首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The kinetics of bacterial hydrolytic ectoenzymatic activity and the uptake of monomeric compounds were investigated in the Northwestern Mediterranean Sea. Aminopeptidase and α- and β-glucosidase activities were analyzed by using fluorogenic substrates at 15–22 concentrations ranging from 1 nM to 500 μM. Radiolabeled glucose and a mixture of amino acids were chosen as representatives of monomeric compounds, and the bacterial uptake rates (assimilation plus respiration) were determined over a wide range of substrate concentrations (from 0.2 nM to 3 μM). We found biphasic kinetics both for hydrolytic enzymes and uptake systems: high affinity enzymes at low concentrations of substrates (K m values ranged from 48 nM to 2.7 μM for ectoenzymes and from 1.4 nM to 42 nM for uptake systems), and low affinity enzymes at high concentrations of substrates (K m values ranged from 18 μM to 142 μM for ectoenzymes and from 0.1 μM to 1.3 μM for uptake systems). Transition between high and low affinity enzymes was observed at 10 μM for aminopeptidase and from 1 μM to 25 μM for glucosidases, and it was more variable and less pronounced for the uptake of glucose (40 nM–0.28 μM) and amino acids (10 nM–0.16 μM). Results showed that the potential rates of hydrolysis and uptake are tightly coupled only if the high affinity hydrolytic ectoenzymes and the low affinity uptake systems are operating simultaneously. Received: 5 March 1998; Accepted: 31 July 1998  相似文献   

2.
The aromatic medicinal plant Salvia stenophylla contains α-bisabolol, making this plant an important contributor to the aromatherapy and cosmetic industries in South Africa. Due to its commercial importance, the cultivation of this plant using an in vitro system was considered. Firstly, seedlings were raised in vitro after breaking dormancy with light, smoke-water or chemical scarification treatments. Germination improved when seeds were smoke-treated or soaked in 70% (v/v) H2SO4. Vigorous plantlet regeneration was achieved when seedling explants were cultured on Murashige and Skoog (1962) medium with 5.7 μM IAA and 8.9 μM BA. The potential regeneration capacity for this protocol was estimated and over 1,000 plantlets can be produced from a single shoot (6.67 cm with 4–6 nodes) over a period of 3 months. Plants rooted easily regardless of their growth medium. This was followed by their successful rapid establishment and normal growth out of culture (75%). Finally, the volatile compounds in in vitro plants were compared to ex vitro plants via headspace solid phase microextraction linked to gas chromatography–mass spectrometry. The chemical complexity of microplants was similar to wild plants with in vitro plants continuing to produce α-bisabolol (21%) at high levels.  相似文献   

3.
Reactive oxygen species (ROS) originating from mitochondria are perceived as a factor contributing to cell aging and means have been sought to attenuate ROS formation with the aim of extending the cell lifespan. Silybin and dehydrosilybin, two polyphenolic compounds, display a plethora of biological effects generally ascribed to their known antioxidant capacity. When investigating the cytoprotective effects of these two compounds in the primary cell cultures of neonatal rat cardiomyocytes, we noted the ability of dehydrosilybin to de-energize the cells by monitoring JC-1 fluorescence. Experiments evaluating oxygen consumption and membrane potential revealed that dehydrosilybin uncouples the respiration of isolated rat heart mitochondria albeit with a much lower potency than synthetic uncouplers. Furthermore, dehydrosilybin revealed a very high potency in suppressing ROS formation in isolated rat heart mitochondria with IC50 = 0.15 μM. It is far more effective than its effect in a purely chemical system generating superoxide or in cells capable of oxidative burst, where the IC50 for dehydrosilybin exceeds 50 μM. Dehydrosilybin also attenuated ROS formation caused by rotenone in the primary cultures of neonatal rat cardiomyocytes. We infer that the apparent uncoupler-like activity of dehydrosilybin is the basis of its ROS modulation effect in neonatal rat cardiomyocytes and leads us to propose a hypothesis on natural ischemia preconditioning by dietary polyphenols.  相似文献   

4.
Conjugates of the antituberculosis drug isoniazid (isonicotinyl hydrazine) and isomeric hydrazides of nicotinic and α-picolinic acid with glycoside steviolbioside from the Stevia rebaudiana plant and the product of its acid hydrolysis, diterpenoid isosteviol, were synthesized. In addition, isosteviol hydrazide and hydrazone derivatives as well as conjugates containing two isosteviol moieties joined by a dihydrazide linker were obtained. The parental compounds and their synthetic derivatives were found to inhibit the in vitro growth of Mycobacterium tuberculosis (H37RV). The measured minimal concentrations of stevio-side and steviolbioside, at which the growth of M. tuberculosis was inhibited by 100% (MIC), were 7.5 and 3.8 μg/ml, respectively. MIC values for steviolbioside and isosteviol conjugates with hydrazides of pyridine carbonic acid were within the ranges of 5–10 and 10–20 μg/ml, respectively. The maximal inhibitory effect against M. tuberculosis was shown by the isosteviol conjugates with adipic acid dihydrazide (MIC 1.7 and 3.1 μg/ml). Antituberculosis activities of the tested compounds were higher than the activity of antituberculosis drug Pyrizanamide (MIC 20 μg/ml) but lower than that of antituberculosis drug isoniazid (MIC 0.02–0.04 μg/ml).  相似文献   

5.
Effects of zinc (12–180 μM) alone and in mixtures with 12 μM Cd on metal accumulation, dry masses of roots and shoots, root respiration rate, variable to maximum fluorescence ratio (FV/FM), and content of photosynthetic pigments were studied in hydroponically cultivated chamomile (Matricaria recutita) plants. The content of Zn in roots and shoots increased with the increasing external Zn concentration and its accumulation in the roots was higher than that in the shoots. While at lower Zn concentrations (12 and 60 μM) the presence of 12 μM Cd decreased Zn accumulation in the roots, treatment with 120 and 180 μM Zn together with 12 μM Cd caused enhancement of Zn content in the root. Presence of Zn (12–120 μM) decreased Cd accumulation in roots. On the other hand, Cd content in the shoots of plants treated with Zn + Cd exceeded that in the plants treated only with 12 μM Cd. Only higher Zn concentrations (120 and 180 μM) and Zn + Cd mixtures negatively influenced dry mass, chlorophyll (Chl) and carotenoid content, FV/FM and root respiration rate. Chl b was reduced to a higher extent than Chl a.  相似文献   

6.
We synthesized and tested ten peptides with the molecular structure being H–d-Ser–AA–Arg–OH for their effect on the amidolytic activities against urokinase, thrombin, trypsin, plasmin, tissue plasminogen activator and kallikrein. The inserted amino acid in each peptide was either leucine, norleucine, izoleucine, valine, norvaline, α-metyloalanine, α-aminobutanoic acid, homoleucine, tert-leucine or neoglycine. H–d-Ser–NVal–Arg–OH (compound 4) was the most active inhibitor of urokinase plasminogen activator with a Ki value of 0.85 μM. Compound 4 showed cytotoxic effect against MDA-MB-231 and DLD cell lines, respectively, with IC50 values of 25 and 19 μM. Synthesised compounds did not have activity against MCF-7 cancer cells. These peptides were nontoxic against pig’s erythrocytes in vitro.  相似文献   

7.
Cultures of three cloudberry (Rubus chamaemorus L.) clones collected from natural stands in Newfoundland and Labrador, Canada were established in vitro on a modified cranberry (Vaccinium macrocarpon Ait.) tissue culture medium containing 8.9 μM 6-benzylaminopurine (BAP). Clones were compared for in vitro shoot proliferation on gelled medium supplemented with varying levels of BAP and thidiazuron (TDZ). Addition of 5.8 μM gibberellic acid (GA3) in 8.9 μM BAP-contained medium improved shoot proliferation. TDZ supported rapid shoot proliferation at low concentration (1.1 μM) but induced 20–30% hyperhydricity in a plastic airlift bioreactor system containing liquid medium. Bioreactor-multiplied hyperhydric shoots were transferred to gelled medium containing 8.9 μM BAP and 5.8 μM GA3 and produced normal shoots within 4 weeks of culture. Genotypes differed significantly with respect to multiplication rate with ‘C1’ producing the most shoots per explant. Proliferated shoots were rooted on a potting medium with 65–75% of survivability of rooted plants. Present results suggested the possibility of large-scale multiplication of cloudberry shoots in bioreactors.  相似文献   

8.
Xanthobacter tagetidis grew as a chemolithotrophic autotroph on thiosulfate and other inorganic sulfur compounds, as a heterotroph on thiophene-2-carboxylic acid, acetic acid and α-ketoglutaric acid, and as a mixotroph on thiosulfate in combination with thiophene-2-carboxylic acid and/or acetic acid. Autotrophic growth on one-carbon organosulfur compounds, and intermediates in their oxidation are also reported. Thiosulfate enhanced the growth yields in mixotrophic cultures, presumably by acting as a supplementary energy source, since ribulose bisphosphate carboxylase was only active in thiosulfate-grown cells and was not detected in mixotrophic cultures using thiosulfate with thiophene-2-carboxylic acid. Bacteria grown on thiophene-2-carboxylic acid also oxidized sulfide, thiosulfate and tetrathionate, indicating these as possible sulfur intermediates in thiophene-2-carboxylic acid degradation. Thiosulfate and tetrathionate were oxidized completely to sulfate and, consequently, did not accumulate as products of thiophene-2-carboxylic acid oxidation in growing cultures. K m and V max values for the oxidation of thiosulfate, tetrathionate or sulfide were 13 μM and 83 nmol O2 min–1 (mg dry wt.)–1, respectively; thiosulfate and tetrathionate became autoinhibitory at concentrations above 100 μM. The true growth yield (Ymax) on thiophene-2-carboxylic acid was estimated from chemostat cultures (at dilution rates of 0.034–0.094 h–1) to be 112.2 g mol–1, with a maintenance coefficient (m) of 0.3 mmol thiophene-2-carboxylic acid (g dry wt.)–1 h–1, and the maximum specific growth rate (μmax) was 0.116 h–1. Growth in chemostat culture at a dilution rate of 0.041 h–1 indicated growth yields [g dry wt. (mol substrate)–1] of 8.1 g (mol thiosulfate)–1, 60.9 g (mol thiophene-2-carboxylic acid)–1, and 17.5 g (mol acetic acid)–1, with additive yields for growth on mixtures of these substrates. At a dilution rate of 0.034 h–1, yields of 57.8 g (mol α-ketoglutaric acid)–1 and 60.7 g (mol thiophene-2-carboxylic acid)–1 indicated some additional energy conservation from oxidation of the thiophene-sulfur. SDS-PAGE of cell-free preparations indicated a polypeptide (M r, 21.0 kDa) specific to growth on thiophene-2-carboxylic acid for which no function can yet be ascribed: no metabolism of thiophene-2-carboxylic acid by cell-free extracts was detected. It was shown that X. tagetidis exhibits a remarkable degree of metabolic versatility and is representative of facultatively methylotrophic and chemolithotrophic autotrophs that contribute significantly to the turnover of simple inorganic and organic sulfur compounds (including substituted thiophenes) in the natural environment. Received: 1 July 1997 / Accepted: 3 November 1997  相似文献   

9.
In vitro and in vivo studies have proven strontium to be an osteoinductive trace element. The effect of strontium ranelate (SR) on H2O2-induced apoptosis of CRL-11372 cells and optimization of its anti-apoptotic dose were the aims of this study. After 1 h of pretreatment with SR 1 μM, 50 μM, 100 μM, 500 μM, and 1,000 μM concentrations, CRL-11372 osteoblasts were exposed to 100 μM H2O2 for periods of 6–12 h. The same experiments were repeated without H2O2. The apoptotic index and viability of cells were assessed quantitatively with a fluorescent dye and qualitatively with agarose gel electrophoresis. Concentrations of 1–100 μM of SR with a 6-h treatment and only 1 μM concentration with a 12-h treatment inhibited the apoptotic effect of H2O2 on cultured osteoblasts significantly (P < 0.05). SR was shown to inhibit H2O2-induced apoptosis of CRL-11372 cells in a dose-dependent manner.  相似文献   

10.
Cell intermediary metabolism and energy production succeeds by means of mitochondria, whose activity is in relation to transmembrane potential and/or free radical production. Adenosine triphosphate (ATP)-dependent potassium channels (KATP) in several cell types have shown to couple cell metabolism to membrane potential and ATP production. In this study, we explore whether oxygen consumption in isolated skeletal-muscle mitochondria differs in the presence of distinct respiration substrates and whether these changes are affected by KATP-channel inhibitors such as glibenclamide, 5-Hydroxydecanoate (5-HD), and KATP channel activators (pinacidil and diazoxide). Results demonstrate a concentration-dependent diminution of respiration rate by glibenclamide (0.5–20 μM), pinacidil (1–50 μM), and diazoxide (50–200 μM), but no significant differences were found when the selective mitochondrial KATP-channel inhibitor (5-HD, 10–500 μM) was used. These results suggest that these KATP-channel agonists and antagonists exert an effect on mitochondrial respiration and that they could be acting on mito-KATP or other respiratory-chain components.  相似文献   

11.
It is well known that antioxidants containing sulfhydryl (−SH) groups are protective against the toxic effects of mercury. The current study was designed to elucidate the mechanism(s) of the cytoprotective effects of glutathione (GSH) and N-acetylcysteine (NAC) against the toxicity of inorganic mercury (HgCl2) in neuroblastoma cells (N-2A). The obtained results demonstrated the protective effects of these compounds in a dose dependant manner up to 95 and 74% cell viability, respectively as compared to the control of HgCl2 of 10%. The administration of buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, increased the toxicity of HgCl2 in a dose dependent manner. Moreover, BSO treatment attenuated the levels of the cellular free −SH concentrations at low concentrations (1–100 μM) of HgCl2. The data also show that cellular thiol concentrations were augmented in the presence of GSH and NAC and these compounds were cytoprotective against HgCl2 and this is due to up regulating of GSH synthesis. A reduction in intracellular levels of GSH was observed with treatment of HgCl2. In addition, the ratio of GSH/GSSG increased from 16:1 to 50:1 from 1 to 10 μM concentration of HgCl2. The ratio of GSH/GSSG then decreased from 4:1 to 0.5:1 with the increase of concentration of HgCl2 between 100 μM and 1 mM due to the collapse of the N-2A cells. It was of interest to note that the synthesis of GSH was stimulated in cells exposed to low concentration of HgCl2 when extra GSH is available. These data support the idea that the loss of GSH plays a contributing role to the toxic effects of HgCl2 and that inorganic mercury adversely affects viability, through altering intracellular −SH concentrations. The data further indicate that the availability of GSH to the cells may not be sufficient to provide protection against mercury toxicity and the de novo synthesis of intracellular GSH is required to prevent the damaging effects of mercury.  相似文献   

12.
An in vitro cultivation protocol was developed for S. africana-lutea a species threatened by over collection due to its importance as an aromatic medicinal plant in the Western Cape of South Africa. Adventitious shoot induction was most successful using hypocotyls as explants for propagation on Murashige and Skoog (Physiol Plant 15:473–497, 1962) medium supplemented with 4.4 μM BA only; 2.7 μM NAA and 4.4 μM BA; or 2.9 μM IAA and 9.3 μM kinetin respectively. For continuous subculture, IAA and BA (μM) at a ratio of 2.9:4.4 or 2.9:8.9 had the best regeneration potential producing approximately three plantlets per nodal explant. Plantlets had 4–5 nodes that could be utilized for the following subculture phase to induce axillary shoots. The tissue culture of S. africana-lutea not only favoured rapid multiplication but was also characterized by seasonal in vitro flowering that was in synchrony with that of plants growing in the wild. This propagation regime has the capacity for producing 2000–3000 plants from one shoot after 3 four-week long subculture cycles, making it highly attractive for implementation as an in vitro conservation strategy. The micropropagated plants were easily acclimatized (88%) within a month after rooting in vitro and planted ex vitro in a sand:soil:peat moss:vermiculite (1:1:1:1; v/v) mixture.  相似文献   

13.
This paper describes an efficient in vitro micropropagation of Artemisia vulgaris using shoot tip and nodal explants. Among the various growth regulators tested, MS medium and B5 vitamins supplemented with BA (4.44 μM) and KN (2.32 μM) combination was found to yield a better response than BA (4.44–13.32 μM) or KN (0.46–13.92 μM) alone in the medium. BA and KN combinations produced a maximum of 23.3 shoots per explant with 99.8% shooting frequency. Multiple shoots raised were elongated on MS medium containing 0.44 μM BA and 1.44 μM GA3. Rooting was highest (98.2%) on MS medium containing 8.56 μM IAA. Rooted plantlets were successfully transferred to plastic cups containing autoclaved garden soil, farmyard soil and sand (2:1:1) for hardening. After 65 days, the plantlets were transferred to Botanical Evaluation Garden and maintained. The survival rate of plantlets varied under acclimatization. Plants looked healthy with no visually detectable phenotypic variations. This is the first report on plant regeneration via organogenesis of A. vulgaris.  相似文献   

14.
The effects of pirlindole and dehydro-pirlindole on GABAA receptors and MAO-A activity were investigated in vitro. Pirlindole was inactive as a GABA antagonist. Dehydro-pirlindole exhibited partial and selective blockade of a subset of GABAA receptors with an EC50 of 12μM and maximum reversal (ΔBopt) of 42%. Inhibition of rat brain and human placenta MAO-A by both compounds was much more potent (with IC50 range 0.3–0.005 μM). Their effects on MAO-A activity were partially reversible in vitro. In contrast to pirlindole, dehydro-pirlindole may act not only as MAO-A inhibitor but also as a clozapine-like selective GABAA receptor blocker, preferentially blocking a subset of GABAA receptors that are not sensitive to DMCM or Ro 5-4864. Pirlindole is the generic name of the drug pyrazidol.  相似文献   

15.
The composition of volatile organic compounds emitted by in vitro shoots of Agastache rugosa (Fischer & C.A. Meyer) O. Kuntze (Lamiaceae) was studied using headspace solid-phase microextraction–gas chromatography–mass spectrometry and compared to the those emitted by adult plants and in vitro-germinated seedlings. Shoot-tip explants were cultured on a solid MS medium supplemented with either 4.4 μM 6-benzyladenine (BA), 9.3 μM kinetin, or 0.45 μM thidiazuron and with either 0.57 μM indole-3-acetic acid (IAA) or 0.41 μM picloram. Shoot proliferation was observed in all these treatments. The presence of these plant growth regulators in the culture medium significantly influenced the composition of volatiles as well as morphogenetic responses observed. The number and quality of regenerating shoots and frequency of axillary bud break were highest in medium containing the BA + IAA combination. Sixty-five compounds were identified in the headspace of the in vitro-produced material and plants cultivated in the field. The in vitro shoots emitted both hydrocarbon (limonene, α-pinene) and oxidized (menthone, isomenthone, pulegone) monoterpenes. The composition of monoterpenes differed depending on the type of auxin—rather than cytokinin—in the medium. The emission of phenylallyl compounds, such as estragole, a major compound in field-grown plants, was markedly lower in shoot cultures.  相似文献   

16.
Summary Extended peptides that derive from the primary sequence of the acute phase reactant C-reactive protein (CRP) are shown to inhibit in vitro the enzymatic activities of human leukocyte elastase (hLE) and human leukocyte cathepsin G (hCG), which are associated with the tissue damage that occurs during the course of several chronic inflammatory conditions. Major inhibitory activity was observed in the peptides CRP70–98 and CRP50–98 towards hLE (Ki=4.0μ M) and hCG (Ki=1.4 μM), respectively. In contrast to the inability of intact CRP pentamers to inhibit both enzymes, CRP subunits (monomers) inhibited hLE (3.0 μM) and hCG (3.6 μM) activity.  相似文献   

17.
Recovery of doubled haploid (DH) progeny from haploid melon plants for use in breeding programs requires efficient chromosome doubling procedures. We describe improved procedures for recovery of fruits and viable seeds from parthenogenetic melon plants. Plant regeneration from nodal explants treated with 500 mg/L colchicine for 12 h was increased from 40 to 88% by transferring the treated explants to medium supplemented with a combination of growth regulators [5 μM IAA; 5 μM BA; 1 μM ABA; 30 μM AgNO3). Prolonged exposure (2–7 days) to colchicine inhibited regeneration from nodal explants but had less effect on shoot tip explants. Many colchicine-treated plantlets flowered in vitro, allowing early assessment of their male fertility. Production of stained pollen in plants from nodal explants was highest after 0.5–2 days of colchicine treatment and on plants from shoot tips after 1–2 days. In vitro pollen counts correlated well with counts from greenhouse grown plants and with fruit set. The fruit set rate for colchicine-treated plants with a high pollen number was 47%. Appropriate colchicine treatment and culture of nodal explants as well as tip explants can substantially increase the number of fertile plants and DH lines recovered from parthenogenetic melons.  相似文献   

18.
Brassica rapa L. is an important vegetable crop in eastern Asia. The objective of this study was to investigate the genetic variation in leaf Zn, Fe and Mn accumulation, Zn toxicity tolerance and Zn efficiency in B. rapa. In total 188 accessions were screened for their Zn-related characteristics in hydroponic culture. In experiment 1, mineral assays on 111 accessions grown under sufficient Zn supply (2 μM ZnSO4) revealed a variation range of 23.2–155.9 μg g−1 dry weight (d. wt.) for Zn, 60.3–350.1 μg g−1 d. wt. for Fe and 20.9–53.3 μg g−1 d. wt. for the Mn concentration in shoot. The investigation of tolerance to excessive Zn (800 μM ZnSO4) on 158 accessions, by using visual toxicity symptom parameters (TSPs), identified different levels of tolerance in B. rapa. In experiment 2, a selected sub-set of accessions from experiment 1 was characterized in more detail for their mineral accumulation and tolerance to excessive Zn supply (100 μM and 300 μM ZnSO4). In this experiment Zn tolerance (ZT) determined by relative root or shoot dry biomass varied about 2-fold. The same six accessions were also examined for Zn efficiency, determined as relative growth under 0 μM ZnSO4 compared to 2 μM ZnSO4. Zn efficiency varied 1.8-fold based on shoot dry biomass and 2.6-fold variation based on root dry biomass. Zn accumulation was strongly correlated with Mn and Fe accumulation both under sufficient and deficient Zn supply. In conclusion, there is substantial variation for Zn accumulation, Zn toxicity tolerance and Zn efficiency in Brassica rapa L., which would allow selective breeding for these traits.  相似文献   

19.
Despite their similar morphology, banana and maize shoot tips responded strikingly different with respect to the in vitro formation of homogeneous multiple shoot clusters. While up to 50 small shoots per maize explant could be induced within 1 month, zero to one additional shoot formed starting from a banana shoot tip. Subsequently, banana shoot tips were subjected to different combinations of five cytokinins (0–100 μM) and five auxins (0–5 μM). The cytokinins thidiazuron and benzylaminopurine stimulated multiplication to a higher extent compared to zeatin, kinetin and isopentenyl adenine. The addition of indoleacetic acid, naphthalene acetic acid or indolebutyric acid to cytokinin containing medium did not affect the in vitro response. In contrast, 2,4-dichlorophenoxyacetic acid (1 and 5 μM) and a higher concentration of picloram (5 μM) had a detrimental effect on shoot formation and resulted in explant death and globule development. When small (0.1 cm) shoot tips were grown on cytokinin medium without an auxin source, the average number of shoots was generally two to three times lower compared to bigger (0.5 cm) shoot tips. Based on our experience in maize and this large-scale study with banana shoot tips, we conclude that banana is extremely recalcitrant towards adventitious shoot formation. This recalcitrance could not be overcome by any of the 173 different plant growth regulator combinations tested. In vitro multiplication of banana thus appears solely restricted to axillary shoot formation.  相似文献   

20.
Semecarpus anacardium (Anacardiaceae), a deciduous forest tree, is a potent source of medicinal compounds. Poor seed viability of this species limits the conventional propagation practice. Proliferation of shoots from axillary meristem was achieved in semisolid WPM medium supplemented with BAP 4.44 μM and KN 4.64 μM. Factors including culture vessels, gelling agents and antioxidants were identified and optimized for proliferation and growth of shoots in vitro. Cotton-plugged culture vessels were more favorable. Phytagel 0.2% as gelling agent and activated charcoal 0.2% as antioxidant were superior to other agents and antioxidants tested. All the shoots rooted in half-strength WPM liquid medium with IBA 2.46 μM. Rooted shoots survived (91%) in the soil–sand 1:1 mixture. Ex vitro rooting of shoots and hardening of plants were achieved in 80% of the explants in the soil–sand mixture. Hardened plants were maintained in a greenhouse. This is the first report on in vitro regeneration of Semecarpus anacardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号