首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic behavior of penicillin acylase immobilized on acrylic carrier   总被引:1,自引:0,他引:1  
The usefulness of Lilly's kinetic equation to describe penicillin G hydrolysis performed by immobilized penicillin acylase onto the acrylic carrier has been shown. Based on the experimental results characteristic kinetic constants have been estimated. The effect of noncompetitive inhibition of 6-amino penicillanic acid has not been found. Five components of reaction resistance have been defined. These components were also estimated for the reaction of the native enzyme as well as the Boehringer preparation.List of Symbols C E g/m3 enzyme concentration - C P,C Q mol/m3 product concentrations - C S mol/m3 substrate concentration - C SO mol/m3 initial substrate concentration - K A mol/m3 constant which defines the affinity of a substrate to the enzyme - K iS mol/m3 substrate inhibitory constant - K iP mol/m3 PhAA inhibitory constant - K iQ mol/m3 6-APA inhibitory constant - k 3 mol/g/min constant rate of dissociation of the active complex - R(1) concentrational component of reaction resistance - R(2) resistance component derived from substrate affinity - R(3) resistance component due to the inhibition of the enzyme by substrate - R(4) resistance component due to the inhibition of the enzyme by PhAA - R(5) resistance component due to inhibition of the enzyme by 6-APA - r = dCs/dt mol/m3 min rate of reaction - t min reaction time - (i) relative resistance of reaction  相似文献   

2.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase purified from baker’s yeast was found to have a molecular weight of ca, 55,000 daltons based on polyacrylamide gel electrophoresis. The size of the enzyme subunit was analyzed by gel electrophoresis in the presence of sodium dodecylsulfate. This showed that the enzyme was composed of two nonidentical subunits with a molecular weight of 27,000 and 25,000 daltons. Fluorescence titration of the apoenzyme with FMN suggested that the holoenzyme contained one mol of FMN per mol of the enzyme. The Km value of FMN for apoenzyme was calculated to be ca. 16 nm on both activities of pyridoxamine 5′-phosphate oxidase and pyridoxine 5′-phosphate oxidase.  相似文献   

3.
In methanol-limited chemostat cultures methanol concentration >K I for growth decreased sharply the alcohol oxidase activity in yeast cells. This effect was accompanied by accumulation of riboflavin phosphate in the medium. Purified alcohol oxidase showed higherK m for methanol, change in absorbance maxima in the riboflavin area and chemical modification of enzyme structure discovered by means of partial proteolysis.  相似文献   

4.
A new oxidative reaction of ethylene glycol was found with two alcohol oxidases from methanol yeast, Candida sp. and Pichia pastoris. Both alcohol oxidases oxidized ethylene glycol to glyoxal via glycolaldehyde. The optimum pHs for the oxidation of ethylene glycol and glycolaldehyde by the Candida alcohol oxidase were around 8.5 and 5.5, respectively, and their apparent Kms were 2.96 m and 28.6 mm, respectively. The optimum temperature was 40°C at pH 7.0. The optimum pHs for the oxidation of ethylene glycol and glycolaldehyde by the Pichia alcohol oxidase were around 8.0 and 6.0, respectively, and their optimum temperatures were 50 and 45°C, respectively, at pH 7.0. The apparent Km for glycolaldehyde was found to be 83.3 mm. For the accumulation of glyoxal, addition of catalase was effective, and a higher amount of glyoxal was obtained at a much lower temperature than the optimum for the alcohol oxidase. When 0.1 m ethylene glycol and glycolaldehyde were incubated with 80 units of the Pichia enzyme at 10°C, both substrates were almost completely converted to glyoxal after 10 and 3h of incubation, respectively.  相似文献   

5.
Aryl alcohol oxidase (AAO) produced by dye decolorizing bacteria Sphingobacterium sp. ATM, was purified 22.63 fold to a specific activity of 21.75 μmol/min/mg protein using anion exchange and size exclusion chromatography. The molecular weight of the purified AAO was found to be 71 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and confirmed by zymography of AAO using L-dopa. The enzyme showed substrate specificity towards veratryl alcohol, followed by n-propanol. The optimum pH and temperature of purified AAO were found to be 3.0 and 40°C, respectively. The K m and V max of AAO was 1.1615 mM and 3.13 mM/min when veratryl alcohol was used as substrate. Sodium azide showed maximum inhibition while ethylenediamine tetra acetic acid (EDTA), L-cysteine and dithiothreitol showed slight inhibition. Metal ions also showed slight inhibition. HPLC analysis confirmed the degradation of Direct Red 5B. The metabolite obtained after decolorization of Direct Red 5B was characterized as 3 diazenyl 7 [-(phenyl carbonyl) amino] naphthalene-2-sulfonic acid using GC-MS analysis.  相似文献   

6.
Milk xanthine oxidase was immobilized by covalent attachment to CNBr-activated Sepharose 4B and by adsorption to n-octylamine-substituted Sepharose 4B. The amounts of activity immobilized for the two preparations were 30 and 90%, respectively. The pH optima for free and adsorbed xanthine oxidase were at 8.6 and 8.2, respectively. Both free and immobilized xanthine oxidase show substrate inhibition. The apparent inhibition constant (Ki′) found for adsorbed xanthine oxidase with xanthine as substrate was higher than the Ki for the free enzyme, which was shown to be due to substrate diffusion limitation in the pores of the carrier beads (internal diffusion limitation). Higher substrate concentrations, as desirable for practical application in organic synthesis, can therefore be used with the immobilized enzyme without decreasing the rate. As a result of the internal diffusion limitation the apparent Michaelis constant (Km′) for adsorbed xanthine oxidase was also higher than the Km for the free enzyme. Immobilized xanthine oxidase was more stable than the free enzyme during storage at 4 and 30°C. Both forms rapidly lost activity during catalysis. The loss was proportional to the amount of substrate converted. Coimmobilization of xanthine oxidase with superoxide dismutase and catalase improved the operational stability, suggesting that O2? and H2O2 side-products of the enzymatic reaction were involved in the inactivation. Coimmobilization with albumin also had some stabilizing effect. Complete surrounding of xanthine oxidase by protein, however, by means of etrapment in a glutaraldehyde-crosslinked gelatin matrix, considerably enhanced the operational half-life. This system was less efficient than the Sepharose preparations either because much activity was lost during the immobilization procedure and/or because it had poor flow properties. Xanthine (15 mg)was converted by an adsorbed xanthine oxidase preparation and product (uric acid) was isolated in high yield (84%).  相似文献   

7.
Porphobilinogen oxygenase from wheat germ was purified and was found to be a cationic protein containing 8 mol of nonheme iron and 8–10 mol of labile sulfide per mole of enzyme (Mr, 100,000). The enzyme isolated from either wheat germ or rat liver microsomes was found to exist in multiple molecular weight forms. When succinylated, only one molecular weight form of 25,000 was obtained and it retained full activity. It had lost all of the sigmoidal kinetics characteristic of the native enzyme. While the native enzyme had an n = 3.5, the succinylated enzyme showed Michaelian kinetics. A Km of approximately 1.70 mm was determined for the succinylated wheat germ enzyme, and a Km of approximately 2.5 mm was found for the succinylated microsomal enzyme. Acetylation of the enzyme afforded an active acetylated enzyme which showed allosteric kinetics and multiple molecular weight forms. The products formed by the succinylated enzyme were the same as those formed by the native enzyme.  相似文献   

8.
Abstract— Plasmalogenase was assayed by measuring the disappearance of the plasmalogen by two-dimensional thin-layer chromatography. The enzyme was present in a glycerol-bicarbonate extract of an acetone-dried powder from bovine brain. With ethanolamine plasmalogens as the substrate, the Km was 180 μM. Diacyl glycerophosphorylcholines, diacyl glycerophosphorylethanolamines and choline plasmalogens were competitive inhibitors. With choline plasmalogens as the substrate, the Km was 208 μM and competitive inhibition was observed with diacyl glycerophosphorylcholines and ethanolamine plasmalogens. The same enzyme may be responsible for the hydrolysis of the alk-1-enyl moiety from both plasmalogens. Plasmalogenase activity was 5.1 μmol/h/g of dog brain, 3.9 μmol/h/g of rat brain and 3.4 μmol/h/g of gerbil brain. A lysophospholipase was also found in the glycerol-bicarbonate extract from the acetone-dried powder. The lysophospholipase was more active in hydrolysing acyl groups from 2-acyl-sn-glycero-3-phosphorylethanolamines than the plasmalogenase was active in hydrolyzing alk-1-enyl groups from 1-alk-1′-enyl-2-acyl-sn-glycero-3-phosphorylethanolamines.  相似文献   

9.
An esterase catalyzing the hydrolysis of acetyl ester moieties in poly(vinyl alcohol) was purified 400-fold to electrophoretic homogeneity from the cytoplasmic fraction of Pseudomonas vesicularis PD, which was capable of assimilating poly(vinyl alcohol) as the sole carbon and energy source. The purified enzyme was a homodimeric protein with a molecular mass of 80 kDa and the isoelectric point was 6.8. The pH and temperature optima of the enzyme were 8.0 and 45°C. The enzyme catalyzed the hydrolysis of side chains of poly(vinyl alcohol), short-chain p-nitrophenyl esters, 2-naphthyl acetate, and phenyl acetate, and was slightly active toward aliphatic esters. The enzyme was also active toward the enzymatic degradation products, acetoxy hydroxy fatty acids, of poly(vinyl alcohol). The K m and V max of poly(vinyl alcohol) (degree of polymerization, 500; saponification degree, 86.5-89.0 mol%) and p-nitrophenyl acetate were 0.381% (10.6 mM as acetyl content in the polymer) and 2.56 μM, and 6.52 and 12.6 μmol/min/mg, respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate at a concentration of 5 mM, which indicated that the enzyme was a serine esterase. The pathway for the metabolism of poly(vinyl alcohol) is also discussed.  相似文献   

10.
The digestive gland and other tissues of several species of terrestrial gastropod mollusc contain an aliphatic alcohol oxidase activity (EC1.1.3.13). The enzyme is FAD dependent, consumes oxygen and generates hydrogen peroxide and the corresponding aldehyde. Saturated primary alcohols are favoured as substrates with octanol preferred with an apparent Km of 3–4 μM. The activity is clearly distinguishable from previously reported molluscan aromatic alcohol oxidase (EC1.1.3.7) on the basis of FAD dependence, sensitivity to heat treatment and high salt concentration and with regard to substrate preferences. The aliphatic alcohol oxidase is membrane associated and most likely localised to the endoplasmic reticulum. Extraction of membranes with 1% Igipal solubilises the enzyme in active form. This enzyme is a further example of an oxidase apparently restricted to molluscs.  相似文献   

11.
A formaldehyde oxidase activity was found in cell-free extracts of methanol-grown yeast Candida boidinii. Loss of alcohol oxidase activity in a mutant, 48, led to loss of the formaldehyde oxidase activity, indicating that the same enzyme is probably responsible for both activities. This could be demonstrated with the purified alcohol oxidase which oxidizes, besides lower primary alcohols, formaldehyde to formate. The K m value for formaldehyde is 5.7 mM. It seems that alcohol oxidase is not implicated in formaldehyde oxidation in vivo.  相似文献   

12.
The paper presents the kinetic evaluations of poly(ethyleneimine)-penicillin acylase preparations. The comparative studies show that the investigated system is much better than the native enzyme, and slightly worse than commercially available Boenringer preparation. Additionally, the high stability of PEI-enzyme system, very easy way of its preparation, high flexibility, and possibility to set the needed enzyme concentration are particularly favourable for use of the membrane bioreactor with PEI-enzyme system immobilized in its volume. Some advantages of the use of such bioreactor are also discussed.List of Symbols C E IU/m3 activity concentration - C S mol/m3 substrate concentration - C P , CQ mol/m3 products concentration - K A mol/m3 constant which defines the affinity of a substrate to enzyme - K iS mol/m3 substrate inhibitory constant - K iP mol/m3 PhAA inhibitory constant - K iQ mol/m3 6-APA inhibitory constant - k 3 , mol/IU min constant rate of dissociation of the active complex - mol/m3 min rate of reaction This work was supported by Government Committee of Science: Grant KBN # 3 0321 92 01  相似文献   

13.
Summary A new alcohol dehydrogenase catalysing the enantioselective reduction of acetophenone to R(+)-phenylethanol was found in a strain of Lactobacillus kefir. A 70-fold enrichment of the enzyme with an overall yield of 76% was obtained in two steps. The addition of Mg2+ ions was found to be necessary to prevent rapid deactivation. The enzyme depends essentially on NADPH and was inactive when supplied with NADH as the coenzyme. Important enzymological data of the dehydrogenase are: K m (acetophenone) 0.6 mM, K m (NADPH) 0.14 mM, and a pH optimum for acetophenone reduction at 7.0. Addition of EDTA leads to complete deactivation of the enzyme activity. Added iodoacetamide or p-hydroxymercuribenzoate cause only slight inhibition, revealing that the active centre of the enzyme contains no essential SH-group. Besides acetophenone several other aromatic and long-chain aliphatic secondary ketones are substrates for this enzyme. Batch production of phenylethanol was examined using three different methods for the regeneration of NADPH: glucose/glucose dehydrogenase, glucose-6-phosphate/glucose-6-phosphate dehydrogenase, and isopropanol.  相似文献   

14.
 The reaction with substrates and carbonyl reagents of native lentil Cu-amine oxidase and its modified forms, i.e. Cu-fully-depleted, Cu-half-reconstituted, Cu-fully-reconstituted, Co-substituted, Ni-substituted and Zn-substituted, has been studied. Upon removal of only one of the two Cu ions, the enzyme loses 50% of its enzymatic activity. Using several substrates, Co-substituted lentil amine oxidase is shown to be active but the k c value is different from that of native or Cu-fully-reconstituted enzyme, while K m is similar. On the other hand, the Ni- and Zn-substituted forms are catalytically inactive. Enzymatic activity measurements and optical spectroscopy show that only in the Co-substituted enzyme is the organic cofactor 6-hydroxydopa quinone reactive and the enzyme catalytically competent, although less efficient. The Co-substituted amine oxidase does not form the semiquinone radical as an intermediate of the catalytic reaction. While devoid or reduced of catalytic activity, all the enzyme preparations are still able to oxidise two moles of substrate and to release two moles of aldehyde per mole of dimeric enzyme. The results obtained show that although Co-substituted amine oxidase is catalytically competent, copper is essential for the catalytic mechanism. Received: 5 March 1999 / Accepted: 22 July 1999  相似文献   

15.
The reaction kinetics of the enzymatic of cephalexin from 7-aminodea-cetoxy cephalosporanic acid and phenylglycine methylester was studied using the synthesizing enzyme obtained from Xanthomonas citri. The activation energy, Km value for 7-aminodeacetoxy cephalosporanic acid and phenylglycine methylester, and Ki value for phenylglycine methylester were determined as 8.63 kcal/mol, 3.7mM, 14.5mM, and 70mM, respectively. The enzyme was found to be constitutive and susceptible to deactivation.  相似文献   

16.
The oxidation of methanol and formaldehyde was investigated by using some combination systems of alcohol oxidase, catalase, which were purified from Candida N-16, and hydrogen peroxide. The activity of alcohol oxidase was irreversibly inhibited when the enzyme was incubated with 2.5 mm hydrogen peroxide for 15 min. However, the oxidation of methanol to formaldehyde by alcohol oxidase in the presence of catalase was extremely promoted by the addition of 30 mm hydrogen peroxide. Alcohol oxidase could oxidize not only methanol but also formaldehyde as follows: HCHO + 02 + H2O→HCOOH + H2O2. The formaldehyde oxidizing activity was inhibited by hydrogen peroxide. The system containing alcohol oxidase and catalase appears to be the entity of the oxygen-dependent oxidation system of formaldehyde previously found in the cell-free extract of the yeast.  相似文献   

17.
马肝醇脱氢酶催化有机硅酮不对称还原反应动力学   总被引:2,自引:0,他引:2  
探讨了马肝醇脱氢酶(HLADH)催化三甲基硅乙酮及其碳结构类似物不对称还原反应动力学.结果表明,在酶浓度低于150 mg/L时,底物浓度与反应初速度的关系符合米氏动力学方程;HLADH催化三甲基硅乙酮不对称还原反应的KmvmaxEa分别为2.67 mmol/L、0.118 mmol/(L·min·mg)和37 kJ/mol, 其碳结构类似物的相应值分别为3.56 mmol/L、0.084 mmol/(L·min·mg)和61 kJ/mol.  相似文献   

18.
Six substrate analogs of 4-hydroxyphenylpyruvate, specifically pentafluorophenylpyruvate, 4-hydroxytetrafluorophenylpyruvate,2-thienylpyruvate, 3-thienylpyruvate, thiophenol oxalate, and p-thiocresoloxalate were synthesized and their interactions with porcine liver 4-hydroxyphenylpyruvate dioxygenase investigated. Both pentafluorophenylpyruvate and thiophenol oxalate are competitive inhibitors of the enzyme with KI values of 14 and 150 μM, respectively, but p-thiocresol oxalate has no effect on the enzymic activity. The other three substrate analogs are both substrates and mechanism-based inactivators of the enzyme with the following kinetic characteristics (compound, Km, Vmax, kinact, K′, partition ratio) at pH 6.0, 37°C, and an air atmosphere: 4-hydroxytetrafluorophenylpyruvate, 50 μM, 1.9 mkat/kg, 1.5/min, 70 μM 4.2; 2-thienylpyruvate, 500 μM, 7.8 mkat/kg, 0.6/min, 400 μM, 41; 3-thienylpymvate, 250 μM, 2 9 mkat/kg, 0.6/min, 300 μM, 22. When inactivated, the dioxygenase was found to contain per mole of active enzyme, 0.78 mol of label from 3-thienyl-3[3H]pyruvate and 0.85 mol of label from 4-hydroxytetrafluorophenyl-3 [3H]pyruvate. The product formed from the enzyme-catalyzed oxidation of 3-thienylpyruvate was determined to be 3-carboxymethyl-3-thiolene-2-one. The implication of these results to the mechanism of the dioxygenase is considered,  相似文献   

19.
Summary Production of extracellular hydrogen peroxide by fungal oxidases is been investigated as a requirement for lignin degradation. Aryl-alcohol oxidase activity is described in extracellular liquid and mycelium ofPleurotus eryngii and studied under non-limiting nitrogen conditions. This aryl-alcohol oxidase catalyses conversion of primary aromatic alcohols to the corresponding aldehydes and H2O2, showing no activity with aliphatic and secondary aromatic alcohols. The enzyme is stable at pH 4.0–9.0, has maximal activity at 45°–50°C and pH 6.0–6.5, is inhibited by Ag+, Pb2+ and NaN3, and has aK m of 1.2 mM using veratryl alcohol as substrate. A single protein band with aryl-alcohol oxidase activity was found in zymograms of extracellular and intracellular crude enzyme preparations fromP. eryngii.  相似文献   

20.
A membrane-bound NADH oxidase of an anaerobic alkaliphile, M-12 (a strain of Amphibacillus sp.), was solubilized with decanoyl N-methylglucamide and purified by chromatography on DEAE-Sepharose and hydroxyapatite. The purified enzyme appears to consist of a single polypeptide component with an apparent molecular mass of 56 kDa. The enzyme catalyzed the oxidation of NADH with the formation of H2O2 and exhibited a specific activity of 46 μmol NADH min–1 (mg protein)–1. NADPH did not serve as a substrate for the enzyme. The K m for NADH was estimated to be 0.05 mM. The enzyme exhibited a pH dependence for activity, with a pH optimum at approximately 9.5. The enzyme required a high concentration of salt and exhibited maximum activity in the presence of 600 mM NaCl. Received: 3 August 1998 / Accepted: 23 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号