognizable cells and peripheral blood cells was assessed in normal mice up to 72 h after treatment. Simultaneously, the release of IL-6, IL-10, IGF-I, IFN-gamma and NO by bone marrow cells was determined. Results showed that, in bone marrow, IL-17 did not affect granulocyte-macrophage (CFU-GM) progenitors, but induced a persistant increase in the number of morphologically recognizable proliferative granulocytes (PG) up to 48 h after treatment. The number of immature erythroid (BFU-E) progenitors was increased at 48 h, while the number of mature erythroid (CFU-E) progenitors was decreased up to 48 h. In peripheral blood, white blood cells were increased 6 h after treatment, mainly because of the increase in the number of lymphocytes. IL-17 also increased IL-6 release and NO production 6 h after administration. Additional in vitro assessment on bone marrow highly enriched Lin- progenitor cells, demonstrated a slightly enhancing effect of IL-17 on CFU-GM and no influence on BFU-E, suggesting the importance of bone marrow accessory cells and secondary induced cytokines for IL-17 mediated effects on progenitor cells. Taken together, these results demonstrate that in vivo IL-17 affects both granulocytic and erythroid lineages, with more mature haematopoietic progenitors responding first to its action. The opposite effects exerted on PG and CFU-E found at the same time indicate that IL-17, as a component of a regulatory network, is able to intervene in mechanisms that shift haematopoiesis from the erythroid to the granulocytic lineage.  相似文献   

20.
The effects of a variety of inhibitors of the arachidonic acid metabolic pathway have been tested on the growth of early erythroid progenitor cell-derived colonies (CFU-E and BFU-E) in an attempt to discern whether products of the cyclo-oxygenase pathway or lipoxygenase pathway are essential for erythropoiesis. Murine erythroid progenitor cells obtained from fetal livers were cultured in the presence of erythropoietin for CFU-E and of interleukin 3 for BFU-E colony formation in response to the cyclo-oxygenase inhibitors, aspirin or sodium meclofenamate, and the lipoxygenase inhibitors, BW755C, nordihydroguiaretic acid (NDGA), phenidone, and butylated hydroxyanisole (BHA). The most potent inhibitor of colony formation (both CFU-E and BFU-E) was the selective lipoxygenase inhibitor, BW755C, followed by NDGA, phenidone and BHA. Neither aspirin nor sodium meclofenamate (10(-4) - 10(-6)M) significantly (p less than 0.05) inhibited CFU-E or BFU-E formation. These results support the hypothesis that lipoxygenase products of arachidonic acid metabolism may be essential for erythroid cell proliferation/differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号