首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Horie  S Yano  N Aimi  S Sakai  K Watanabe 《Life sciences》1992,50(7):491-498
The effects of hirsutine, an indole alkaloid from Uncaria rhynchophylla (MIQ.) Jackson, on cytosolic Ca2+ level ([Ca2+]cyt) were studied by using fura-2-Ca2+ fluorescence in smooth muscle of the isolated rat aorta. Noradrenaline and high K+ solution produced a sustained increase in [Ca2+]cyt. Application of hirsutine after the increases in [Ca2+]cyt induced by noradrenaline and high K+ notably decreased [Ca2+]cyt, suggesting that hirsutine inhibits Ca2+ influx mainly through a voltage-dependent Ca2+ channel. Furthermore, the effect of hirsutine on intracellular Ca2+ store was studied by using contractile responses to caffeine under the Ca(2+)-free nutrient condition in the rat aorta. When hirsutine was added at 30 microM before caffeine treatment, the agent slightly but significantly reduced the caffeine-induced contraction. When added during Ca2+ loading, hirsutine definitely augmented the contractile response to caffeine. These results suggest that hirsutine inhibits Ca2+ release from the Ca2+ store and increases Ca2+ uptake into the Ca2+ store, leading to a reduction of intracellular Ca2+ level. It is concluded that hirsutine reduces intracellular Ca2+ level through its effect on the Ca2+ store as well as through its effect on the voltage-dependent Ca2+ channel.  相似文献   

2.
Cytoplasmic free Ca2+ ([Ca2+]cyt) is essential for the contraction and relaxation of blood vessels. The role of plasma membrane Na+/Ca2+ exchange (NCX) activity in the regulation of vascular Ca2+ homeostasis was previously ascribed to the NCX1 protein. However, recent studies suggest that a relatively newly discovered K+-dependent Na+/Ca2+ exchanger, NCKX (gene family SLC24), is also present in vascular smooth muscle. The purpose of the present study was to identify the expression and function of NCKX in arteries. mRNA encoding NCKX3 and NCKX4 was demonstrated by RT-PCR and Northern blot in both rat mesenteric and aortic smooth muscle. NCXK3 and NCKX4 proteins were also demonstrated by immunoblot and immunofluorescence. After voltage-gated Ca2+ channels, store-operated Ca2+ channels, and Na+ pump were pharmacologically blocked, when the extracellular Na+ was replaced with Li+ (0 Na+) to induce reverse mode (Ca2+ entry) activity of Na+/Ca2+ exchangers, a large increase in [Ca2+]cyt signal was observed in primary cultured aortic smooth muscle cells. About one-half of this [Ca2+]cyt signal depended on the extracellular K+. In addition, after the activity of NCX was inhibited by KB-R7943, Na+ replacement-induced Ca2+ entry was absolutely dependent on extracellular K+. In arterial rings denuded of endothelium, a significant fraction of the phenylephrine-induced and nifedipine-resistant aortic or mesenteric contraction could be prevented by removal of extracellular K+. Taken together, these data provide strong evidence for the expression of NCKX proteins in the vascular smooth muscle and their novel role in mediating agonist-stimulated [Ca2+]cyt and thereby vascular tone.  相似文献   

3.
Hypoosmotic shock treatment increased cytosolic Ca2+ ion concentration ([Ca2+]cyt) in tobacco (Nicotiana tabacum) suspension-culture cells. [Ca2+]cyt measurements were made by genetically transforming these cells to express apoaequorin and by reconstituting the Ca2+-dependent photoprotein, aequorin, in the cytosol by incubation with chemically synthesized coelenterazine. Measurement of Ca2+-dependent luminescence output thus allowed the direct monitoring of [Ca2+]cyt changes. When cells were added to a hypoosmotic medium, a biphasic increase in [Ca2+]cyt was observed; an immediate small elevation (phase 1) was observed first, followed by a rapid, large elevation (phase 2). Phase 1 [Ca2+]cyt was stimulated by the V-type ATPase inhibitor bafilomycin A1. Phase 2 was inhibited by the protein kinase inhibitor K-252a and required the continued presence of the hypoosmotic stimulus to maintain it. Although Ca2+ in the medium was needed to produce phase 2, it was not needed to render the cells competent to the hypoosmotic stimulus. If cells were subject to hypoosmotic shock in Ca2+- depleted medium, increases in luminescence could be induced up to 20 min after the shock by adding Ca2+ to the medium. These data suggest that hypoosmotic shock-induced [Ca2+]cyt elevation results from the activity of a Ca2+ channel in the plasma membrane or associated hypoosmotic sensing components that require Ca2+- independent phosphorylation and a continued stimulus to maintain full activity.  相似文献   

4.
Role of capacitative Ca2+ entry in bronchial contraction and remodeling.   总被引:4,自引:0,他引:4  
Asthma is characterized by airway inflammation, bronchial hyperresponsiveness, and airway obstruction by bronchospasm and bronchial wall thickening due to smooth muscle hypertrophy. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) may serve as a shared signal transduction element that causes bronchial constriction and bronchial wall thickening in asthma. In this study, we examined whether capacitative Ca2+ entry (CCE) induced by depletion of intracellular Ca2+ stores was involved in agonist-mediated bronchial constriction and bronchial smooth muscle cell (BSMC) proliferation. In isolated bronchial rings, acetylcholine (ACh) induced a transient contraction in the absence of extracellular Ca2+ because of Ca2+ release from intracellular Ca2+ stores. Restoration of extracellular Ca2+ in the presence of atropine, an M-receptor blocker, induced a further contraction that was apparently caused by a rise in [Ca2+]cyt due to CCE. In single BSMC, amplitudes of the store depletion-activated currents (I(SOC)) and CCE were both enhanced when the cells proliferate, whereas chelation of extracellular Ca2+ with EGTA significantly inhibited the cell growth in the presence of serum. Furthermore, the mRNA expression of TRPC1, a transient receptor potential channel gene, was much greater in proliferating BSMC than in growth-arrested cells. Blockade of the store-operated Ca2+ channels by Ni2+ decreased I(SOC) and CCE and markedly attenuated BSMC proliferation. These results suggest that upregulated TRPC1 expression, increased I(SOC), enhanced CCE, and elevated [Ca2+]cyt may play important roles in mediating bronchial constriction and BSMC proliferation.  相似文献   

5.
Changes in [Mg2+] in a millimolar range have a significant inverse effect on the Ca2+- (or Sr2+)activated tension generation of skeletal muscle fibers. Single frog (Rana pipiens) semitendinosus muscle fibers were "skinned" (sarcolemma removed) and contracted isometrically in bathing solutions of varying [Ca2+] or [Sr2+] and [Mg2+] but a constant pH, [MgATP2-], [K+], [CP2-], [CPK], and ionic strength. Ca2+- (or Sr2+- )activated steady-state tensions were recorded for three [Mg2+]'s: 5 X 10(-5)M, 1 X 10(-3) M, and 2 X 10(-3) M; and these tensions were expressed as the percentages of maximum tension generation of the fibers for the same [Mg2+]. Maximum tension was not affected by [Mg2+] within Ca2+-activating or Sr2+-activating sets of solutions; however, the submaximum Ca2+-(or Sr2+)activated tension is strongly affected in an inverse fashion by increasing [Mg2+]. Mg2+ behaves as a competitive inhibitor of Ca2+ and also affects the degree of cooperativity in the system. At [Mg2+] = 5 X 10(-5)M the shape of tension versus [Ca2+] (or [Sr2+]) curve showed evidence of cooperativity of Ca2+ (or Sr2+) binding or activation of the contractile system. As [Mg2+] increased, the apparent affinity for Ca2+ or Sr2+ and cooperativity of the contractile system declined. The effect on cooperativity suggests that as [Mg2+] decreases a threshold for Ca2+ activation appears.  相似文献   

6.
Our objectives were to identify the relative contributions of [Ca2+]i and myofilament Ca2+ sensitivity in the pulmonary venous smooth muscle (PVSM) contractile response to the thromboxane A2 mimetic U-46619 and to assess the roles of PKC, tyrosine kinases (TK), and Rho-kinase (ROK) in that response. We tested the hypothesis that U-46619-induced contraction in PVSM is mediated by both increases in [Ca2+]i and myofilament Ca2+ sensitivity and that the PKC, TK, and ROK signaling pathways are involved. Isometric tension was measured in isolated endothelium-denuded (E-) canine pulmonary venous (PV) rings. In addition, [Ca2+]i and tension were simultaneously measured in fura-2-loaded E- PVSM strips. U-46619 (0.1 nM-1 microM) caused dose-dependent (P < 0.001) contraction in PV rings. U-46619 contraction was attenuated by inhibitors of L-type voltage-operated Ca2+ channels (nifedipine, P < 0.001), inositol 1,4,5-trisphosphate-mediated Ca2+ release (2-aminoethoxydiphenylborate, P < 0.001), PKC (bisindolylmaleimide I, P < 0.001), TK (tyrphostin A-47, P = 0.014), and ROK (Y-27632, P = 0.008). In PV strips, U-46619 contraction was associated with increases in [Ca2+]i and myofilament Ca2+ sensitivity. Both Ca2+ influx and release mediated the early transient increase in [Ca2+]i, whereas the late sustained increase in [Ca2+]i only involved Ca2+ influx. Inhibition of both PKC and ROK (P = 0.006 and P = 0.002, respectively), but not TK, attenuated the U-46619-induced increase in myofilament Ca2+ sensitivity. These results suggest that U-46619 contraction is mediated by Ca2+ influx, Ca2+ release, and increased myofilament Ca2+ sensitivity. The PKC, TK, and ROK signaling pathways are involved in U-46619 contraction.  相似文献   

7.
A transient increase in cytosolic Ca2+ concentration ([Ca2+]cyt) is thought to be a prerequisite for an appropriate physiological response to both chilling and salt stress. The [Ca2+]cyt is raised by Ca2+ influx to the cytosol from the apoplast and/or intracellular stores. It has been speculated that different signals mobilise Ca2+ from different stores, but little is known about the origin(s) of the Ca2+ entering the cytosol in response to specific environmental challenges. We have utilised the developmentally regulated suberisation of endodermal cells, which is thought to prevent Ca2+ influx from the apoplast, to ascertain whether Ca2+ influx is required to increase [Ca2+]cyt in response to chilling or salt stress. Perturbations in [Ca2+]cyt were studied in transgenic Arabidopsis thaliana, expressing aequorin fused to a modified yellow fluorescent protein solely in root endodermal cells, during slow cooling of plants from 20 to 0.5 degrees C over 5 min and in response to an acute salt stress (0.333 m NaCl). Only in endodermal cells in the apical 4 mm of the Arabidopsis root did [Ca2+]cyt increase significantly during cooling, and the magnitude of the [Ca2+]cyt elevation elicited by cooling was inversely related to the extent of suberisation of the endodermal cell layer. No [Ca2+]cyt elevations were elicited by cooling in suberised endodermal cells. This is consistent with the hypothesis that suberin lamellae isolate the endodermal cell protoplast from the apoplast and, thereby, prevent Ca2+ influx. By contrast, acute salt stress increased [Ca2+]cyt in endodermal cells throughout the root. These results suggest that [Ca2+]cyt elevations, upon slow cooling, depend absolutely on Ca2+ influx across the plasma membrane, but [Ca2+]cyt elevations in response to acute salt stress do not. They also suggest that Ca2+ release from intracellular stores contributes significantly to increasing [Ca2+]cyt upon acute salt stress.  相似文献   

8.
The ability to maintain the cytoplasmic Ca2+ concentration ([Ca2+]cyt) at homeostatic levels has been examined during leaf senescence in detached parsley (Petroselinum crispum) leaves. Fluorescence ratiometric imaging of mesophyll cells isolated from parsley leaves at various senescence stages and loaded with the Ca2+ indicator fura-2 has revealed a distinct elevation of [Ca2+]cyt, which was positively correlated with the progress of leaf senescence. This initial increase of [Ca2+]cyt, which was first observed in cells isolated from 3-d-senescent leaves, occurred 1 d before or in parallel with changes in two established senescence parameters, chlorophyll loss and lipid peroxidation. However, the [Ca2+]cyt elevation followed by 2 d the initial increase in the senescence-associated proteolysis. Whereas the [Ca2+]cyt of nonsenescent cells remained at the basal level, the elevated [Ca2+]cyt of the senescent cells was a long-lasting effect. Experimental retardation of senescence processes, achieved by pretreatment of detached leaves with the cytokinin benzyladenine, resulted in maintenance of homeostatic levels of [Ca2+]cyt in cells isolated from 3-d-senescent leaves. These observations demonstrate for the first time to our knowledge a correlation between elevated [Ca2+]cyt and the process of senescence in parsley leaves. Such senescence-associated elevation of [Ca2+]cyt, which presumably results from a loss of the cell's capability to extrude Ca2+, may serve as a signal inducing subsequent deteriorative processes.  相似文献   

9.
Tsai MH  Jiang MJ 《Life sciences》2005,76(8):877-888
Smooth muscle contractility is regulated by both intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ sensitivity of the contractile apparatus. Extracellular signal-regulated kinases1/2 (ERK1/2) have been implicated in modulating Ca2+ sensitivity of smooth muscle contraction but mechanisms of action remain elusive. This study investigated the roles of ERK1/2 in modulating [Ca2+]i, calcium sensitivity and the 20-kDa myosin light chain (MLC20) phosphorylation during contraction activated by alpha1-adrenoceptor agonist phenylephrine and thromboxane A2 mimetic U46619 in rat tail artery strips. A specific inhibitor for ERK1/2 activation, U0126, inhibited phenylephrine- and U46619-induced contraction, shifting both concentration-response curves rightward. During phenylephrine-stimulated contraction, U0126 exhibited concentration-dependent inhibition towards force but significant decreases in [Ca2+]i were detected only at higher concentration. Both phenylephrine and U46619 induced a transient activation of ERK1/2 which was abolished by U0126 but unaffected by a general tyrosine kinase inhibitor genistein or Rho kinase inhibitor Y27632 at concentrations inhibiting more than 50% force. Interestingly, U0126 had no effect on steady-state MLC20 phosphorylation levels stimulated by both receptor agonists. These results indicated that during contraction of rat tail artery smooth muscle activated by alpha1-adrenoceptor agonist or thromboxane A2 analogue, ERK1/2 increase Ca2+ sensitivity that does not involve the modulation of MLC20 phosphorylation.  相似文献   

10.
Impaired smooth muscle contractility is a hallmark of acute acalculous cholecystitis. Although free cytosolic Ca2+ ([Ca2+]i) is a critical step in smooth muscle contraction, possible alterations in Ca2+ homeostasis by cholecystitis have not been elucidated. Our aim was to elucidate changes in the Ca2+ signaling pathways induced by this gallbladder dysfunction. [Ca2+]i was determined by epifluorescence microscopy in fura 2-loaded isolated gallbladder smooth muscle cells, and isometric tension was recorded from gallbladder muscle strips. F-actin content was quantified by confocal microscopy. Ca2+ responses to the inositol trisphosphate (InsP3) mobilizing agonist CCK and to caffeine, an activator of the ryanodine receptors, were impaired in cholecystitic cells. This impairment was not the result of a decrease in the size of the releasable pool. Inflammation also inhibited Ca2+ influx through L-type Ca2+ channels and capacitative Ca2+ entry induced by depletion of intracellular Ca2+ pools. In addition, the pharmacological phenotype of these channels was altered in cholecystitic cells. Inflammation impaired contractility further than Ca2+ signal attenuation, which could be related to the decrease in F-actin that was detected in cholecystitic smooth muscle cells. These findings indicate that cholecystitis decreases both Ca2+ release and Ca2+ influx in gallbladder smooth muscle, but a loss in the sensitivity of the contractile machinery to Ca2+ may also be responsible for the impairment in gallbladder contractility.  相似文献   

11.
Intestinal mucosal restitution occurs by epithelial cell migration, rather than by proliferation, to reseal superficial wounds after injury. Polyamines are essential for the stimulation of intestinal epithelial cell (IEC) migration during restitution in association with their ability to regulate Ca2+ homeostasis, but the exact mechanism by which polyamines induce cytosolic free Ca2+ concentration ([Ca2+]cyt) remains unclear. Phospholipase C (PLC)-gamma1 catalyzes the formation of inositol (1,4,5)-trisphosphate (IP3), which is implicated in the regulation of [Ca2+]cyt by modulating Ca2+ store mobilization and Ca2+ influx. The present study tested the hypothesis that polyamines are involved in PLC-gamma1 activity, regulating [Ca2+]cyt and cell migration after wounding. Depletion of cellular polyamines by alpha-difluoromethylornithine inhibited PLC-gamma1 expression in differentiated IECs (stable Cdx2-transfected IEC-6 cells), as indicated by substantial decreases in levels of PLC-gamma1 mRNA and protein and its enzyme product IP3. Polyamine-deficient cells also displayed decreased [Ca2+]cyt and inhibited cell migration. Decreased levels of PLC-gamma1 by treatment with U-73122 or transfection with short interfering RNA specifically targeting PLC-gamma1 also decreased IP3, reduced resting [Ca2+]cyt and Ca2+ influx after store depletion, and suppressed cell migration in control cells. In contrast, stimulation of PLC-gamma1 by 2,4,6-trimethyl-N-(meta-3-trifluoromethylphenyl)-benzenesulfonamide induced IP3, increased [Ca2+]cyt, and promoted cell migration in polyamine-deficient cells. These results indicate that polyamines are absolutely required for PLC-gamma1 expression in IECs and that polyamine-mediated PLC-gamma1 signaling stimulates cell migration during restitution as a result of increased [Ca2+]cyt.  相似文献   

12.
The process by which store-operated Ca2+ channels (SOCs) deliver Ca2+ to the endoplasmic reticulum (ER) and the role of (Ca2++Mg2+)ATP-ases of the ER in the activation of SOCs in H4-IIE liver cells were investigated using cell lines stably transfected with apo-aequorin targeted to the cytoplasmic space or the ER. In order to measure the concentration of Ca2+ in the ER ([Ca2+]er), cells were pre-treated with 2,5-di-tert-butylhydroquinone (DBHQ) to deplete Ca2+ in the ER before reconstitution of holo-aequorin. The addition of extracellular Ca2+ (Cao2+) to Ca2+-depleted cells induced refilling of the ER, which was complete within 5 min. This was associated with a sharp transient increase in the cytoplasmic Ca2+ concentration ([Ca2+]cyt) of about 15 s duration (a Cao2+-induced [Ca2+]cyt spike) after which [Ca2+]cyt remained elevated slightly above the basal value for a period of about 2 min (low [Ca2+]cyt plateau). The Cao2+-induced [Ca2+]cyt spike was inhibited by Gd3+, not affected by tetrakis-(2-pyridymethyl) ethylenediamine (TPEN), and broadened by ionomycin and the intracellular Ca2+ chelators BAPTA and EGTA. Refilling of the ER was inhibited by caffeine. Neither thapsigargin nor DBHQ caused a detectable inhibition or change in shape of the Cao2+-induced [Ca2+]cyt spike or the low [Ca2+]cyt plateau whereas each inhibited the inflow of Ca2+ to the ER by about 80%. Experiments conducted with carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) indicated that thapsigargin did not alter the amount of Ca2+ accumulated in mitochondria. The changes in [Ca2+]cyt reported by aequorin were compared with those reported by fura-2. It is concluded that (i) there are significant quantitative differences between the manner in which aequorin and fura-2 sense changes in [Ca2+]cyt and (ii) thapsigargin and DBHQ inhibit the uptake of Ca2+ to the bulk of the ER but this is not associated with inhibition of the activation of SOCs. The possible involvement of a small sub-region of the ER (or another intracellular Ca2+ store), which contains thapsigargin-insensitive (Ca2++Mg2+)ATP-ases, in the activation of SOCs is briefly discussed.  相似文献   

13.
The effects of isoproterenol on intracellular calcium concentration   总被引:9,自引:0,他引:9  
beta-Adrenergic agonist, isoproterenol (ISO), is a potent relaxant of tracheal smooth muscle and inhibits carbachol-induced contraction. The effect of ISO on intracellular free Ca2+ concentration ([Ca2+]i) was examined in bovine tracheal smooth muscle strips, employing aequorin as Ca2+ indicator. Surprisingly, 10 microM ISO induces a 5-fold increase in [Ca2+]i which then gradually declines but still remains higher than basal after 1 h of stimulation. The ISO-induced increase in [Ca2+]i is dose-dependent, and the ED50 is approximately 50 nM. The ISO-induced increase in [Ca2+]i is inhibited by a beta-receptor blocker, propranolol, not by an alpha-blocker, phentolamine. The ISO-induced rise in [Ca2+]i is dependent on extracellular Ca2+. Forskolin, an adenylate cyclase activator, and vasoactive intestinal peptide, which is known to stimulate adenylate cyclase via a specific receptor in this tissue, have similar effects on [Ca2+]i, suggesting that a rise in cyclic AMP concentration mediates this effect of ISO on [Ca2+]i. Pretreatment of muscle with 10 microM ISO inhibits both the initial Ca2+ transient and the contractile response induced by 0.3 microM carbachol. Conversely, in carbachol-pretreated muscle strips, addition of ISO causes a fall rather than a rise in [Ca2+]i, and an inhibition of contraction. These results indicate that ISO has effects on cellular Ca2+ metabolism at more than a single site in bovine tracheal smooth muscle, that these effects are different in control and carbachol-pretreated muscle, and that the relaxing effect of ISO is not due solely to its effect on Ca2+ metabolism.  相似文献   

14.
Using front-surface fluorometry and fura-2-loaded porcine coronary arterial strips with an intact endothelium, changes in cytosolic Ca2+ concentrations ([Ca2+]i) and tension of smooth muscle were simultaneously monitored in an attempt to determine the vasoactive properties of endothelin-1 (ET-1). ET-1 in low concentrations (0.1-1nM) caused a significant transient decrease in [Ca2+]i and tension of the strips precontracted with 10(-7) M U-46619. The maximal decreases in [Ca2+]i and tension were obtained with 0.6nM ET-1. In higher concentrations (1nM-100nM), there was no reduction in [Ca2+]i or tension; the contraction induced by U-46619 was potentiated. The decreases in [Ca2+]i and tension induced by ET-1 were inhibited by the mechanical removal of the endothelium or by pretreatment with NG-nitro-L-arginine and were slightly attenuated by indomethacin. Thus, ET-1 in low concentrations can induce endothelium-dependent transient relaxations accompanied by transient reductions of [Ca2+]i in isolated porcine coronary arteries. This effect is mainly mediated by the release of endothelium-derived relaxing factor.  相似文献   

15.
The soy-derived isoflavones genistein and daidzein affect the contractile state of different kinds of smooth muscle. We describe acute effects of genistein and daidzein on contractile force and intracellular Ca2+ concentration ([Ca2+]i) in in situ smooth muscle of rat aorta. Serotonin (5-HT) (2 microM) or a depolarizing high K+ solution produced the contraction of aortic rings, which were immediately relaxed by 20 microM genistein and by 20 microM daidzein. Accordingly, both 5-HT and a high K+ solution increased the [Ca2+]i in in situ smooth muscle cells. Genistein strongly inhibited the [Ca2+]i increase evoked by 5-HT (74.0 +/- 7.3%, n = 11, p < 0.05), and had a smaller effect on high K+ induced [Ca2+]i increase (19.9 +/- 4.0%, n = 7, p < 0.05). The K+ channels blocker tetraethylammonium (TEA) (0.5 mM) diminished genistein effects on 5-HT-induced [Ca2+]i increase. Interestingly, during prolonged application of 5-HT, the [Ca2+]i oscillated and a short (90 s) preincubation with genistein (20 microM) significantly diminished the frequency of the oscillations. This effect was totally abolished by TEA. In conclusion, in rat aortic smooth muscle, genistein is capable of diminishing the increase in [Ca2+]i and in force evoked by 5-HT and high K+ solution, and of decreasing the frequency of [Ca2+]i oscillations induced by 5-HT. The short time required by genistein, and the relaxing effect of daidzein suggest that tyrosine kinases inhibition is not involved. The small inhibiting effect of genistein on the [Ca2+]i increase evoked by high K+ and the effect of TEA point to the activation by genistein of calcium-activated K+ channels.  相似文献   

16.
植物钙吸收、转运及代谢的生理和分子机制   总被引:3,自引:0,他引:3  
周卫  汪洪 《植物学报》2007,24(6):762-778
钙是植物必需的营养元素。酸性砂质土壤中含钙较少, 导致在其土壤上生长的作物容易缺钙。另外由于果树果实、果菜类和包心叶菜类的蒸腾作用弱, 导致果树和蔬菜普遍生理缺钙。根系维管束组织可能通过共质体和质外体两种途径进行钙素吸收, 而果实则可通过非维管束组织直接吸收钙素。Ca2+通过Ca2+通道内流进入胞质, 并通过Ca2+-ATPase 和Ca2+/H+反向转运蛋白外流以保持胞质内低Ca2+浓度。为了应对植物发育和环境胁迫信号, Ca2+由质膜、液泡膜和内质网膜的Ca2+通道内流进入胞质, 导致胞质Ca2+浓度迅速增加, 产生钙瞬变和钙振荡, 传递到钙信号靶蛋白, 如钙调素、钙依赖型蛋白激酶及钙调磷酸酶B类蛋白, 引起特异的生理生化反应。本文综述了植物钙素吸收、转运以及代谢研究的最新进展, 包括植物对钙的需求和作物缺钙的原因, 根系维管束组织及果实钙素吸收机理, Ca2+跨膜运输特性, 钙的信使作用以及钙信号靶蛋白等方面内容。  相似文献   

17.
This study investigates whether endotoxin-induced contractile dysfunction is associated with a defect in the modulation of calcium homeostasis and the potential mechanisms involved. Treatment of rats in vivo with endotoxin significantly decreased the magnitude of contractile transients in electrically stimulated left ventricular papillary muscle isolated after an equilibration period of 6 hours. Although no significant difference was found in the peak intracellular calcium concentration ([Ca2+]i) between the endotoxin-treated and control groups, resting [Ca2+]i) was significantly elevated in the endotoxin-treated group, producing a smaller Ca2+ transient (basal-peak difference) in this group. Pretreatment of rats with dexamethasone prevented the endotoxin-induced decrease in peak tension and inhibited the elevation in resting [Ca2+]i, with a resultant maintenance of Ca2+ transient magnitude. Similar observations were made during stimulation of the muscles by the beta-adrenoceptor agonist, isoprenaline. These results show that endotoxin-induced reduction of cardiac contractile performance is mediated, at least in part, by elevating resting [Ca2+]i, and a glucocorticoid protected from these negative effects. While endotoxin reduces the magnitude of the Ca2+ transient it does not alter peak [Ca2+]i availability. Further investigation is required to determine whether endotoxin decreases contractile performance by reducing the sensitivity of cardiac myofilaments to calcium.  相似文献   

18.
We made use of quin2 microfluorometry to determine the effects of endothelin (ET) on cytosolic free Ca2+ concentrations [Ca2+]i) in rat aortic smooth muscle cells in primary culture. In Ca2+-containing medium, ET induced a rapid and sustained elevation of [Ca2+]i. In the latter component, in particular, the elevation of [Ca2+]i was inhibited by diltiazem. In Ca2+-free medium, ET induced a rapid and transient [Ca2+]i elevation, which was not inhibited by diltiazem. When the caffeine-sensitive intracellular Ca2+ store was practically depleted by repeated treatment with caffeine in Ca2+-free media, ET did not elevate [Ca2+]i. Thus, it was suggested that ET induces [Ca2+]i elevation not only by extracellular Ca2+-dependent, mechanisms but also by releasing Ca2+ from the intracellular store, and that the ET-sensitive Ca2+ store may overlap with the caffeine-sensitive one, in cultured vascular smooth muscle cells.  相似文献   

19.
Barron JT  Nair A 《Life sciences》2003,74(5):651-662
Elevation of ambient lactate concentration has been shown to alter contractile reactivity of vascular smooth muscle. We tested the hypothesis that lactate affects the disposition of intracellular free Ca2+. Porcine carotid artery strips were incubated in normal medium and in medium containing 10 mM sodium lactate or 10 mM sodium pyruvate. The rate and magnitude of contraction in response to K+-depolarization was depressed in lactate when compared to control. This was associated with a decrease in the onset and magnitude of the normal increase in free [Ca2+]i, as reflected by fluorescence of fura-2. Pyruvate had no effect on these variables. Depression in [Ca2+]i could not be attributed to a selective effect of lactate on pHi, membrane potential, or to enhanced superoxide production. Deletion of Ca2+ from the incubation medium negated depression of contractile responsiveness produced by lactate when compared to control. Lactate had no effect on contraction induced by 100 microM norepinephrine, which releases intracellular stored Ca2+. Thus, lactate inhibits arterial smooth muscle contraction by inhibiting influx of Ca2+ across the sarcolemma.  相似文献   

20.
Thrombin-induced calcium movements in platelet activation   总被引:5,自引:0,他引:5  
The thrombin-induced Ca2+ fluxes and their coupling to platelet aggregation of the human platelet were studied using quin2 as a measure of the cytoplasmic Ca2+ concentration [( Ca2+]cyt) and chlorotetracycline (CTC) as a measure of internally sequestered Ca2+. Evidence is given that the CTC fluorescence change is proportional to the free internal Ca2+ concentration in the dense tubular lumen. The intracellular quin2 concentration was 1 mM and analysis showed that it did not perturb the processes reported herein. The value of [Ca2+]cyt at rest and during thrombin activation was analyzed in terms of Ca2+ influx, Ca2+ release, Ca2+ sequestration, and Ca2+ extrusion. Influx was distinguished from internal release by removing extracellular Ca2+ 1 min before thrombin activation. In the presence of 2 mM external Ca2+, the thrombin-induced Ca2+ influx accounts for most of the increase in [Ca2+]cyt (over 80%). Thrombin-induced Ca2+ influx and release have somewhat different EC50 values (0.17 U/ml vs. 0.35 U/ml). The contribution of influx can be inhibited by verapamil, bepridil and Cd2+ (IC50 values of 19 microM, 2 microM and 50 microM). The influx results were analyzed in terms of a thrombin-activated channel. Indomethacin pretreatment experiments suggest that activation of the arachidonic pathway accounts for approx. 50% of the influx-related [Ca2+]cyt elevation. Elevation of [Ca2+]cyt by intracellular release is not inhibited by verapamil or Cd2+ but is inhibited by bepridil with a high IC50 (25 microM). It is only 15-20% inhibited by indomethacin and is thus not dependent on thromboxane A2 formation. The release reaction does not require Ca2+ influx. The rate of thrombin-activated platelet aggregation is shown to have an approximately fourth-power dependence on [Ca2+]cyt with an apparent Km of 0.4 microM. Comparisons of aggregation rates of the partially thrombin-activated vs. fully thrombin-activated, partially verapamil-inhibited conditions suggest that this dependence on [Ca2+]cyt is the major determinant of the aggregation behavior. Analysis shows that calcium influx is the major pathway for elevating [Ca2+]cyt by thrombin when physiological concentrations of external Ca2+ are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号