首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neisseria meningitidis (Nm) is a human specific opportunistic pathogen that occasionally penetrates mucosal barriers via the action of adhesins and invasins and evades host immune mechanisms during further dissemination via capsule expression. From in vitro studies, the primary adhesion of capsulate bacteria is believed to be mediated by polymeric pili, followed by invasion via outer membrane adhesins such as Opa proteins. As the latter requires the surface capsule to be down-modulated, invading bacteria would be serum sensitive and thus avirulent. However, there is recent evidence that capsulate bacteria may interact via Opa proteins when host cells express high levels of carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), their target receptors. Such a situation may arise following increased circulation of inflammatory cytokines that upregulate certain adhesion molecules on host cells. In this study, using a tetracycline controlled expression system, we have developed cell lines with inducible CEACAM expression to mimic post-inflammation state of target tissues and analysed the interplay between the three surface components capsule, pili and Opa proteins in cellular interactions. With two distinct cell lines, not only the level but also the rate of adhesion of capsulate Opa-expressing Nm increased concurrently with CEACAM density. Moreover, when threshold levels of receptor were reached, cellular invasion ensued in an Opa-dependent manner. In studies with cell lines intrinsically expressing pilus receptors, notable synergism in cellular interactions between pili and Opa of several meningococcal strains was observed and was independent of capsule type. A number of internalized bacteria were shown to express capsule and when directly isolated from host cells, these bacteria were as serum resistant as the inoculated phenotype. Furthermore, we observed that agents that block Opa-CEACAM binding substantially reduced cellular invasion, while maintaining a low level of cellular adhesion. These studies highlight some of the factors that may determine increased host susceptibility to infection by serum resistant phenotypes; and demonstrate the potential of selective inhibition of key interactions in preventing target tissue penetration while maintaining a level of colonization.  相似文献   

2.
Neisseria meningitidis capsule is an important virulence determinant required for survival in the blood but is reportedly involved in inhibiting cellular interactions mediated by meningococcal outer membrane adhesins. However, evidence from our previous studies suggested that target receptor density on host cells may determine whether or not capsulate bacteria can adhere via outer membrane proteins such as Opa. To confirm this and evaluate the impact of capsulation on bacterial interactions, we used Opa(+) and Opa(-) derivatives of capsulate and acapsulate meningococcal isolates and transfected cell lines expressing CEACAM1, a receptor targeted by Opa proteins. To assess the extent and rate of cell association, subpopulations of stably transfected Chinese hamster ovary cells with different receptor levels were derived. A quantitative correlation of CEACAM1 levels and Opa-dependent binding of both capsulate and acapsulate bacteria was demonstrated, which was accelerated at high receptor densities. However, it appears that invasion by Opa(+) capsulate bacteria only occurs when a threshold level of CEACAM density has been reached. Target cells expressing high levels of CEACAM1 (MFI c. 400) bound threefold more, but internalized 20-fold more Opa(+) capsulate bacteria than those with intermediate expression (MFI c. 100). No overall selection of acapsulate phenotype was observed in the internalized population. These observations confirm that capsule may not be an adequate barrier for cellular interactions and demonstrate the role of a host factor that may determine capsulate bacterial invasion potential. Upregulation of CEACAMs, which can occur in response to inflammatory cytokines, could lead to translocation of a small number of fully capsulate bacteria across mucosal epithelium into the bloodstream sufficient to cause a rapid onset of disseminated disease. Thus the data also suggest a novel rationale for the epidemiological observations that individuals with prior infectious/inflammatory conditions carry a high risk of invasive meningococcal disease.  相似文献   

3.
4.
Neisseria meningitidis and Neisseria gonorrhoeae are globally important pathogens, which in part owe their success to their ability to successfully evade human immune responses over long periods. The phase-variable opacity-associated (Opa) adhesin proteins are a major surface component of these organisms, and are responsible for bacterial adherence and entry into host cells and interactions with the immune system. Most immune interactions are mediated via binding to members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family. These Opa variants are able to bind to different receptors of the CEACAM family on epithelial cells, neutrophils, and T and B lymphocytes, influencing the innate and adaptive immune responses. Increased epithelial cell adhesion creates the potential for prolonged infection, invasion and dissemination. Furthermore, Opa proteins may inhibit T-lymphocyte activation and proliferation, B-cell antibody production, and innate inflammatory responses by infected epithelia, in addition to conferring increased resistance to antibody-dependent, complement-mediated killing. While vaccines containing Opa proteins could induce adhesion-blocking and bactericidal antibodies, the consequence of CEACAM binding by a candidate Opa-containing vaccine requires further investigation. This review summarizes current knowledge of the immunological consequences of the interaction between meningococcal and gonococcal Opa proteins and human CEACAMs, considering the implications for pathogenesis and vaccine development.  相似文献   

5.
Opa adhesins of pathogenic Neisseria species target four members of the human carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) family. CEACAM receptors mediate opsonization-independent phagocytosis of Neisseria gonorrhoeae by human granulocytes and each receptor individually can mediate gonococcal invasion of epithelial cells. We show here that gonococcal internalization occurs by distinct mechanisms depending on the CEACAM receptor expressed. For the invasion of epithelial cell lines via CEACAM1 and CEACAM6, a pathogen-directed reorganization of the actin cytoskeleton is not required. In marked contrast, ligation of CEACAM3 triggers a dramatic but localized reorganization of the host cell surface leading to highly efficient engulfment of bacteria in a process regulated by the small GTPases Rac1 and Cdc42, but not Rho. Two tyrosine residues of a cytoplasmic immune receptor tyrosine-based activating motif of CEACAM3 are essential for the induction of phagocytic actin structures and subsequent gonococcal internalization. The granulocyte-specific CEACAM3 receptor has properties of a single chain phagocytic receptor and may thus contribute to innate immunity by the elimination of Neisseria and other CEACAM-binding pathogens that colonize human mucosal surfaces.  相似文献   

6.
Neisseria gonorrhoeae has a repertoire of up to 11 opacity-associated (Opa) proteins that are adhesins. Most Opa proteins adhere to CEACAM antigens and when CEACAM molecules are present on the surface of transfected epithelial cells their binding by Opa is thought to induce invasion of these cells by gonococci. In this study, we investigated whether several malignant epithelial cell lines, normal cervical and fallopian tube epithelial cell cultures, as well as normal fallopian tube tissue express several of the CEACAM molecules, and whether gonococci use these molecules for adherence and invasion of these female genital epithelial cells. A primary cervical cell culture and metastatic cervical cell line ME180 both expressed CEACAM as shown by whole cell ELISA and flow cytometry, and increased the surface expression of total CEACAM during incubation with Opa+ gonococci. Opa+ gonococci both adhered to and invaded these cells; CEACAM-specific monoclonal antibody (MAb) partially abolished this interaction. Two primary fallopian epithelial tube cell cultures, a primary cervical cell culture and two malignant cell lines, HEC-1-B and HeLa, did not express CEACAM nor was CEACAM mRNA present. No evidence of either intracellular or secreted extracellular CEACAM was found with HEC-1-B and HeLa cells. Opa+ gonococci both adhered to and invaded CEACAM non-expressing cells; however, Opa+ gonococcal association with these non-expressing cell lines could not be inhibited with CEACAM-specific MAb. These data show that CEACAM is not always expressed on female genital epithelial cells and is not essential for gonococcal adherence and invasion. However, when CEACAM is expressed, Opa+ gonococci exploit it for the adherence to and invasion of these cells.  相似文献   

7.
Neisseria gonorrhoeae can be internalized by mammalian cells through interactions between bacterial opacity-associated (Opa) adhesins and members of the human carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) family. We examined the role of phosphatidylinositol 3-kinases (PI3Ks) in gonococcal invasion of epithelial cell lines expressing either CEACAM1 or CEACAM3. CEACAM3-mediated internalization, but not that mediated by CEACAM1, was accompanied by localized and transient accumulation of the class I PI3K product phosphatidylinositol 3,4,5-trisphosphate at sites of bacterial engulfment. Inhibition of phosphatidylinositol 3-kinases reduced CEACAM3-mediated uptake but, paradoxically, led to an increase in intracellular survival of bacteria internalized via either CEACAM1 or CEACAM3, suggesting additional roles for PI3K products. Consistent with this finding, the class III PI3K product phosphatidylinositol 3-phosphate accumulated and persisted in the membrane of gonococcal phagosomes after internalization. Inhibition of PI3K blocked phagosomal acquisition of the late endosomal marker lysosome-associated membrane protein 2 and reduced phagosomal acidification. Inhibiting phagosomal acidification with concanamycin A also increased survival of intracellular gonococci. These results suggest two modes of action of phosphatidylinositol 3-kinases during internalization of gonococci: synthesis of phosphatidylinositol 3,4,5-trisphosphate is important for CEACAM3-mediated uptake, while phosphatidylinositol 3-phosphate is needed for phagosomal maturation and acidification, which are required for optimal bacterial killing.  相似文献   

8.
Kuespert K  Roth A  Hauck CR 《PloS one》2011,6(1):e14609

Background

Several human-restricted Gram-negative bacteria exploit carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) for host colonization. For example, Neisseria meningitidis engages these human receptors via outer membrane proteins of the colony opacity-associated (Opa) protein family triggering internalization into non-phagocytic cells.

Principal Findings

We report that a non-opaque strain of N. meningitidis selectively interacts with CEACAM1, but not other CEACAM family members. Using functional assays of bacterial adhesion and internalisation, microscopic analysis, and a panel of CEACAM1 deletion mutants we demonstrate that the engagement of CEACAM1 by non-opaque meningococci occurs in a manner distinct from Opa protein-mediated association. In particular, the amino-terminal domain of CEACAM1 is necessary, but not sufficient for Opa protein-independent binding, which requires multiple extracellular domains of the human receptor in a cellular context. Knock-down of CEACAM1 interferes with binding to lung epithelial cells, whereas chemical or pharmacological disruption of host protein glycosylation does not abrogate CEACAM1 recognition by non-opaque meningococci. The previously characterized meningococcal invasins NadA or Opc do not operate in a CEACAM1-dependent manner.

Conclusions

The results demonstrate a mechanistically distinct, Opa protein-independent interaction between N. meningitidis and human CEACAM1. Our functional investigations suggest the presence of a second CEACAM1-binding invasin on the meningococcal surface that associates with the protein backbone and not the carbohydrate structures of CEACAM1. The redundancy in meningococcal CEACAM1-binding factors further highlights the important role of CEACAM recognition in the biology of this human-adapted pathogen.  相似文献   

9.
Neisseria gonorrhoeae (GC) establishes infection at the mucosal surface of the human genital tract, most of which is lined with polarized epithelial cells. GC can cause localized as well as disseminated infections, leading to various complications. GC constantly change their surface structures via phase and antigenic variation, which has been implicated as a means for GC to establish infection at various anatomic locations of male and female genital tracks. However, the exact contribution of each surface molecule to bacterial infectivity remains elusive due to their phase variation. Using a GC derivative that is genetically devoid of all opa genes (MS11∆Opa), this study shows that Opa expression interferes with GC transmigration across polarized human epithelial cells. MS11∆Opa transmigrates across polarized epithelial cells much faster and to a greater extent than MS11Opa+, while adhering at a similar level as MS11Opa+. When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer. Similar to bacteria alone or co-cultured with non-polarized epithelial cells, MS11∆Opa fails to form large microcolonies at the apical surface of polarized epithelial cells. Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen–related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites. Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions.  相似文献   

10.
11.
The opacity (Opa) proteins of pathogenic Neisseria spp. are adhesins, which play an important role in adhesion and invasion of host cells. Most members of this highly variable family of outer membrane proteins can bind to the human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs). Several studies have identified the Opa-binding region on the CEACAM receptors; however, not much is known about the binding sites on the Opa proteins for the corresponding CEACAM-receptors. The high degree of sequence variation in the surface-exposed loops of Opa proteins raises the question how the binding sites for the CEACAM receptors are conserved. Neisseria meningitidis strain H44/76 possesses four different Opa proteins, of which OpaA and OpaJ bind to CEACAM1, while OpaB and OpaD bind to CEACAM1 and CEA. A sequence motif involved in binding to CEACAM1 was identified by alanine scanning mutagenesis of those amino acid residues conserved within the hypervariable (HV) regions of all four Opa proteins. Hybrid Opa variants with different combinations of HV-1 and HV-2 derived from OpaB and OpaJ showed a reduced binding to CEACAM1 and CEA, indicating that particular combinations of HV-1 and HV-2 are required for the Opa binding capacity. Homologue scanning mutagenesis was used to generate more refined hybrids containing novel combinations of OpaB and OpaJ sequences within HV-1 and HV-2. They could be used to identify residues determining the specificity for CEA binding. The combined results obtained with mutants and hybrids strongly suggest the existence of a conserved binding site for CEACAM receptors by the interaction of HV-1 and HV-2 regions.  相似文献   

12.
The pathogenic Neisseriae Neisseria meningitidis and Neisseria gonorrhoeae, initiate colonization by attaching to host cells using type IV pili. Subsequent adhesive interactions are mediated through the binding of other bacterial adhesins, in particular the Opa family of outer membrane proteins. Here, we have shown that pilus-mediated adhesion to host cells by either meningococci or gonococci triggers the rapid, localized formation of dramatic cortical plaques in host epithelial cells. Cortical plaques are enriched in both components of the cortical cytoskeleton and a subset of integral membrane proteins. These include: CD44v3, a heparan sulphate proteoglycan that may serve as an Opa receptor; EGFR, a receptor tyrosine kinase; CD44 and ICAM-1, adhesion molecules known to mediate inflammatory responses; f-actin; and ezrin, a component that tethers membrane components to the actin cytoskeleton. Genetic analyses reveal that cortical plaque formation is highly adhesin specific. Both pilE and pilC null mutants fail to induce cortical plaques, indicating that neisserial type IV pili are required for cortical plaque induction. Mutations in pilT, a gene required for pilus-mediated twitching motility, confer a partial defect in cortical plaque formation. In contrast to type IV pili, many other neisserial surface structures are not involved in cortical plaque induction, including Opa, Opc, glycolipid GgO4-binding adhesins, polysialic acid capsule or a particular lipooligosaccharide variant. Furthermore, it is shown that type IV pili allow gonococci to overcome the inhibitory effect of heparin, a soluble receptor analogue, on gonococcal invasion of Chang and A431 epithelial cells. These and other observations strongly suggest that type IV pili play an active role in initiating neisserial infection of the mucosal surface in vivo. The functions of type IV pili and other neisserial adhesins are discussed in the specific context of the mucosal microenvironment, and a multistep model for neisserial colonization of mucosal epithelia is proposed.  相似文献   

13.
Neisseria meningitidis (Nm) isolates from disease or during carriage express, on their outer membranes, one or more of a family of closely related proteins designated Opa proteins. In this study, we have examined the potential rotes of Nm Opa proteins in bacterial attachment and invasion of endothelial as well as epithelial cells and compared the influence of Opa proteins with that of Ope protein, which has been previously shown to increase bacterial interactions with eukaryotic cells. Several variants expressing different Opa proteins (A, B, D) or Opc were selected from a culture of capsule-deficient non-piliated bacteria of strain C751. Although the Opa proteins increased bacterial attachment and invasion of endothelial cells, Opc was the most effective protein in increasing bacterial interactions with these cells. In contrast, attachment to several human epithelial cells was facilitated at least as much by OpaB as Opc protein. OpaA was largely without effect whereas OpaD conferred intermediate attachment. OpaB also increased invasion of epithelial cells; more bacteria were internalized by Chang conjunctival cells compared with Hep-2 larynx carcinoma or A549 lung carcinoma cells. Monoclonal antibody reacting with OpaB inhibited bacterial interactions with the host cells. Opa-mediated interactions were also eliminated or significantly reduced in variants expressing capsule or those with sialylated lipopolysaccharide. These data are consistent with the notion that environmental factors controlling capsule and lipopolysaccharide phenotype may modulate bacterial interactions mediated by these OM proteins. In permissive microenvironments, some Opa proteins may be important in bacterial colonization and translocation in addition to Opc. The data also support the notion that Nm Opa may confer tissue tropism.  相似文献   

14.
Neisseria gonorrhoeae colony opacity-associated (Opa) proteins bind to human carcinoembryonic antigen cellular adhesion molecules (CEACAM) found on host cells including T lymphocytes. Opa binding to CEACAM1 suppresses the activation of CD4(+) T cells in response to a variety of stimuli. In this study, we use primary human CD4(+) T cells isolated from peripheral blood to define the molecular events occurring subsequent to Opa-CEACAM1 binding. We establish that, in contrast to other cell types, T cells do not engulf N. gonorrhoeae upon CEACAM1 binding. Instead, the bacteria recruit CEACAM1 from intracellular stores and maintain it on the T cell surface. Upon TCR ligation, the co-engaged CEACAM1 becomes phosphorylated on tyrosine residues within the ITIMs apparent in the cytoplasmic domain. This allows the recruitment and subsequent activation of the src homology domain 2-containing tyrosine phosphatases SHP-1 and SHP-2 at the site of bacterial attachment, which prevents the normal tyrosine phosphorylation of the CD3zeta-chain and ZAP-70 kinase in response to TCR engagement. Combined, this dynamic response allows the bacteria to effectively harness the coinhibitory function of CEACAM1 to suppress the adaptive immune response at its earliest step.  相似文献   

15.
Whereas capsulate strains of Neisseria meningitidis are dependent on pili for adhesion to human endothelial and epithelial cells, strains which lacked assembled pili and were partially capsule-deficient adhered to and invaded human endothelial and epithelial cells if they expressed the Opc protein. Bacteria expressing low or undetectable levels of Opc protein failed to adhere to or invade eukaryotic cells. In addition, the presence of OpaAC751 protein on the surface of bacteria did not increase bacterial interactions with host cells. Association of Opc-expressing bacteria was inhibited by antibodies against Opc. Invasion was dependent on the host-cell cytoskeletal activity and was inhibited by cytochalasin D. In some cells, infected at the apical surface, bacteria emerging from basal surface were detected by electron microscopy. Opc is found in diverse meningococci and may represent a common virulence factor which facilitates adherence and invasion by these bacteria.  相似文献   

16.
During gonorrhoeal infection, there is a heterogeneous population of Neisseria gonorrhoeae (Gc) varied in their expression of opacity‐associated (Opa) proteins. While Opa proteins are important for bacterial attachment and invasion of epithelial cells, Opa+ Gc has a survival defect after exposure to neutrophils. Here, we use constitutively Opa? and OpaD+ Gc in strain background FA1090 to show that Opa+ Gc is more sensitive to killing inside adherent, chemokine‐treated primary human neutrophils due to increased bacterial residence in mature, degradative phagolysosomes that contain primary and secondary granule antimicrobial contents. Although Opa+ Gc stimulates a potent oxidative burst, neutrophil killing of Opa+ Gc was instead attributable to non‐oxidative components, particularly neutrophil proteases and the bactericidal/permeability‐increasing protein. Blocking interaction of Opa+ Gc with carcinoembryonic antigen‐related cell adhesion molecules (CEACAMs) or inhibiting Src family kinase signalling, which is downstream of CEACAM activation, enhanced the survival of Opa+ Gc in neutrophils. Src family kinase signalling was required for fusion of Gc phagosomes with primary granules to generate mature phagolysosomes. Conversely, ectopic activation of Src family kinases or coinfection with Opa+ Gc resulted in decreased survival of Opa? Gc in neutrophils. From these results, we conclude that Opa protein expression is an important modulator of Gc survival characteristics in neutrophils by influencing phagosome dynamics and thus bacterial exposure to neutrophils’ full antimicrobial arsenal.  相似文献   

17.
Opacity-associated (Opa) proteins are outer membrane proteins which play a critical role in the adhesion of pathogenic Neisseria spp. to epithelial and endothelial cells and polymorphonuclear neutrophils. The adherence is mainly mediated by the CD66-epitope-containing members of the carcinoembryonic-antigen family of human cell-adhesion molecules (CEACAM). For the analysis of the specific interactions of individual Opa proteins with their receptors, pure protein is needed in its native conformation. In this study, we describe the isolation and structural analysis of opacity proteins OpaJ129 and OpaB128 derived from Neisseria meningitidis strain H44/76. When the Opa proteins were produced with the phoE signal sequence in Escherichia coli, they were localized at the cell surface and the recombinant bacteria were found to specifically interact with CEACAM1. For refolding and purification, the proteins were overproduced without their signal sequences in E. coli, resulting in its cytoplasmic accumulation in the form of inclusion bodies. After solubilization of the inclusion bodies in urea, the proteins could be folded efficiently in vitro, under alkaline conditions by dilution in ethanolamine and the detergent n-dodecyl-N,N-dimethyl-1-ammonio-3-propanesulfonate (SB12). The structure of the refolded and purified proteins, determined by circular dichroism, indicated a high content of beta-sheet conformation, which is consistent with previously proposed topology models for Opa proteins. A clear difference was found between the binding of refolded vs. denatured OpaJ protein to the N-A1 domain of CEACAM1. Almost no binding was found with the denatured Opa protein, showing that the Opa-receptor interaction is conformation-dependent.  相似文献   

18.
Infection of the endometrium by Neisseria gonorrhoeae is a pivotal stage in the development of pelvic inflammatory disease in women. An ex vivo model of cultures of primary human endometrial cells was developed to study gonococcal-host cell interactions. To facilitate these studies, gonococci were transformed with a hybrid shuttle vector containing the gfp gene from Aequoria victoria, encoding the green fluorescent protein (GFP), to produce intrinsically fluorescent bacteria. The model demonstrated that both pili and Opa proteins were important for both mediating gonococcal interactions with endometrial cells and inducing the secretion of pro-inflammatory cytokines and chemokines. Pil+ gonococci showed high levels of adherence and invasion, regardless of Opa expression, which was associated with increased secretion of IL-8 chemokine and reduced secretion of IL-6 cytokine. Gonococcal challenge also caused increased secretion of TNF-alpha cytokine, but this did not correlate with expression of pili or Opa, suggesting that release of components from non-adherent bacteria may be involved in TNF-alpha induction. Thus, the use of cultured primary endometrial cells, together with gonococci expressing green fluorescent protein, has the potential to extend significantly our knowledge, at the molecular level, of the role of this important human pathogen in the immunobiology of pelvic inflammatory disease.  相似文献   

19.
The interaction with human phagocytes is a hallmark of symptomatic Neisseria gonorrhoeae infections. Gonococcal outer membrane proteins of the Opa family induce the opsonin-independent uptake of the bacteria that relies on CEACAM receptors and an active signaling machinery of the phagocyte. Here, we show that CEACAM receptor-mediated phagocytosis of Opa(52)-expressing N. gonorrhoeae into human cells results in a rapid activation of the acid sphingomyelinase. Inhibition of this enzyme by imipramine or SR33557 abolishes opsonin-independent internalization without affecting bacterial adherence. Reconstitution of ceramide, the product of acid sphingomyelinase activity, in imipramine- or SR33557-treated cells restores internalization of the bacteria. Furthermore, we demonstrate that CEACAM receptor-initiated stimulation of other signalling molecules, in particular Src-like tyrosine kinases and Jun N-terminal kinases, requires acid sphingomyelinase. These studies provide evidence for a crucial role of the acid sphingomyelinase for CEACAM receptor-initiated signalling events and internalization of Opa(52)-expressing N. gonorrhoeae into human neutrophils.  相似文献   

20.
Neisseria gonorrhoeae is a facultative intracellular bacterium capable of penetrating into certain human epithelial cell types. In order to identify gonococcal factors essential for invading Chang human conjunctiva cells, a gentamicin selection assay for the quantification of viable intracellular bacteria was used in conjunction with microscopy. The results demonstrate a correlation between the invasive behaviour of gonococci and the expression of Opa proteins, a family of variable outer membrane proteins present in all pathogenic Neisseria species. However, only particular Opa proteins supported invasion into Chang cells as indicated by the use of two unrelated gonococcal strains. Invasion was sensitive to cytochalasin D, and strong adherence mediated by the Opa proteins appeared to be essential for the internalization of gonococci. In contrast pili, which also conferred binding to Chang conjunctiva cells, did not support cellular invasion but rather were inhibitory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号