首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Expression of membrane-bound carbonic anhydrases (CAs) of CA IV, CA IX, CA XII, and CA XIV has been investigated in the mouse heart. Western blots using microsomal membranes of wild-type hearts demonstrate a 39-, 43-, and 54-kDa band representing CA IV, CA IX, and CA XIV, respectively, but CA XII could not be detected. Expression of CA IX in the CA IV/CA XIV knockout animals was further confirmed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Cardiac cells were immunostained using anti-CA/FITC and anti-alpha-actinin/TRITC, as well as anti-CA/FITC and anti-SERCA2/TRITC. Subcellular CA localization was investigated by confocal laser scanning microscopy. CA localization in the sarcolemmal (SL) membrane was examined by double immunostaining using anti-CA/FITC and anti-MCT-1/TRITC. CAs showed a distinct distribution pattern in the sarcoplasmic reticulum (SR) membrane. CA XIV is predominantly localized in the longitudinal SR, whereas CA IX is mainly expressed in the terminal SR/t-tubular region. CA IV is present in both SR regions, whereas CA XII is not found in the SR. In the SL membrane, only CA IV and CA XIV are present. We conclude that CA IV and CA XIV are associated with the SR as well as with the SL membrane, CA IX is located in the terminal SR/t-tubular region, and CA XII is not present in the mouse heart. Therefore, the unique subcellular localization of CA IX and CA XIV in cardiac myocytes suggests different functions of both enzymes in excitation-contraction coupling.  相似文献   

2.
The subcellular localization of carbonic anhydrase (CA) IV and CA IX in mouse skeletal muscle fibers has been studied immunohistochemically by confocal laser scanning microscopy. CA IV has been found to be located on the plasma membrane as well as on the sarcoplasmic reticulum (SR) membrane. CA IX is not localized in the plasma membrane but in the region of the t-tubular (TT)/terminal SR membrane. CA IV contributes 20% and CA IX 60% to the total CA activity of SR membrane vesicles isolated from mouse skeletal muscles. Our aim was to examine whether SR CA IV and TT/SR CA IX affect muscle contraction. Isolated fiber bundles of fast-twitch extensor digitorum longus and slow-twitch soleus muscle from mouse were investigated for isometric twitch and tetanic contractions and by a fatigue test. The muscle functions of CA IV knockout (KO) fibers and of CA IX KO fibers do not differ from the function of wild-type (WT) fibers. Muscle function of CA IV/XIV double KO mice unexpectedly shows a decrease in rise and relaxation time and in force of single twitches. In contrast, the CA inhibitor dorzolamide, whether applied to WT or to double KO muscle fibers, leads to a significant increase in rise time and force of twitches. It is concluded that the function of mouse skeletal muscle fibers expressing three membrane-associated CAs, IV, IX, and XIV, is not affected by the lack of one isoform but is possibly affected by the lack of all three CAs, as indicated by the inhibition studies.  相似文献   

3.
We examined the effect of the2-agonist clenbuterol (50 µM)on depolarization-induced force responses and sarcoplasmic reticulum (SR) function in muscle fibers of the rat (Rattusnorvegicus; killed by halothane overdose) that had beenmechanically skinned, rendering the2-agonist pathway inoperable.Clenbuterol decreased the peak of depolarization-induced forceresponses in the extensor digitorum longus (EDL) and soleus fibers to77.2 ± 9.0 and 55.6 ± 5.4%, respectively, ofcontrols. The soleus fibers did not recover. Clenbuterol significantlyand reversibly reduced SR Ca2+loading in EDL and soleus fibers to 81.5 ± 2.8 and 78.7 ± 4.0%, respectively, of controls. Clenbuterol also producedan ~25% increase in passive leak ofCa2+ from the SR of the EDL andsoleus fibers. These results indicate that clenbuterol has directeffects on fast- and slow-twitch skeletal muscle, in the absence of the2-agonist pathway. Theincreased Ca2+ leak in the triadregion may lead to excitation-contraction coupling damage in the soleusfibers and could also contribute to the anabolic effect of clenbuterolin vivo.

  相似文献   

4.
Caveolae are omega-shaped membrane invaginations that are abundant in smooth muscle cells. Since many receptors and signaling proteins co-localize with caveolae, these have been proposed to integrate important signaling pathways. The aim of this study was to test whether RhoA/Rho-kinase and protein kinase C (PKC)-mediated Ca2+ sensitization depends on caveolae using caveolin (Cav)-1-deficient (KO) and wild-type (WT) mice. In WT smooth muscle, caveolae were detected and Cav-1, -2 and -3 proteins were expressed. Relative mRNA expression levels were 15:1:1 for Cav-1, -2, and -3, respectively. Caveolae were absent in KO and reduced levels of Cav-2 and Cav-3 proteins were seen. In intact ileum longitudinal muscle, no differences in the responses to 5-HT or the muscarinic agonist carbachol were found, whereas contraction elicited by endothelin-1 was reduced. Rho activation by GTPS was increased in KO compared with WT as shown using a pull-down assay. Following -toxin permeabilization, no difference in Ca2+ sensitivity or in Ca2+ sensitization was detected. In KO femoral arteries, phorbol 12,13-dibutyrate (PDBu)-induced and PKC-mediated contraction was increased. This was associated with increased 1-adrenergic contraction. Following inhibition of PKC, 1-adrenergic contraction was normalized. PDBu-induced Ca2+ sensitization was not increased in permeabilized femoral arteries. In conclusion, Rho activation, but not Ca2+ sensitization, depends on caveolae in the ileum. Moreover, PKC driven arterial contraction is increased in the absence of caveolin-1. This depends on an intact plasma membrane and is not associated with altered Ca2+ sensitivity. Ca2+ sensitization; Rho-associated kinase; myosin phosphatase target protein; lipid rafts; CPI-17; G protein-coupled receptor  相似文献   

5.
The role of the Na+ pump2-subunit in Ca2+ signaling was examined inprimary cultured astrocytes from wild-type(2+/+ = WT) mouse fetuses and thosewith a null mutation in one [2+/ = heterozygote (Het)] or both [2/ = knockout (KO)] 2 genes. Na+ pump catalytic() subunit expression was measured by immunoblot; cytosol[Na+] ([Na+]cyt) and[Ca2+] ([Ca2+]cyt) weremeasured with sodium-binding benzofuran isophthalate and fura 2 byusing digital imaging. Astrocytes express Na+ pumpswith both 1- (80% of total ) and2- (20% of total ) subunits. Het astrocytesexpress 50% of normal 2; those from KO express none.Expression of 1 is normal in both Het and KO cells.Resting [Na+]cyt = 6.5 mM in WT, 6.8 mMin Het (P > 0.05 vs. WT), and 8.0 mM in KO cells(P < 0.001); 500 nM ouabain (inhibits only2) equalized [Na+]cyt at 8 mMin all three cell types. Resting[Ca2+]cyt = 132 nM in WT, 162 nM in Het,and 196 nM in KO cells (both P < 0.001 vs. WT).Cyclopiazonic acid (CPA), which inhibits endoplasmic reticulum (ER)Ca2+ pumps and unloads the ER, induces transient (inCa2+-free media) or sustained (in Ca2+-repletemedia) elevation of [Ca2+]cyt. TheseCa2+ responses to 10 µM CPA were augmented in Het as wellas KO cells. When CPA was applied in Ca2+-free media, thereintroduction of Ca2+ induced significantly largertransient rises in [Ca2+]cyt (due toCa2+ entry through store-operated channels) in Het and KOcells than in WT cells. These results correlate with published evidencethat 2 Na+ pumps andNa+/Ca2+ exchangers are confined to plasmamembrane microdomains that overlie the ER. The data suggest thatselective reduction of 2 Na+ pump activitycan elevate local [Na+] and, viaNa+/Ca2+ exchange, [Ca2+] in thetiny volume of cytosol between the plasma membrane and ER. This, inturn, augments adjacent ER Ca2+ stores and therebyamplifies Ca2+ signaling without elevating bulk[Na+]cyt.

  相似文献   

6.
The mitochondrial membrane potential (m) underlies many mitochondrial functions, including Ca2+ influx into the mitochondria, which allows them to serve as buffers of intracellular Ca2+. Spontaneous depolarizations of m, flickers, have been observed in isolated mitochondria and intact cells using the fluorescent cationic lipophile tetramethylrhodamine ethyl ester (TMRE), which distributes across the inner mitochondrial membrane in accordance with the Nernst equation. Flickers in cardiomyocytes have been attributed to uptake of Ca2+ released from the sarcoplasmic reticulum (SR) via ryanodine receptors in focal transients called Ca2+ sparks. We have shown previously that an increase in global Ca2+ in smooth muscle cells causes an increase in mitochondrial Ca2+ and depolarization of m. Here we sought to determine whether flickers in smooth muscle cells are caused by uptake of Ca2+ released focally in Ca2+ sparks. High-speed three-dimensional imaging was used to monitor m in freshly dissociated myocytes from toad stomach that were simultaneously voltage clamped at 0 mV to ensure the cytosolic TMRE concentration was constant and equal to the low level in the bath (2.5 nM). This approach allows quantitative analysis of flickers as we have previously demonstrated. Depletion of SR Ca2+ not only failed to eliminate flickers but rather increased their magnitude and frequency somewhat. Flickers were not altered in magnitude or frequency by ryanodine or xestospongin C, inhibitors of intracellular Ca2+ release, or by cyclosporin A, an inhibitor of the permeability transition pore. Focal Ca2+ release from the SR does not cause flickers in the cells employed here. mitochondria; mitochondrial membrane potential; intracellular calcium; permeability transition pore; sarcoplasmic reticulum  相似文献   

7.
This study investigated the effects of L-thyroxine-induced hyperthyroidism on Ca2+/calmodulin (CaM)-dependent protein kinase (CaM kinase II)-mediated sarcoplasmic reticulum (SR) protein phosphorylation, SR Ca2+ pump (Ca2+-ATPase) activity, and contraction duration in slow-twitch soleus muscle of the rabbit. Phosphorylation of Ca2+-ATPase and phospholamban (PLN) by endogenous CaM kinase II was found to be significantly lower (30–50%) in soleus of the hyperthyroid compared with euthyroid rabbit. Western blotting analysis revealed higher levels of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 (150%) Ca2+ pump isoform, unaltered levels of SERCA2 Ca2+ pump isoform, and lower levels of PLN (50%) and -, -, and -CaM kinase II (40 70%) in soleus of the hyperthyroid rabbit. SR vesicles from hyperthyroid rabbit soleus displayed approximately twofold higher ATP-energized Ca2+ uptake and Ca2+-stimulated ATPase activities compared with that from euthyroid control. The Vmax of Ca2+ uptake (in nmol Ca2+·mg SR protein–1·min–1: euthyroid, 818 ± 73; hyperthyroid, 1,649 ± 90) but not the apparent affinity of the Ca2+-ATPase for Ca2+ (euthyroid, 0.97 ± 0.02 µM, hyperthyroid, 1.09 ± 0.04 µM) differed significantly between the two groups. CaM kinase II-mediated stimulation of Ca2+ uptake by soleus muscle SR was 60% lower in the hyperthyroid compared with euthyroid. Isometric twitch force of soleus measured in situ was significantly greater (36%), and the time to peak force and relaxation time were significantly lower (30–40%), in the hyperthyroid. These results demonstrate that thyroid hormone-induced transition in contractile properties of the rabbit soleus is associated with coordinate downregulation of the expression and function of PLN and CaM kinase II and selective upregulation of the expression and function of SERCA1, but not SERCA2, isoform of the SR Ca2+ pump. calmodulin kinase II; phospholamban ; calcium ion-adenosinetriphosphatase; sarcoplasmic reticulum  相似文献   

8.
Properties of the sarcoplasmic reticulum (SR) with respect to Ca2+ loading and release were measured in mechanically skinned fiber preparations from isolated extensor digitorum longus (EDL) muscles of the rat that were either kept at room temperature (23°C) or exposed to temperatures in the upper physiological range for mammalian skeletal muscle (30 min at 40 or 43°C). The ability of the SR to accumulate Ca2+ was significantly reduced by a factor of 1.9–2.1 after the temperature treatments due to a marked increase in SR Ca2+ leak, which persisted for at least 3 h after treatment. Results with blockers of Ca2+ release channels (ruthenium red) and SR Ca2+ pumps [2,5-di(tert-butyl)-1,4-hydroquinone] indicate that the increased Ca2+ leak was not through the SR Ca2+ release channel or the SR Ca2+ pump, although it is possible that the leak pathway was via oligomerized Ca2+ pump molecules. No significant change in the maximum SR Ca2+-ATPase activity was observed after the temperature treatment, although there was a tendency for a decrease in the SR Ca2+-ATPase. The observed changes in SR properties were fully prevented by the superoxide (O2) scavenger Tiron (20 mM), indicating that the production of O2 at elevated temperatures is responsible for the increase in SR Ca2+ leak. Results show that physiologically relevant elevated temperatures 1) induce lasting changes in SR properties with respect to Ca2+ handling that contribute to a marked increase in the SR Ca2+ leak and, consequently, to the reduction in the average coupling ratio between Ca2+ transport and SR Ca2+-ATPase and muscle performance, and 2) that these changes are mediated by temperature-induced O2 production. skeletal muscle; calcium ion leak; superoxide; skinned fibers  相似文献   

9.
TheNa+-K+-ATPase is a heterodimeric plasmamembrane protein responsible for cellular ionic homeostasis in nearlyall animal cells. It has been shown that some insect cells (e.g., HighFive cells) have no (or extremely low)Na+-K+-ATPase activity. We expressed sheepkidney Na+-K+-ATPase - and -subunitsindividually and together in High Five cells via the baculovirusexpression system. We used quantitative slot-blot analyses to determinethat the expressed Na+-K+-ATPase comprisesbetween 0.5% and 2% of the total membrane protein in these cells.Using a five-step sucrose gradient (0.8-2.0 M) to separate theendoplasmic reticulum, Golgi apparatus, and plasma membrane fractions,we observed functional Na+ pump molecules in each membranepool and characterized their properties. Nearly all of the expressedprotein functions normally, similar to that found in purified dogkidney enzyme preparations. Consequently, the measurements describedhere were not complicated by an abundance of nonfunctionalheterologously expressed enzyme. Specifically, ouabain-sensitive ATPaseactivity, [3H]ouabain binding, and cation dependencieswere measured for each fraction. The functional properties of theNa+-K+-ATPase were essentially unaltered afterassembly in the endoplasmic reticulum. In addition, we measuredouabain-sensitive 86Rb+ uptake in whole cellsas a means to specifically evaluateNa+-K+-ATPase molecules that were properlyfolded and delivered to the plasma membrane. We could not measure anyouabain-sensitive activities when either the -subunit or -subunitwere expressed individually. Immunostaining of the separate membranefractions indicates that the -subunit, when expressed alone, isdegraded early in the protein maturation pathway (i.e., the endoplasmicreticulum) but that the -subunit is processed normally and deliveredto the plasma membrane. Thus it appears that only the -subunit hasan oligomeric requirement for maturation and trafficking to the plasma membrane. Furthermore, assembly of the - heterodimer within theendoplasmic reticulum apparently does not require a Na+pump-specific chaperone.

  相似文献   

10.
Using a single, mechanically skinned fiber approach, we tested the hypothesis that denervation (0 to 50 days) of skeletal muscles that do not overlap in fiber type composition [extensor digitorum longus (EDL) and soleus (SOL) muscles of Long-Evans hooded rats] leads to development of different fiber phenotypes. Denervation (50 day) was accompanied by 1) a marked increase in the proportion of hybrid IIB/D fibers (EDL) and I/IIA fibers (SOL) from 30% to >75% in both muscles, and a corresponding decrease in the proportion of pure fibers expressing only one myosin heavy chain (MHC) isoform; 2) complex muscle- and fiber-type specific changes in sarcoplasmic reticulum Ca2+-loading level at physiological pCa 7.1, with EDL fibers displaying more consistent changes than SOL fibers; 3) decrease by 50% in specific force of all fiber types; 4) decrease in sensitivity to Ca2+, particularly for SOL fibers (by 40%); 5) decrease in the maximum steepness of the force-pCa curves, particularly for the hybrid I/IIA SOL fibers (by 35%); and 6) increased occurrence of biphasic behavior with respect to Sr2+ activation in SOL fibers, indicating the presence of both slow and fast troponin C isoforms. No fiber types common to the two muscles were detected at any time points (day 7, 21, and 50) after denervation. The results provide strong evidence that not only neural factors, but also the intrinsic properties of a muscle fiber, influence the structural and functional properties of a particular muscle cell and explain important functional changes induced by denervation at both whole muscle and single cell levels. mechanically skinned fibers; myosin heavy chain isoforms; lineage; sarcoplasmic reticulum; Ca2+; Sr2+ sensitivity; Long-Evans hooded rat  相似文献   

11.
A countertransport ofH+ is coupled to Ca2+ transport across thesarcoplasmic reticulum (SR) membrane. We propose that SR carbonic anhydrase (CA) accelerates the CO2-HCO reaction so that H+ ions, which are exchanged forCa2+ ions, are produced or buffered in the SR at sufficientrates. Inhibition of this SR-CA is expected to reduce the rate ofH+ fluxes, which then will retard the kinetics ofCa2+ transport. Fura 2 signals and isometric force weresimultaneously recorded in fiber bundles of the soleus (SOL) andextensor digitorum longus (EDL) from rats in the absence and presenceof the lipophilic CA inhibitors L-645151, chlorzolamide (CLZ), andethoxzolamide (ETZ), as well as the hydrophilic inhibitor acetazolamide(ACTZ). Fura 2 and force signals were analyzed for time to peak (TTP), 50% decay time (t50), and their amplitudes.L-645151, CLZ, and ETZ significantly increased TTP of fura 2 by10-25 ms in SOL and by 5-7 ms in EDL and TTP of force by6-30 ms in both muscles. L-645151 and ETZ significantly prolongedt50 of fura 2 and force by 20-55 and40-160 ms, respectively, in SOL and EDL. L-645151, CLZ, and ETZalso increased peak force of single twitches and amplitudes of furafluorescence ratio (R340/380) at an excitation wavelengthof 340 to 380 nm. All effects of CA inhibitors on fura 2 and forcesignals could be reversed. ACTZ did not affect TTP, t50, and amplitudes of fura 2 signals or force.L-645151, CLZ, and ETZ had no effects on myosin-, Ca2+-,and Na+-K+-ATPase activities, nor did theyaffect the amplitude and half-width of action potentials. We concludethat inhibition of SR-CA by impairing H+ countertransportis responsible for deceleration of intracellular Ca2+transients and contraction times.

  相似文献   

12.
Phospholamban(PLB) ablation is associated with enhanced sarcoplasmic reticulum (SR)Ca2+ uptake and attenuation of thecardiac contractile responses to -adrenergic agonists. In thepresent study, we compared the effects of isoproterenol (Iso) on theCa2+ currents(ICa) ofventricular myocytes isolated from wild-type (WT) and PLB knockout(PLB-KO) mice. Current density and voltage dependence ofICa were similarbetween WT and PLB-KO cells. However, ICa recorded fromPLB-KO myocytes had significantly faster decay kinetics. Iso increasedICa amplitude inboth groups in a dose-dependent manner (50% effective concentration,57.1 nM). Iso did not alter the rate ofICa inactivationin WT cells but significantly prolonged the rate of inactivation inPLB-KO cells. When Ba2+ was usedas the charge carrier, Iso slowed the decay of the current in both WTand PLB-KO cells. Depletion of SRCa2+ by ryanodine also slowed therate of inactivation ofICa, and subsequent application of Iso further reduced the inactivation rate ofboth groups. These results suggest that enhancedCa2+ release from the SR offsetsthe slowing effects of -adrenergic receptor stimulation on the rateof inactivation ofICa.

  相似文献   

13.
During vigorous exercise, Pi concentration levels within the cytoplasm of fast-twitch muscle fibers may reach 30 mM. Cytoplasmic Pi may enter the sarcoplasmic reticulum (SR) and bind to Ca2+ to form a precipitate (CaPi), thus reducing the amount of releasable Ca2+. Using mechanically skinned rat fast-twitch muscle fibers, which retain the normal action potential-mediated Ca2+ release mechanism, we investigated the consequences of Pi exposure on normal excitation-contraction coupling. The total amount of Ca2+ released from the SR by a combined caffeine/low-Mg2+ concentration stimulus was reduced by 20%, and the initial rate of force development slowed after 2-min exposure to 30 mM Pi (with or without the presence creatine phosphate). Peak (50 Hz) tetanic force was also reduced (by 25% and 45% after 10 and 30 mM Pi exposure, respectively). Tetanic force responses produced after 30 mM Pi exposure were nearly identical to those observed in the same fiber after depletion of total SR Ca2+ by 35%. Ca2+ content assays revealed that the total amount of Ca2+ in the SR was not detectably changed by exposure to 30 mM Pi, indicating that Ca2+ had not leaked from the SR but instead formed a precipitate with the Pi, reducing the amount of available Ca2+ for rapid release. These results suggest that CaPi precipitation that occurs within the SR could contribute to the failure of Ca2+ release observed in the later stages of metabolic muscle fatigue. They also demonstrate that the total amount of Ca2+ stored in the SR cannot drop substantially below the normal endogenous level without reducing tetanic force responses. muscle fatigue; excitation-contraction coupling  相似文献   

14.
Thrombin stimulation of rabbit ventricularmyocytes increases membrane-associated, Ca2+-independentphospholipase A2 (iPLA2) activity, resulting inaccelerated hydrolysis of membrane plasmalogen phospholipids andincreased production of arachidonic acid and lysoplasmenylcholine. This study was designed to investigate the signal transduction pathways involved in activation of membrane-associated iPLA2.Incubation of isolated membrane fractions suspended inCa2+-free buffer with thrombin or phorbol 12-myristate13-acetate resulted in a two- to threefold increase iniPLA2 activity. Prior treatment with the PKC inhibitorGF-109203X blocked iPLA2 activation by thrombin. These datasuggest that a novel PKC isoform present in the membrane fractionmodulates iPLA2 activity. Immunoblot analysis revealed asignificant portion of PKC- present in the membrane fraction, but noother membrane-associated novel PKC isoform was detected by thismethod. These data indicate that activation of membrane-associatediPLA2 is mediated by a membrane-associated novel PKCisoform in thrombin-stimulated rabbit ventricular myocytes.

  相似文献   

15.
Stimulatory concentrations of glucose induce two patterns of cytosolic Ca2+ concentration ([Ca2+]c) oscillations in mouse islets: simple or mixed. In the mixed pattern, rapid oscillations are superimposed on slow ones. In the present study, we examined the role of the membrane potential in the mixed pattern and the impact of this pattern on insulin release. Simultaneous measurement of [Ca2+]c and insulin release from single islets revealed that mixed [Ca2+]c oscillations triggered synchronous oscillations of insulin secretion. Simultaneous recordings of membrane potential in a single -cell within an islet and of [Ca2+]c in the whole islet demonstrated that the mixed pattern resulted from compound bursting (i.e., clusters of membrane potential oscillations separated by prolonged silent intervals) that was synchronized in most -cells of the islet. Each slow [Ca2+]c increase during mixed oscillations was due to a progressive summation of rapid oscillations. Digital image analysis confirmed the good synchrony between subregions of an islet. By contrast, islets from sarco(endo)plasmic reticulum Ca2+-ATPase isoform 3 (SERCA3)-knockout mice did not display typical mixed [Ca2+]c oscillations in response to glucose. This results from a lack of progressive summation of rapid oscillations and from altered spontaneous electrical activity, i.e., lack of compound bursting, and membrane potential oscillations characterized by lower-frequency but larger-depolarization phases than observed in SERCA3+/+ -cells. We conclude that glucose-induced mixed [Ca2+]c oscillations result from compound bursting in all -cells of the islet. Disruption of SERCA3 abolishes mixed [Ca2+]c oscillations and augments -cell depolarization. This latter observation indicates that the endoplasmic reticulum participates in the control of the -cell membrane potential during glucose stimulation. electrical activity; insulin-secreting cell; thapsigargin  相似文献   

16.
Phospholamban (PLB) associates with the Ca2+-ATPase in sarcoplasmic reticulum (SR) membranes to permit the modulation of contraction in response to -adrenergic signaling. To understand how coordinated changes in the abundance and intracellular trafficking of PLB and the Ca2+-ATPase contribute to the maturation of functional muscle, we measured changes in abundance, location, and turnover of endogenous and tagged proteins in myoblasts and during their differentiation. We found that PLB is constitutively expressed in both myoblasts and differentiated myotubes, whereas abundance increases of the Ca2+-ATPase coincide with the formation of differentiated myotubes. We observed that PLB is primarily present in highly mobile vesicular structures outside the endoplasmic reticulum, irrespective of the expression of the Ca2+-ATPase, indicating that PLB targeting is regulated through vesicle trafficking. Moreover, using pulse-chase methods, we observed that in myoblasts, PLB is trafficked through directed transport through the Golgi to the plasma membrane before endosome-mediated internalization. The observed trafficking of PLB to the plasma membrane suggests an important role for PLB during muscle differentiation, which is distinct from its previously recognized role in the regulation of the Ca2+-ATPase. sarco(endo)plasmic reticulum calcium-adenosine triphosphatase; differentiation; C2C12 myocytes; vesicle trafficking  相似文献   

17.
The solubleCa2+-binding protein parvalbumin (PV) is expressed at highlevels in fast-twitch muscles of mice. Deficiency of PV in knockoutmice (PV /) slows down the speed of twitch relaxation, whilemaximum force generated during tetanic contraction is unaltered. Weobserved that PV-deficient fast-twitch muscles were significantly moreresistant to fatigue than were the wild type. Thus components involvedin Ca2+ homeostasis during the contraction-relaxation cyclewere analyzed. No upregulation of another cytosolicCa2+-binding protein was found. Mitochondria are thought toplay a physiological role during muscle relaxation and were thusanalyzed. The fractional volume of mitochondria in the fast-twitchmuscle extensor digitorum longus (EDL) was almost doubled in PV /mice, and this was reflected in an increase of cytochrome coxidase. A faster removal of intracellular Ca2+concentration ([Ca2+]i) 200-700 ms afterfast-twitch muscle stimulation observed in PV / muscles supportsthe role for mitochondria in late [Ca2+]iremoval. The present results also show a significant increase of thedensity of capillaries in EDL muscles of PV / mice. Thus alterations in the dynamics of Ca2+ transients detected infast-twitch muscles of PV / mice might be linked to the increase inmitochondria volume and capillary density, which contribute to thegreater fatigue resistance of these muscles.

  相似文献   

18.
Adenylyl cyclase expression and modulation of cAMP in rat taste cells   总被引:4,自引:0,他引:4  
The present study determined Ca2+ handling in the hearts of rats subjected to chronic hypoxia (CH). Spectrofluorometry was used to measure intracellular Ca2+ concentration ([Ca2+]i) and its responses to electrical stimulation, caffeine, and isoproterenol in myocytes from the right ventricle of rats breathing 10% oxygen for 1, 3, 7, 14, 21, 28, and 56 days and age-matched controls. The protein expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and its ryanodine receptor (RyR) were measured. The uptake of 45Ca2+ by SERCA, release by RyR, and extrusion by Na+/Ca2+ exchange (NCX) were determined. It was found that Ca2+ homeostasis and Ca2+ responses to -adrenoceptor stimulation reached a new equilibrium after 4 wk of CH. Ca2+ content in the sarcoplasmic reticulum (SR) was reduced, but cytosolic Ca2+ remained unchanged after CH. Expression of SERCA and its Ca2+ uptake, Ca2+ release via RyR, and NCX activity were suppressed by CH. The results indicate impaired Ca2+ handling, which may be responsible for the attenuated Ca2+ responses to -adrenoceptor stimulation in CH. intracellular calcium ion concentration; calcium-adenosinetriphosphatase; ryanodine receptor; sodium/calcium exchange; sarcoplasmic reticulum; -adrenoceptor; chronic hypoxia  相似文献   

19.
To find out whether the decrease in muscle performance of isolated mammalian skeletal muscle associated with the increase in temperature toward physiological levels is related to the increase in muscle superoxide (O2) production, O2 released extracellularly by intact isolated rat and mouse extensor digitorum longus (EDL) muscles was measured at 22, 32, and 37°C in Krebs-Ringer solution, and tetanic force was measured in both preparations at 22 and 37°C under the same conditions. The rate of O2 production increased marginally when the temperature was increased from 22 to 32°C, but increased fivefold when the temperature was increased from 22 to 37°C in both rat and mouse preparations. This increase was accompanied by a marked decrease in tetanic force after 30 min incubation at 37°C in both rat and mouse EDL muscles. Tetanic force remained largely depressed after return to 22°C for up to 120 min. The specific maximum Ca2+-activated force measured in mechanically skinned fibers after the temperature treatment was markedly depressed in mouse fibers but was not significantly depressed in rat muscle fibers. The resting membrane and intracellular action potentials were, however, significantly affected by the temperature treatment in the rat fibers. The effects of the temperature treatment on tetanic force, maximum Ca2+-activated force, and membrane potential were largely prevented by 1 mM Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a membrane-permeable superoxide dismutase mimetic, indicating that the increased O2 production at physiological temperatures is largely responsible for the observed depression in tetanic force at 37°C by affecting the contractile apparatus and plasma membrane. intact mammalian muscle; physiological temperature; superoxide; excitation-contraction coupling; maximum Ca2+-activated force; muscle excitability; cytochrome c assay  相似文献   

20.
Airway goblet cell mucin secretion is controlled by agonist activation of P2Y2 purinoceptors, acting through Gq/PLC, inositol-1,4,5-trisphosphate (IP3), diacylglycerol, Ca2+ and protein kinase C (PKC). Previously, we showed that SPOC1 cells express cPKC, nPKC, nPKC, and nPKC; of these, only nPKC translocated to the membrane in correlation with mucin secretion (Abdullah LH, Bundy JT, Ehre C, Davis CW. Am J Physiol Lung Physiol 285: L149–L160, 2003). We have verified these results and pursued the identity of the PKC effector isoform by testing the effects of altered PKC expression on regulated mucin release using SPOC1 cell and mouse models. SPOC1 cells overexpressing cPKC, nPKC, and nPKC had the same levels of ATPS- and phorbol-1,2-myristate-13-acetate (PMA)-stimulated mucin secretion as the levels in empty retroviral vector expressing cells. Secretagogue-induced mucin secretion was elevated only in cells overexpressing nPKC (14.6 and 23.5%, for ATPS and PMA). Similarly, only SPOC1 cells infected with a kinase-deficient nPKC exhibited the expected diminution of stimulated mucin secretion, relative to wild-type (WT) isoform overexpression. ATPS-stimulated mucin secretion from isolated, perfused mouse tracheas was diminished in P2Y2-R null mice by 82% relative to WT mice, demonstrating the utility of mouse models in studies of regulated mucin secretion. Littermate WT and nPKC knockout (KO) mice had nearly identical levels of stimulated mucin secretion, whereas mucin release was nearly abolished in nPKC KO mice relative to its WT littermates. We conclude that nPKC is the effector isoform downstream of P2Y2-R activation in the goblet cell secretory response. The translocation of nPKC observed in activated cells is likely not related to mucin secretion but to some other aspect of goblet cell biology. protein kinase C; mucins; goblet cells; exocytosis; airways; epithelium; lung  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号