首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In order to study the extent and nature of differences among various S-allele-associated proteins in N. alata, we carried out comparative studies of seven such proteins. We first isolated and sequenced cDNA clones for the Sz-, SF11-, S1-, and Sa-alleles, and then we compared the deduced amino acid sequences both of these four S-proteins and of three previously published S2-, S3-, and S6-proteins. This comparison revealed (1) an average homology of 53.8% among the seven proteins and (2) two homology classes, with Sz and SF11 in one class and S1, S2, S3, and S6 in the other class. There are 60 conserved residues, including 9 cysteines. Of the 144 variable residues, 50 were identified as hypervariable based on a calculation of their Similarity Indices. Although conserved, variable, and hypervariable residues are dispersed throughout the protein, some are clustered to form five conserved, five hypervariable, and a number of variable regions. Those variable sites which contain residues conserved within one class of S-proteins but different between classes might provide a clue to the evolutionary relationship of these two classes of S-proteins. The hypervariable residues, which account for sequence variability, may contribute to allelic specificity.  相似文献   

2.
We isolated S allele-associated cDNA clones from each of the stylar cDNA libraries of Lycopersicon peruvianum of two different S genotypes (S 12Sband S 13 S c) with S 11 S callele-associated cDNA (LPS11) as a probe. The longest cDNA clones, designated LPS12 and LPS13, which were 779 bp and 853 bp in length, contained open reading frames of 189 and 210 amino acids, respectively. The three S alleleassociated cDNAs (LPS11, LPS12, and LPS13) did not cross-hybridize to each other under highly stringent condition by northern blot analysis. Their average identity to Nicotiana alata S-proteins so far was 49%. The fragments corresponding to LPS11 or LPS12 cosegregated with their respective S alleles in genetic crosses. From these results, we conclude that the three cloned cDNAs were derived from the three different S alleles of L. peruvianum.  相似文献   

3.
Summary We have identified three alleles of the S-locus controlling self-incompatibility and their associated pistil proteins in Petunia inflata, a species that displays monofactorial gametophytic self-incompatibility. These S-allele-associated proteins (S-proteins) are pistil specific, and their levels are developmentally regulated. The amino-terminal sequences determined for the three S-proteins are highly conserved and show considerable homology to those of S-proteins from Petunia hybrida, Nicotiana alata and Lycopersicon peruvianum, three other species of the Solanaceae that also exhibit gametophytic self-incompatibility. cDNA clones encoding the three S-proteins were isolated and sequenced. Comparison of their deduced amino acid sequences reveals an average homology of 75.6%, with conserved and variable residue interspersed throughout the protein. Of the 137 conserved residues, 53 are also conserved in the N. alata S-proteins studies so far; of the 64 variable residues, 29 were identified as hypervariable based on calculation of the Similarity Index. There is only one hypervariable region of significant length, and it consists of eight consecutive hypervariable residues. This region correspond approximately to the hypervariable region HV2 identified in N. alata S-proteins. Of the two classes of N. alata S-proteins previously identified, one class exhibits greater homology to the three P. inflata S-proteins reported here than to the other class of N. alata S-proteins.  相似文献   

4.
Summary Self-incompatibility in flowering plants is controlled by the S-gene, encoding stylar S (allele-specific) glycoproteins. In addition to three previously characterized Petunia hybrida S-proteins, we identified by N-terminal sequence analysis another stylar S-protein, co-segregating with the S b-allele. Purified S-proteins reveal biological activity, as is demonstrated for two of them by the allele-specific inhibition of pollen tube growth in vitro. Moreover, the four isolated S-proteins are ribonucleases (S-RNases). Specific activities vary from 30 (S1) to 1000 (S2) units per min per mg protein. We attempted to investigate the functionality of the carbohydrate portion of the S-RNases. Deglycosylation studies with the enzyme peptide-N-glycosidase F (PNGase F) reveals differences in the number of N-linked glycan chains present on the four S-RNases. Variability in the extent of glycosylation accounts for most of the molecular weight differences observed among these proteins. By amino acid sequencing, the positions of two of the three N-glycosylation sites on the S2-RNase could be located near the N-terminus. Enzymic removal of the glycan side chains has no effect on the RNase activity of native S-RNases. This suggests another role of the glycan moiety in the self-incompatibility mechanism.  相似文献   

5.
Summary We have isolated and sequenced cDNAs for S2- and S3-alleles of the self-incompatibility locus (S-locus) in Solanum chacoense Bitt., a wild potato species displaying gametophytic self-incompatibility. The S2-and S3-alleles encode pistil-specific proteins of 30 kDa and 31 kDa, respectively, which were previously identified based on cosegregation with their respective alleles in genetic crosses. The amino acid sequence homology between the S2- and S3-proteins is 41.5%. This high degree of sequence variability between alleles is a distinctive feature of the S-gene system. Of the 31 amino acid residues which were previously found to be conserved among three Nicotiana alata S-proteins (S2, S3, and S6) and two fungal ribonucleases (R Nase T2 and R Nase Rh), 27 are also conserved in the S2- and S3-proteins of S. chacoense. These residues include two histidines implicated in the active site of the R Nase T2, six cysteines, four of which form disulfide bonds in R Nase T2, and hydrophobic residues which might form the core structure of the protein. The finding that these residues are conserved among S-proteins with very divergent sequences suggests a functional role for the ribonuclease activity of the S-protein in gametophytic self-incompatibility.  相似文献   

6.
 The primary goal of this study was to identify, clone and analyse new S-gene sequences in order to provide a basis for identifying amino acid residues that confer S-allele specificity. Three new putative S-alleles from Papaver rhoeas and Papaver nudicaule were identified using immunological and PCR methods. cDNAs encoding full-length open reading frames of the P. rhoeas S 8 and P. nudicaule Sn 1 genes were isolated. Nucleotide sequencing of these cDNAs, together with the partial S 7 sequence obtained by PCR, was used to derive the corresponding amino acid sequences. It is of interest that the P. nudicaule Sn1 sequence, which is the first S-allele isolated from another species of Papaver, shares a closer sequence identity to the P. rhoeas S3 amino acid sequence than S3 does to S1 from P. rhoeas. The identity of the S8 allele was confirmed by expressing the coding region in Escherichia coli and demonstrating that the recombinant protein, designated S8e, specifically inhibited S 8 pollen in an in vitro bioassay. Information from sequence analysis of the S8, Sn1 and partial S7 amino acid sequences revealed important information about Papaver S-proteins. It confirmed previous observations based on only two S-alleles, that whilst exhibiting a high degree of amino acid sequence polymorphism ranging from 51.3% to 63.7%, these molecules probably share very similar secondary structures. These studies also revealed that, in contrast to the S-proteins from the Solanaceae and Brassica, amino acid sequence variation is not found in hypervariable blocks, but instead, is found throughout the S-proteins, interspersed with numerous short strictly conserved segments. Received: 16 March 1998 / Revision accepted: 19 May 1998  相似文献   

7.
The S-allele-associated proteins (S-proteins) in the styles of the Japanese pear (Pyrus serotina Rehd. var. culta Rehd.) were purified by cation exchange chromatography. Their inhibitory action on the growth of incompatible pollen tubes (pollen tubes bearing the same S- allele as in the style from which the S-proteins were prepared) was characterized in vitro. Germination and tube growth of self-pollen (pollen from the same cultivar from which the S-proteins were prepared) decreased dose-dependently when the S-protein was added to the medium. Tube length was reduced to 10% that of compatible pollen tubes (pollen tubes bearing the S-allele different from that in the style from which the S-proteins were prepared) at 1.5 μg μl1. S-proteins from Shinsui (S 4 S 5 ) also inhibited growth of cross-incompatible Kosui (S 4 S 5 ) pollen tubes, but not of compatible Chojuro (S 2 S 3 ) pollen tubes. After inactivation of RNase of the S- protein, the inhibitory action of the S-protein disappeared. These results indicate that the S-protein acts directly to inhibit growth of incompatible pollen tubes in Japanese pear styles, and that the RNase activity of the protein is essential for the biological function. However, small amounts of proteins that co-migrated with the S-protein may also play some roles in the inhibition. This is the first report on the selective inhibitory action of S-proteins in Rosaceae. Received: 11 April 2000 / Revision accepted: 28 September 2000  相似文献   

8.
Summary We identified two S-allele-associated proteins (S-proteins) in a self-compatible cultivar of Petunia hybrida based on their segregation in F1 hybrids between P. hybrida and its self-incompatible relative, Petunia inflata (with S2S2 genotype), and in selfed progeny of P. hybrida. These two S-proteins, designated Sx-protein (24 kDa) and So- protein (31 kDa), are pistil specific, and their expression follows a temporal and spatial pattern similar to that of S-proteins characterized in self-incompatible solanaceous species. Their amino-terminal sequences also share a high degree of similarity with those of solanaceous S-proteins. Selfing of P. hybrida yielded plants with SoSo, SxSo, and SxSx genotypes in an approximately 1:2:1 ratio, indicating that the Sx- and So-alleles, though expressed in the pistil, failed to elicit a self-incompatibility response. The S2-allele of P. inflata is expressed in all the F1 hybrids, rendering them capable of rejecting pollen bearing the S2-allele. The So-allele is not functional in the F1 hybrids, because all the F1 progeny with S2So genotype are self-compatible. However, in F1 hybrids with S2Sx genotype, approximately half are self-incompatible and half are self-compatible, indicating that the function of the Sx-allele depends on the genetic background. These results strongly suggest that the presence of functional S-alleles alone is not sufficient for expression of a self-incompatibility phenotype, and reaffirm the multigenic nature of gametophytic self-incompatibility suggested by earlier genetic studies.  相似文献   

9.
Summary A cDNA sequence homologous to the Brassica self-incompatibility locus specific glycoprotein (SLSG) sequence was isolated from stigmas of B. oleracea plants homozygous for the S5 allele. The nucleotide sequence of this cDNA was obtained and compared with the S6 allelic form of the SLSG. Evidence is presented which indicates that this sequence does not specify the self-incompatibility response of pollen.Abbreviations SDS sodium dodecyl sulphate - PVP polyvinylpyrrolidone - BSA bovine serum albumin - SLSG self-incompatibility locus specific glycoprotein  相似文献   

10.
Summary Allelic complexity is a key feature of self-incompatibility (S) loci in gametophytic plants. We describe in this report the allelic diversity and gene structure of the S locus in Solanum tuberosum revealed by the isolation and characterization of genomic and cDNA clones encoding S-associated major pistil proteins from three alleles (S 1, S r1, S 2). Genomic clones encoding the S1 and S2 proteins provide evidence for a simple gene structure: Two exons are separated by a small intron of 113 (S 1) and 117 by (S 2). Protein sequences deduced from cDNA clones encoding S1 and Sr1 proteins show 95% homology. 15 of the 25 residues that differ between these S 1and S r1alleles are clustered in a short hypervariable protein segment (amino acid positions 44–68), which corresponds in the genomic clones to DNA sequences flanking the single intron. In contrast, these alleles are only 66% homologous to the S 2allele, with the residues that differ between the alleles being scattered throughout the sequence. DNA crosshybridization experiments identify a minimum of three classes of potato S alleles: one class contains the alleles S 1, S r1and S 3, the second class S 2and an allele of the cultivar Roxy, and the third class contains at present only S 4. It is proposed that these classes reflect the origin of the S alleles from a few ancestral S sequence types.  相似文献   

11.
The S 3 allele of the S gene has been cloned from Papaver rhoeas cv. Shirley. The sequence predicts a hydrophilic protein of 14.0 kDa, showing 55.8% identity with the previously cloned S 1 allele, preceded by an 18 amino acid signal sequence. Expression of the S 3 coding region in Escherichia coli produced a form of the protein, denoted S3e, which specifically inhibited S3 pollen in an in vitro bioassay. The recombinant protein was ca. 0.8 kDa larger than the native stigmatic form, indicating post-translational modifications in planta, as was previously suggested for the S1 protein. In contrast to other S proteins identified to date, S3 protein does not appear to be glycosylated. Of particular significance is the finding that despite exhibiting a high degree of sequence polymorphism, secondary structure predictions indicate that the S1 and S3 proteins may adopt a virtually identical conformation. Sequence analysis also indicates that the P. rhoeas S alleles share some limited homology with the SLG and SRK genes from Brassica oleracea. Previously, cross-classification of different populations of P. rhoeas had revealed a number of functionally identical alleles. Probing of western blots of stigma proteins from plants derived from a wild Spanish population which contained an allele functionally identical to the Shirley S 3 allele with antiserum raised to S3e, revealed a protein (S 3 s) which was indistinguishable in pI and M r from that in the Shirley population. A cDNA encoding S 3 s was isolated, nucleotide sequencing revealing a coding region with 99.4% homology with the Shirley-derived clone at the DNA level, and 100% homology at the amino acid level.  相似文献   

12.
Singh A  Ai Y  Kao TH 《Plant physiology》1991,96(1):61-68
Three S-allele-associated proteins (S-proteins) of Petunia inflata, a species with gametophytic self-incompatibility, were previously found to share sequence similarity with two fungal ribonucleases, RNase T2 and RNase Rh. In this study, the S-proteins from P. inflata plants of S1S2 and S2S3 genotypes were purified to homogeneity by gel filtration and cation-exchange chromatography, and their enzymatic properties were characterized. The three S-proteins (S1, S2, and S3), with pairwise sequence identity ranging from 73.1 to 80.5%, were similar in most of the enzymatic properties characterized. The ribonuclease activity had a pH optimum of 7.0 and a temperature optimum of 50°C. Diethylpyrocarbonate at 1 millimolar almost completely abolished the ribonuclease activity; cupric sulfate and zinc sulfate at 1 millimolar reduced the ribonuclease activity of the three S-proteins by 50 to 75%. EDTA and RNasin had no inhibitory effect. All three S-proteins hydrolyzed polycytidylic acid preferentially, but varied in their nucleolytic activity toward polyadenylic acid and polyuridylic acid.  相似文献   

13.
14.
Petunia inflata, a species with gametophytic self-incompatibility, has previously been found to contain a large number of ribonucleases in the pistil. The best characterized of the pistil ribonucleases are the products of the S alleles, the S proteins, which are thought to be involved in self-incompatibility interactions. Here we report the characterization of a gene encoding another pistil ribonuclease of P. inflata, RNase X2. Degenerate oligonucleotides, synthesized based on the amino-terminal sequence of RNase X2, were used as probes to isolate cDNA clones, one of which was in turn used as a probe to isolate genomic clones containing the gene for RNase X2, rnx2. The deduced amino acid sequence of RNase X2 shows 42% to 71% identity to the 20 solanaceous S proteins reported so far, with the highest degree of similarity being to S3 and S6 proteins of Nicotiana alata. The cDNA sequence predicts a leader peptide of 22 amino acids, suggesting that RNase X2, like S proteins, is an extracellular ribonuclease. Also, similar to the S gene, rnx2 is expressed only in the pistil, and contains a single intron comparable in size and identical in location to that of the S gene. However, rnx2 is not linked to the S locus, and, in contrast to the highly polymorphic S gene, it is monomorphic. The possible biological function of RNase X2 is discussed.  相似文献   

15.
A genomic library from an S 29/S 29 self-incompatible genotype of Brassica oleracea was screened with a probe carrying part of the catalytic domain of a Brassica S-receptor kinase (SRK)-like gene. Six positive phage clones with varying hybridisation intensities (K1 to K6) were purified and characterised. A 650–700 by region corresponding to the probe was excised from each clone and sequenced. DNA and predicted protein sequence comparisons based on a multiple alignment identified K5 as a pseudogene, whereas the others could encode functional proteins. K3 was found to have lost an intron from its genomic sequence. The six genes display different degrees of sequence similarity and form two distinct clusters in a dendrogram. The 98% similarity between K4 and K6, which extends across intron sequences, suggests that these might be very recently diverged alleles or daughters of a duplication. In addition, K2 showed a comparably high similarity to the probe. Clones K1, K3 and K5 cross-hybridised with an SLG 29 cDNA probe, indicating the presence of upstream receptor domains homologous to the Brassica SLG gene. This suggests that the previously reported S sequence complexity may be ascribed to a large receptor kinase gene family.  相似文献   

16.
Cross-compatibility relationships in almond are controlled by a gametophytically expressed incompatibility system partly mediated by stylar RNases, of which 29 have been reported. To resolve possible synonyms and to provide data for phylogenetic analysis, 21 almond S-RNase alleles were cloned and sequenced from SP (signal peptide region) or C1 (first conserved region) to C5, except for the S 29 allele, which could be cloned only from SP to C1. Nineteen sequences (S 4 , S 6 , S 11 S 22 , S 25 S 29 ) were potentially new whereas S 10 and S 24 had previously been published but with different labels. The sequences for S 16 and S 17 were identical to that for S 1 , published previously; likewise, S 15 was identical to S 5 . In addition, S 4 and S 20 were identical, as were S 13 and S 19 . A revised version of the standard table of almond incompatibility genotypes is presented. Several alleles had AT or GA tandem repeats in their introns. Sequences of the 23 distinct newly cloned or already published alleles were aligned. Sliding windows analysis of Ka/Ks identified regions where positive selection may operate; in contrast to the Maloideae, most of the region from the beginning of C3 to the beginning of RC4 appeared not to be under positive selection. Phylogenetic analysis indicated four pairs of alleles had ‘bootstrap’ support > 80%: S 5 /S 10 , S 4 /S 8, S 11 /S 24 , and S 3 /S 6 . Various motifs up to 19 residues long occurred in at least two alleles, and their distributions were consistent with intragenic recombination, as were separate phylogenetic analyses of the 5′ and 3′ sections. Sequence comparison of phylogenetically related alleles indicated the significance of the region between RC4 and C5 in defining specificity.An erratum to this article can be found at  相似文献   

17.
A 3 kb cDNA coding for rat liver S-adenosylmethionine (AdoMet) synthetase has been isolated. The Mr of the protein has been unequivocally determined by cDNA sequencing and enzyme purification on a thiopropyl-Sepharose column. The length of the mRNA 5′ non-coding region has been defined by primer-extension analysis. The rat liver cloned cDNA has been also used to detect S-adenosylmethionine synthetase mRNA in human liver.  相似文献   

18.
为探讨青花菜在模拟酸雨胁迫下谷胱甘肽-S-转移酶的表达变化,克隆了青花菜谷胱甘肽-S-转移酶基因(glutathione-S-transferase,GST)的cDNA序列全长,并进行了生物信息学和表达分析。结果表明:青花菜GST基因cDNA全长为915bp,开放阅读框为642bp,编码213个氨基酸,推测分子式为C1091H1719N289O306S5,分子量为23 940.7,没有跨膜螺旋区域和信号肽。系统进化树分析表明,该青花菜基因GST与芥菜的GST聚类关系最近。实时荧光定量PCR结果显示,在模拟酸雨胁迫下,GST基因的表达量在胁迫初期显著增大,随时间延长开始下降,表明其参与了青花菜抗酸雨的应答反应。  相似文献   

19.
The gametophytic self-incompatibility (GSI) system in Rosaceae has been proposed to be controlled by two genes located in the S-locusan S-RNase and a recently described pollen expressed S-haplotype specific F-box gene (SFB). However, in apricot (Prunus armeniaca L.) these genes had not been identified yet. We have sequenced 21kb in total of the S-locus region in 3 different apricot S-haplotypes. These fragments contain genes homologous to the S-RNase and F-box genes found in other Prunusspecies, preserving their basic gene structure features and defined amino acid domains. The physical distance between the F-boxand the S-RNase genes was determined exactly in the S 2-haplotype (2.9kb) and inferred approximately in the S 1-haplotype (< 49kb) confirming that these genes are linked. Sequence analysis of the 5 flanking regions indicates the presence of a conserved region upstream of the putative TATA box in the S-RNase gene. The three identified S-RNase alleles (S 1, S 2 and S 4) had a high allelic sequence diversity (75.3 amino acid identity), and the apricot F-box allelic variants (SFB1, SFB2 and SFB4) were also highly haplotype-specific (79.4 amino acid identity). Organ specific-expression was also studied, revealing that S 1- and S 2-RNases are expressed in style tissues, but not in pollen or leaves. In contrast, SFB 1 and SFB 2 are only expressed in pollen, but not in styles or leaves. Taken together, these results support these genes as candidates for the pistil and pollen S-determinants of GSI in apricot.  相似文献   

20.
A full-length cDNA clone encoding carbonic anhydrase was isolated from an Arabidopsis thaliana (Columbia) leaf library. Comparison of the derived amino acid sequence obtained from this clone with those of pea and spinach reveals a considerable degree of identity. The carbonic anhydrase cDNA was used to probe the level of RNA encoding this protein in the leaves of plants grown in elevated CO2 (660 ppm). We have found that under these conditions the steady-state level of carbonic anhydrase mRNA was increased in comparison with control plants grown in normal atmospheric concentrations of CO2 (330 ppm). This raises the intruiging possibility that there exists in higher plants a mechanism for perceiving and responding to changes in environmental CO2 concentrations at the genetic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号