首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biogenesis and metabolism of Alzheimer's disease Abeta amyloid peptides   总被引:10,自引:0,他引:10  
Evin G  Weidemann A 《Peptides》2002,23(7):1285-1297
Biochemical and genetic evidence indicates the balance of biogenesis/clearance of Abeta amyloid peptides is altered in Alzheimer's disease. Abeta is derived, by two sequential cleavages, from the receptor-like amyloid precursor protein (APP). The proteases involved are beta-secretase, identified as the novel aspartyl protease BACE, and gamma-secretase, a multimeric complex containing the presenilins (PS). Gamma-secretase can release either Abeta40 or the more aggregating and cytotoxic Abeta42. Secreted Abeta peptides become either degraded by the metalloproteases insulin-degrading enzyme (IDE) and neprilysin or metabolized through receptor uptake mediated by apolipoprotein E. Therapeutic approaches based on secretase inhibition or amyloid clearance are currently under development.  相似文献   

2.
The role of Abeta peptides in Alzheimer's disease   总被引:1,自引:0,他引:1  
The Abeta peptide has been identified as central to the onset and development of Alzheimer's disease (AD) and several hypotheses about toxicity involving Abeta peptides have been proposed including mechanisms of oxidative stress and disruption of calcium homeostasis. The biology, structure and physical properties of Abeta peptides are discussed, as well as existing therapeutics and future strategies for the treatment of AD.  相似文献   

3.
To study the folding/unfolding properties of a beta-amyloid peptide Abeta(12-36) of Alzheimer's disease, five molecular dynamics simulations of Abeta(12-36) in explicit water were done at 450 K starting from a structure that is stable in trifluoroethanol/water at room temperature with two alpha-helices. Due to high temperature, the initial helical structure unfolded during the simulation. The observed aspects of the unfolding were as follows. 1) One helix (helix 1) had a longer life than the other (helix 2), which correlates well with the theoretically computed Phi values. 2) Temporal prolongation of helix 1 was found before unfolding. 3) Hydrophobic cores formed frequently with rearrangement of amino-acid residues in the hydrophobic cores. The formation and rearrangement of the hydrophobic cores may be a general aspect of this peptide in the unfolded state, and the structural changes accompanied by the hydrophobic-core rearrangement may lead the peptide to the most stable structure. 4) Concerted motions (collective modes) appeared to unfold helix 1. The collective modes were similar with those observed in another simulation at 300 K. The analysis implies that the conformation moves according to the collective modes when the peptide is in the initial stage of protein unfolding and in the final stage of protein folding.  相似文献   

4.
Deposition of fibrillar amyloid beta-protein (Abeta) in the brain is a prominent pathological feature of Alzheimer disease and related disorders, including familial forms of cerebral amyloid angiopathy (CAA). Mutant forms of Abeta, including Dutch- and Iowa-type Abeta, which are responsible for familial CAA, deposit primarily as fibrillar amyloid along the cerebral vasculature and are either absent or present only as diffuse non-fibrillar plaques in the brain parenchyma. Despite the lack of parenchymal fibril formation in vivo, these CAA mutant Abeta peptides exhibit a markedly increased rate and extent of fibril formation in vitro compared with wild-type Abeta. Based on these conflicting observations, we sought to determine whether brain parenchymal factors that selectively interact with and modulate CAA mutant Abeta fibril assembly exist. Using a combination of immunoaffinity chromatography and mass spectrometry, we identified myelin basic protein (MBP) as a prominent brain parenchymal factor that preferentially binds to CAA mutant Abeta compared with wild-type Abeta. Surface plasmon resonance measurements confirmed that MBP bound more tightly to Dutch/Iowa CAA double mutant Abeta than to wild-type Abeta. Using a combination of biochemical and ultrastructural techniques, we found that MBP inhibited the fibril assembly of CAA mutant Abeta. Together, these findings suggest a possible role for MBP in regulating parenchymal fibrillar Abeta deposition in familial CAA.  相似文献   

5.
In Alzheimer cortex tissue sections, thioflavine stained three patterns of amyloid lesions: neurofibrillary tangles (NFT), senile plaques (SP) and vessel walls (amyloid angiopathy AA). An anti serum against Tau proteins detected NFT but neither SP nor AA. In contrast, an anti serum against beta protein amyloid (BP A4) revealed SP and AA but not NFT. A periodic acid pretreatment dramatically enhanced the anti-BP A4 immunolabelling corresponding to microplaques as well as a large amount of diffuse extracellular amyloid substance, but never stained NFT. Pretreatment of tissue sections with a mixture of endo and exoglycosidases gave identical results and corroborates the extraneuronal processing of BP A4 that appears in a glycosylated form in the extracellular compartment.  相似文献   

6.
Zn(II) and Cu(II) precipitate Abeta in vitro into insoluble aggregates that are dissolved by metal chelators. We now report evidence that these biometals also mediate the deposition of Abeta amyloid in Alzheimer's disease, since the solubilization of Abeta from post-mortem brain tissue was significantly increased by the presence of chelators, EGTA, N,N,N',N'-tetrakis(2-pyridyl-methyl) ethylene diamine, and bathocuproine. Efficient extraction of Abeta also required Mg(II) and Ca(II). The chelators were more effective in extracting Abeta from Alzheimer's disease brain tissue than age-matched controls, suggesting that metal ions differentiate the chemical architecture of amyloid in Alzheimer's disease. Agents that specifically chelate copper and zinc ions but preserve Mg(II) and Ca(II) may be of therapeutic value in Alzheimer's disease.  相似文献   

7.
BACKGROUND: In Alzheimer's disease (AD), the main histological lesion is a proteinaceous deposit, the senile plaque, which is mainly composed of a peptide called A beta. The aggregation process is thought to occur through enhanced concentration of A beta 40 or increased production of the more readily aggregating 42 amino acid-long A beta 42 species. MATERIALS AND METHODS: Specificity of the antibodies was assessed by dot blot, Western blot, ELISA, and immunoprecipitation procedures on synthetic and endogenous A beta produced by secreted HK293 cells. A beta and p3 production by wild-type and mutated presenilin 1-expressing cells transiently transfected with beta APP751 was monitored after metabolic labeling and immunoprecipitation procedures. Immunohistochemical analysis was performed on brains of sporadic and typical cerebrovascular amyloid angiopathy (CAA) cases. RESULTS: Dot and Western blot analyses indicate that IgG-purified fractions of antisera recognize native and denaturated A beta s. FCA3340 and FCA 3542 display full specificity for A beta 40 and A beta 42, respectively. Antibodies immunoprecipitate their respective synthetic A beta species but also A beta s and their related p3 counterparts endogenously secreted by transfected human kidney 293 cells. This allowed us to show that mutations on presenilin 1 triggered similar increased ratios of A beta 42 and its p 342 counterpart over total A beta and p3. ELISA assays allow detection of about 25-50 pg/ml of A beta s and remain linear up to 750 to 1500 pg/ml without any cross-reactivity. FCA18 and FCA3542 label diffuse and mature plaques of a sporadic AD case whereas FCA3340 only reveals the mature lesions and particularly labels their central dense core. In a CAA case, FCA18 and FCA3340 reveal leptomeningeal and cortical arterioles whereas FCA3542 only faintly labels such structures. CONCLUSIONS: Polyclonal antibodies exclusively recognizing A beta 40 (FCA 3340) or A beta 42 (FCA3542) were obtained. These demonstrated that FAD-linked presenilins similarly affect both p342 and A beta 42, suggesting that these mutations misroute the beta APP to a compartment where gamma-secretase, but not alpha-secretase, cleavages are modified. Overall, these antibodies should prove useful for fundamental and diagnostic approaches, as suggested by their usefulness for biochemical, cell biological, and immunohistochemical techniques.  相似文献   

8.
9.
Prior to the identification of the various abnormal proteins deposited as fibrillar aggregates in the Alzheimer's disease (AD) brain, there was tremendous controversy over the importance of the various lesions with respect to primacy in the pathology of AD. Nevertheless, based on analogy to systemic amyloidosis, many investigators believed that the amyloid deposits in AD played a causal role and that characterization of these deposits would hold the key to understanding this complex disease. Indeed, in retrospect, it was the initial biochemical purifications of the approximately 4 kDa amyloid beta-peptide (Abeta) from amyloid deposits in the mid 1980s that launched a new era of AD research (Glenner and Wong, Biochem. Biophys. Res. Commun. 122 (1984) 1121-1135; Wong et al., Proc. Natl. Acad Sci. USA 82 (1985) 8729 8732; and Masters et al., Proc. Natl. Acad Sci. USA 82 (1985) 4245-4249). Subsequent studies of the biology of Abeta together with genetic studies of AD have all supported the hypothesis that altered Abeta metabolism leading to aggregation plays a causal role in AD. Although there remains controversy as to whether Abeta deposited as classic amyloid or a smaller, aggregated, form causes AD, the relevance of studying the amyloid deposits has certainly been proven. Despite the significant advances in our understanding of the role of Abeta in AD pathogenesis, many important aspects of Abeta biology remain a mystery. This review will highlight those aspects of Abeta biology that have led to our increased understanding of the pathogenesis of AD as well as areas which warrant additional study.  相似文献   

10.
11.
12.
Aging and apolipoprotein E (APOE) isoform are among the most consistent risks for the development of Alzheimer's disease (AD). Metabolic factors that modulate risk have been elusive, though oxidative reactions and their by-products have been implicated in human AD and in transgenic mice with overt histological amyloidosis. We investigated the relationship between the levels of endogenous murine amyloid beta (Abeta) peptides and the levels of a marker of oxidation in mice that never develop histological amyloidosis [i.e. APOE knockout (KO) mice with or without transgenic human APOEepsilon3 or human APOEepsilon4 alleles]. Aging-, gender-, and APOE-genotype-dependent changes were observed for endogenous mouse brain Abeta40 and Abeta42 peptides. Levels of the oxidized lipid F2-isoprostane (F2-isoPs) in the brains of the same animals as those used for the Abeta analyses revealed aging- and gender-dependent changes in APOE KO and in human APOEepsilon4 transgenic KO mice. Human APOEepsilon3 transgenic KO mice did not exhibit aging- or gender-dependent increases in F2-isoPs. In general, the changes in the levels of brain F2-isoPs in mice according to age, gender, and APOE genotype mirrored the changes in brain Abeta levels, which, in turn, paralleled known trends in the risk for human AD. These data indicate that there exists an aging-dependent, APOE-genotype-sensitive rise in murine brain Abeta levels despite the apparent inability of the peptide to form histologically detectable amyloid. Human APOEepsilon3, but not human APOEepsilon4, can apparently prevent the aging-dependent rise in murine brain Abeta levels, consistent with the relative risk for AD associated with these genotypes. The fidelity of the brain Abeta/F2-isoP relationship across multiple relevant variables supports the hypothesis that oxidized lipids play a role in AD pathogenesis, as has been suggested by recent evidence that F2-isoPs can stimulate Abeta generation and aggregation.  相似文献   

13.
Alzheimer's disease: Abeta, tau and synaptic dysfunction   总被引:8,自引:0,他引:8  
Alzheimer's disease is a progressive neurodegenerative disorder that is characterized by two hallmark lesions: extracellular amyloid plaques and neurofibrillary tangles. The role that these lesions have in the pathogenesis of AD has proven difficult to unravel, in part because of unanticipated challenges of reproducing both pathologic hallmarks in transgenic mice. Recent advances in recapitulating both plaques and tangles in the brains of transgenic mice are leading to novel insights into their role in the degenerative process, including their impact on synaptic activity and plasticity. Transgenic mice that harbor both neuropathological lesions are also facilitating the elucidation of the relationship of these proteinaceous aggregates to one another and providing a crucial in vivo system for developing and evaluating therapies.  相似文献   

14.
Down syndrome (DS) is the main genetic cause of intellectual disability worldwide. The overexpression of the Amyloid Precursor Protein, present in chromosome 21, leads to β‐amyloid deposition that results in Alzheimer disease (AD) and, in most cases, also to cerebral amyloid angiopathy (CAA) neuropathology. People with DS invariably develop the neuropathological hallmarks of AD at the age of 40, and they are at an ultra high risk for suffering AD‐related cognitive impairment thereafter. In the general population, cerebrovascular disease is a significant contributor to AD‐related cognitive impairment, while in DS remains understudied. This review describes the current knowledge on cerebrovascular disease in DS and reviews the potential biomarkers that could be useful in the future studies, focusing on CAA. We also discuss available evidence on sporadic AD or other genetically determined forms of AD. We highlight the urgent need of large biomarker‐characterized cohorts, including neuropathological correlations, to study the exact contribution of CAA and related vascular factors that play a role in cognition and occur with aging, their characterization and interrelationships. DS represents a unique context in which to perform these studies as this population is relatively protected from some conventional vascular risk factors and they develop significant CAA, DS represents a particular atheroma‐free model to study AD‐related vascular pathologies. Only deepening on these underlying mechanisms, new preventive and therapeutic strategies could be designed to improve the quality of life of this population and their caregivers and lead to new avenues of treatment also in the general AD population.  相似文献   

15.
In the current protocol, we describe the Congo red staining method and a method for separately quantifying vascular and parenchymal amyloid deposits in brain tissue sections. Congo red staining detects amyloid deposits in brain tissue of amyloid precursor protein transgenic mice and human Alzheimer's tissue. It detects compacted amyloid in a beta-sheet secondary structure and labels amyloid in both the brain parenchyma (amyloid plaques) and blood vessels. Congophilic amyloid in blood vessels is called cerebral amyloid angiopathy (CAA). To date, analysis of CAA has largely used a severity rating scale, including both qualitative and quantitative characteristics. Here, we describe a simple method for quantifying total Congophilic staining and resolution of this staining into the parenchymal and vascular components based on morphological criteria. It is becoming increasingly important to separately quantify various components of the Alzheimer's pathology, given the advancement of amyloid-lowering therapies into clinical trials. The entire procedure for the Congo red staining can be performed at room temperature (20-25 degrees C) in a fume hood. The staining protocol should take 1 h 30 min including time for coverslipping slides. Time required for image analysis depends greatly on the number of samples being analyzed and the software being used. In our hands, 30 images can be collected per hour and quantified in a further 2 h.  相似文献   

16.
17.
We reported previously that the carbohydrate domain of the amyloid precursor protein is involved in amyloid precursor protein (APP)-APP interactions. Functional in vitro studies suggested that this interaction occurs through the collagen binding site of APP. The physiological significance remained unknown, because it is not understood whether and how APP dimerization occurs in vivo. Here we report that cellular APP exists as homodimers matching best with a two-site model. Consistent with our published crystallographic data, we show that a deletion of the entire sequence after the kunitz protease inhibitor domain did not abolish APP homodimerization, suggesting that two domains are critically involved but that neither is essential for homodimerization. Finally, we generated stabilized dimers by expressing mutant APP with a single cysteine in the ectodomain juxtamembrane region. Mutation of Lys(624) to cysteine produced approximately 6-8-fold more A beta than cells expressing normal APP. Our results suggest that amyloid A beta production can in principle be positively regulated by dimerization in vivo. We suggest that dimerization could be a physiologically important mechanism for regulating the proposed signal activity of APP.  相似文献   

18.
19.
The deposition of amyloid beta A4 in the brain is a major pathological hallmark of Alzheimer's disease. Amyloid beta A4 is a peptide composed of 42 or 43 amino acid residues. In brain, it appears in the form of highly insoluble, filamentous aggregates. Using synthetic peptides corresponding to the natural beta A4 sequence as well as analog peptides, we demonstrate requirements for filament formation in vitro. We also determine aggregational properties and the secondary structure of beta A4. A comparison of amino-terminally truncated beta A4 peptides identifies a peptide spanning residues 10 to 43 as a prototype for amyloid beta A4. Infrared spectroscopy of beta A4 peptides in the solid state shows that their secondary structure consists of a beta-turn flanked by two strands of antiparallel beta-pleated sheet. Analog peptides containing a disulfide bridge were designed to stabilize different putative beta-turn positions. Limited proteolysis of these analogs allowed a localization of the central beta-turn at residues 26 to 29 of the entire sequence. Purified beta A4 peptides are soluble in water. Size-exclusion chromatography shows that they form dimers that, according to circular dichroism spectroscopy, adopt a beta-sheet conformation. Upon addition of salts, the bulk fraction of peptides precipitates and adopts a beta-sheet structure. Only a small fraction of peptides remains solubilized. They are monomeric and adopt a random coil conformation. This suggests that the formation of aggregates depends upon a hydrophobic effect that leads to intra- and intermolecular interactions between hydrophobic parts of the beta A4 sequence. This model is sustained by the properties of beta A4 analogs in which hydrophobic residues were substituted. These peptides show a markedly increased solubility in salt solutions and have lost the ability to form filaments. In contrast, the substitution of hydrophilic residues leads only to small deviations in the shape of filaments, indicating that hydrophilic residues contribute to the specificity of interactions between beta A4 peptides.  相似文献   

20.
The amyloid protein in familial amyloidosis, Finnish type, is a 71 amino acid long fragment of the inner region of mutant Asp187----Asn gelsolin. The mechanism of gelsolin amyloid formation was tested with synthetic 11 and 30 residue peptides corresponding to the normal and mutant sequence of gelsolin. Fibrils meeting the morphologic criteria of amyloid were formed from the mutant Asn187 peptides. Substitution of the normal Asp187 residue with the mutant Asn residue resulted in a 9-fold increase in fibrillogenicity as determined by quantitative fluorometry. The present study demonstrates the first successful in vitro creation of amyloid-like fibrils from Asn187 gelsolin peptides and provides evidence that amyloid formation in Finnish amyloidosis is a direct consequence of the Asp187----Asn substitution in gelsolin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号