首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A simplified avian kidney model was used to assess renal plasma flow (RPF) at normal (100–110 mmHg) or unilaterally reduced (40–50 mmHg) renal arterial perfusion pressure (RAPP) in domestic fowl with ambient (AMBIENT group) or restricted (RESTRICTED group) renal portal flow. Direct measurement of para-aminohippuric acid (PAH) extraction efficiencies (EPAH) allowed avian RPF to be calculated from the clearance of PAH (CPAH). EPAH was unaffected by RAPP, thereby validating the use of PAH to estimate RPF during experimental hemodynamic manipulations. CPAH and RPF were unaffected by RAPP in the AMBIENT group (perfect autoregulation), but decreased significantly compared with contralateral kidney values during reduction of RAPP in the RESTRICTED group. Urine flow and glomerular filtration rates (GFR) were reduced unilaterally along with RAPP, regardless of the portal perfusion status. The renal portal system contributes to overall RPF autoregulation in domestic fowl, helping to maintain constancy of renal blood flow even after RAPP is reduced well below the GFR autoregulatory limit.Abbreviations BW body weight - C In Clearance of inulin - C PAH clearance of PAH - E PAH PAH extraction efficiency - FF filtration fraction - GFR glomerular filtration rate - LiOH lithium hydroxide - MT mammalian-type nephron - PAH para-aminohippuric acid - [PAH] A concentration of PAH in arterial plasma - [PAH] a chromagen corrected PAH in arterial plasma - [PAH] E endogenous PAH-like chromagen - [PAH] UF concentration of ultrafilterable PAH - [PAH] v concentration of PAH in renal venous plasma - [PAH] v chromagen corrected PAH in renal venous plasma - RAPP renal arterial perfusion pressure - RPF renal plasma flow - RT reptilian-type nephron - UFR urine flow rate - UFR per gram urine flow rate per gram kidney weight - T M S PAH tubular secretory maximum for PAH - SEM standard error of mean  相似文献   

2.
Catheters were placed in the jugular vein and femoral artery of male Sprague-Dawley rats and connected to a specially designed perfusor for continuous constant infusion of 0.9% NaCl and a syringe to perform simultaneous and intermittent blood collections. This permitted continuous 24-h study of renal hemodynamics, estimated by inulin (Cin) and p-amino-hippuric acid (CPAH) clearances; Cin represents glomerular filtration rate and CPAH renal plasma flow. Animals were individually housed in metabolism cages in a controlled environment with light/dark 12:12 h. Urine was collected every 4 h (12:00, 16:00, 20:00, 24:00, 04:00, and 08:00) and blood sampled at the midpoint of urine collection periods. Urine and plasma sodium, potassium, inulin, and PAH were spectrophotometrically assessed. During continuous infusion of isotonic saline, Cin exhibited circadian changes with large decrease between 12:00 and 20:00 h (0.9 ± 0.2 ml/min) and acrophase at 00:30 h. Rhythmicity in CPAH was similar with the minimum between 16:00 and 20:00 h (2.5 ± 0.3 ml/min) and peak between 00:00 and 04:00 h (acrophase at 00:25 h). Water and electrolyte excretion were also circadian rhythmic with a similar nighttime enhancement and daytime minimum. Such circadian changes persisted during continuous 0.9% NaCl infusion for several consecutive days. The unanesthetized, unrestrained rat model enables investigations in renal chronopharmacology and chronotoxicology.  相似文献   

3.
Analysis of the carrier frequency of p.Arg408Trp, p.Arg261Gln, and p.Arg261X mutations in the PAH gene was carried out in different unrelated indigenous individuals representing 58 populations of Eurasia taking into account their linguistic identity and territorial location. Mutation p.Arg408Trp in the PAH gene was found in 14 studied populations with the highest average carrier frequency of 0.0127 in the Volga-Ural region and 0.0134 in the representatives of the Slavic language group. Mutation p.Arg261Gln in the PAH gene was detected only in two populations with average carrier frequency rate of 0.0012 in the Volga-Ural region. Mutation p.Arg261X in the PAH gene was identified in four North Caucasus populations with highest carrier frequency in Karachays—at 0.0526. All PAH gene mutations in populations of Eurasia were identified in the heterozygous state.  相似文献   

4.
To date, the efficacy of the phenylalanine hydroxylase (PAH) cofactor is proved for the treatment of both BH4-dependent hyperphenylalaninemia and phenylketonuria patients with mutations in the PAH gene. Since the patient’s response depends on the presence of residual PAH enzyme activity, it is advisable to search for mutations in the PAH gene to identify the potential responders and nonresponders to therapy. Four hundred thirty-five phenylketonuria patients from 13 regions of the Russian Federation were genotyped in order to identify responders and nonresponders to tetrahydrobiopterin (BH4) therapy. According to the results of this study, the number of probable nonresponders to the BH4 treatment exceeds 50% owing to a higher overall allelic frequency of “severe” PAH gene mutations. Responder patients with two “mild” mutations in the PAH gene were identified (1.6%).  相似文献   

5.
Treatment with tetrahydrobiopterin (BH4) is the latest therapeutic option approved for patients with phenylketonuria (PKU)—one of the most frequent inborn metabolic diseases. PKU or phenylalanine hydroxylase (PAH) deficiency is caused by mutations in the PAH gene. Given that some PAH mutations are responsive to BH4 treatment while others are non-responsive, for every novel mutation that is discovered it is essential to confirm its pathogenic effect and to assess its responsiveness to a BH4 treatment in vitro, before the drug is administered to patients. We found a c.676C>A (p.Gln226Lys) mutation in the PAH gene in two unrelated patients with PKU. The corresponding aberrant protein has never been functionally characterized in vitro and its response to BH4 treatment is unknown. Computational analyses proposed that glutamine at position 226 is an important, evolutionary conserved amino acid while the substitution with lysine probably disturbs tertiary protein structure and impacts posttranslational PAH modifications. Using hepatoma cellular model, we demonstrated that the amount of mutant p.Gln226Lys PAH detected by Western blot was only 1.2% in comparison to wild-type PAH. The addition of sepiapterin, intracellular precursor of BH4, did not increase PAH protein yield thus marking p.Gln226Lys as BH4-non-responsive mutation. Therefore, computational, experimental, and clinical data were all in accordance showing that p.Gln226Lys is a severe pathogenic PAH mutation. Its non-responsiveness to BH4 treatment in hepatoma cellular model should be considered when deciding treatment options for PKU patients carrying this mutation. Consequently, our study will facilitate clinical genetic practice, particularly genotype-based stratification of PKU treatment.  相似文献   

6.
Red blood cell (rbc) carbon dioxide transport was examined in vitro in three teleosts (Oncorhynchus mykiss, Anguilla anguilla, Scophthalmus maximus) and an elasmobranch (Scyliorhinus canicula) using a radioisotopic assay that measures the net conversion of plasma HCO3 to CO2. The experiments were designed to compare the intrinsic rates of rbc CO2 excretion and the impact of haemoglobin oxygenation/deoxygenation among the species.Under conditions simulating in vivo levels of plasma HCO3 and natural haematocrits, the rate of whole blood CO2 excretion varied between 14.0 μmol ml−1 h−1 (S. canicula) and 17.6 μmol ml−1 h−1 (O. mykiss). The rate of CO2 excretion in separated plasma was significantly greater in the dogfish, S. canicula. The contribution of the rbc to overall whole blood CO2 excretion was low in the dogfish (46 ± 6%) compared to the teleosts (trout, 71 ± 4%; turbot, 64 ± 5%; eel, 55 ± 3%).To eliminate the naturally occurring differences in haematocrit and plasma [HCO3] as inter-specific variables, the rates of whole blood CO2 excretion were determined in blood that had been resuspended to constant [HCO3] (5 mmol−1) and haematocrit (20%) in appropriate teleost and elasmobranch Ringer solutions. Under such normalized conditions, the rate of whole blood CO2 excretion was significantly higher in the turbot (22.4 ± 1.3 μmol ml−1 h−1) in comparison to the other species (16.4–18.4 μmol ml−1 h−1) and thus revealed a greater intrinsic rate of rbc CO2 excretion in the turbot.To study the contribution of Bohr protons, the rates of whole blood CO2 excretion were assessed in blood subjected to rapid oxygenation during the initial phase of the 3 min assay period. Rapid oxygenation significantly enhanced the rate of CO2 excretion in the teleosts but not in the elasmobranch. The extent of the increase provided by the rapid oxygenation of haemoglobin was a linear function of the extent of the Haldane effect, as quantified in each species from in vitro CO2 dissociation (combining) curves. Under steady-state conditions, deoxygenated blood exhibited greater rates of CO2 excretion than oxygenated blood in the teleosts but not in the elasmobranch. As a consequence of the Haldane effect, rbc intracellular pH was increased in the teleosts by deoxygenation but was unaltered in the elasmobranch.The results, by extrapolation, suggest that the rates of CO2 excretion in vivo are influenced by the magnitude of the Haldane effect and the extent of haemoglobin oxygenation during gill transit in addition to the intrinsic rate at which the rbc converts plasma HCO3 to CO2.  相似文献   

7.
Sediments collected from the Elizabeth River, VA, a highly contaminated subestu-ary of the James River, were analyzed for polycyclic aromatic hydrocarbons (PAHs). Select isomer ratios (BbF/BkF, BaA/chrysene, and IP/BghiP) and molecular weight fractions (ΣPAH202/202-276 and ΣPAH252/202-276) were identified as source indicators for two former wood-treatment facilities (Atlantic Wood and Eppinger & Russell) located on the southern branch of the Elizabeth River. These facilities are suspected as probable contributors to the high PAH contamination in sediments. Plots of the wood-treatment source indicators, along with those for coal, wood, and automotives, revealed a likely contribution from only one of the former wood-treatment facilities, in addition to the possible contribution of coal/coal gasification to PAH contamination in sediments of the main stem and southern branch of the Elizabeth River. By examining PAH isomer ratios from known or suspected sources, it is possible to distinguish multiple sources of PAHs to an ecosystem.  相似文献   

8.
Phenylketonuria (PKU), the most frequent disorder of amino acid metabolism, is caused by mutations in human phenylalanine hydroxylase gene (PAH), leading to deficient enzyme activity. Previously reported but uncharacterized PAH gene mutation, p.S231F (c.692C > T), was detected in Serbian patients with classical PKU. We analyzed p.S231F PAH protein in prokaryotic (Escherichia coli) and eukaryotic expression system (hepatoma cells). In both systems the mutant enzyme was unstable. Residual enzyme activity in vitro was ~1%. Mutation p.S231F PAH was not activated by pre-incubation with phenylalanine substrate. We found no GroEL/GroES chaperone effect and slightly positive effect of the (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin (BH4) on the stabilization of the protein structure. Our findings were in accordance with severe patients’ phenotypes. In conclusion, p.S231F should be classified as a functionally null PAH gene mutation as it drastically reduces stability and activity of the PAH enzyme in vitro.  相似文献   

9.
Pulmonary arterial hypertension (PAH) is a devastating disease characterized by high pulmonary artery pressure. It is reported that microRNA-204 (miR-204) plays an important role in the development of PAH. Calcitriol [1,25-dihydroxyvitamin D3, 1,25(OH)2D3] mediates multiple pathophysiological processes. The aim of the current study was to explore the role of 1,25(OH)2D3 in PAH. PAH was induced in rats and rat pulmonary arterial endothelial cells (PAECs) were isolated as in vitro PAH model. The mean pulmonary artery pressure, morphologic changes, and expressions of transforming growth factor-beta1 (Tgfbr2), Smad2/7, alpha smooth muscle actin (α-SMA), and p21 were then measured. Furthermore, the effect of 1,25(OH)2D3 on rat PAECs with or without hypoxia treatment was also assessed by measuring the proliferation, migration, and cell cycle distribution of PAECs. The potential targets of miR-204 were also predicted and validated with a dual-luciferase reporter system. Then the role of miR-204 and Tgfbr2 in the anti-PAH effect of 1,25(OH)2D3 was further explored by modulating the expression of the two genes. The overall pulmonary hypertension and hypoxia-induced proliferation and migration of PAECs were attenuated by administration of 1,25(OH)2D3, which was associated with the suppressed expressions of Tgfbr2, α-SMA, and Smad7 and induced expressions of miR-204, p21 and Smad2 both in vitro and in vivo. Moreover, the luciferase reporter assay identified Tgfbr2 as a novel direct target of miR-204. Both overexpression of miR-204 and inhibition of Tgfbr2 would strengthen the effect of 1,25(OH)2D3 administration. Findings outlined in the current study demonstrated that 1,25(OH)2D3 was a promising therapeutic modality for treatment of PAH, function of which was exerted through miR-204 mediated Tgfbr2 signaling.  相似文献   

10.
It has been shown that the sympathetic nervous system is activated in pulmonary arterial hypertension (PAH). Norepinephrine (NE) levels are increased by chemoreflex-dependent sympathetic overactivation and involved in pulmonary vascular remodeling. However, the underlying mechanisms of the remodeling induced by NE are poorly understood. In this study, we found that, in vivo, the expression of tyrosine hydroxylase and the concentration of plasma NE were increased in PAH rats compared with normal rats. Increases in ventricular hypertrophy and medial width of the pulmonary arteries were reversed by prazosin, α1-adrenoceptor (α1-AR) antagonists, in PAH rats. Elevated expression of α1D-AR was detected in PAH rats. In addition, prazosin reduced the increasing expression of PCNA, CyclinA and CyclinE induced by hypoxia. In vitro, MTT assay, flow cytometry, Western blotting and immunofluorescence were performed to investigate the effects of NE on proliferation of pulmonary artery smooth muscle cells (PASMCs). We revealed that NE promoted PASMCs viability, increased the expression of PCNA, CyclinA and CyclinE, made more cells from G0/G1 phase to G2/M + S phase and enhanced the microtubule formation. Above NE-induced changes could be suppressed by BMY 7378, an inhibitor of α1D-AR. Furthermore, ERK-1/2 pathway was activated by NE. U0126, a specific inhibitor for ERK-1/2, attenuated the NE-induced proliferation of PASMCs under normoxia and hypoxia. Taken together, our results suggest that NE which stimulates α1D-AR promotes proliferation of PASMCs and the effect is, at least in part, mediated via the ERK-1/2 pathway.  相似文献   

11.
Inflorescences of Tradescantia clone 02 (2n = 12), hetero- or hemi-zygous for flower color, were exposed to a series of γ-ray exposures at two different exposure rates, 29.3 R/min and 0.026–0.52 R/min. Pink mutation-response curves, and survival curves based on reproductive integrity, were constructed for each of the exposure rates. Loss of reproductive intergrity was also assessed at high (256 R/min) and low (0.52–4.17 R/min) γ-ray exposure rates in T. blossfeldiana (2n = 72). All observations were made on stamen hairs.The higher exposure rate was 1.3–1.7 times more effective in inducing pink mutations in clone 02. A greater efficiency of the higher exposure rate was also found for both taxa at the loss of reproductive integrity endpoint. The D0 values obtained at the higher exposure rates, 154 R for clone 02 and 720 R for T. blossfeldiana, were significantly lower than the corresponding values of 270 R and 1880 R obtained at the lower exposure rates. These D0's differ by factors of 1.75 and 2.61 for clone 02 and T. blossfeldiana, respectively. D0's for the two taxa were found to be inversely correlated with their interphase chromosome volumes.  相似文献   

12.
Thermal denaturation (Tm) data are easy to obtain; it is a technique that is used by both small labs and large‐scale industrial organizations. The link between ligand affinity (K D) and ΔTm is understood for reversible denaturation; however, there is a gap in our understanding of how to quantitatively interpret ΔTm for the many proteins that irreversibly denature. To better understand the origin, and extent of applicability, of a K D to ΔTm correlate, we define equations relating K D and ΔTm for irreversible protein unfolding, which we test with computational models and experimental data. These results suggest a general relationship exists between K D and ΔTm for irreversible denaturation.  相似文献   

13.

Background

Reduced gas transfer in patients with pulmonary arterial hypertension (PAH) is traditionally attributed to remodeling and progressive loss of pulmonary arterial vasculature that results in decreased capillary blood volume available for gas exchange.

Methods

We tested this hypothesis by determination of lung diffusing capacity (DL) and its components, the alveolar capillary membrane diffusing capacity (Dm) and lung capillary blood volume (Vc) in 28 individuals with PAH in comparison to 41 healthy individuals, and in 19 PAH patients over time. Using single breath simultaneous measure of diffusion of carbon monoxide (DLCO) and nitric oxide (DLNO), DL and Dm were respectively determined, and Vc calculated. Dm and Vc were evaluated over time in relation to standard clinical indicators of disease severity, including brain natriuretic peptide (BNP), 6-minute walk distance (6MWD) and right ventricular systolic pressure (RVSP) by echocardiography.

Results

Both DLCO and DLNO were reduced in PAH as compared to controls and the lower DL in PAH was due to loss of both Dm and Vc (all p < 0.01). While DLCO of PAH patients did not change over time, DLNO decreased by 24 ml/min/mmHg/year (p = 0.01). Consequently, Dm decreased and Vc tended to increase over time, which led to deterioration of the Dm/Vc ratio, a measure of alveolar-capillary membrane functional efficiency without changes in clinical markers.

Conclusions

The findings indicate that lower than normal gas transfer in PAH is due to loss of both Dm and Vc, but that deterioration of Dm/Vc over time is related to worsening membrane diffusion.  相似文献   

14.
Determination of homovanillic acid turnover in man   总被引:2,自引:0,他引:2  
Homovanillic acid (HVA) labelled with five deuterium (d) atoms was used to determine the total body turnover of HVA, the size of the peripheral body pool of HVA and HVA elimination characteristics in five healthy men. After i.v. injection of 5.5 μmoles (1 mg) of HVA-d5 the levels of HVA-d5 and endogenous HVA (HVA-do) in plasma and urine were followed by mass fragmentography using HVA-d2 as the carrier and internal standard. Following an initial distribution phase of 10–20 minutes the plasma elimination curve of HVA-d5 was monoexponential with a mean T12 of 0.66 hrs. The apparent volume of distribution (VD) approximated the volume of the body water. The content of HVA in the peripheral body pool calculated from the plasma levels of HVA-do and VD was 3.4 moles. The urinary HVA excretion rate (mean 1.70 moles/hour) was 45% of the total body turnover, the recovery of urinary HVA-d5 was 48% of the mean body clearance. Together the results indicate that about 50% of the HVA formed in the body is eliminated by mechanisms other than renal excretion.  相似文献   

15.
Protein misfolding with loss-of-function of the enzyme phenylalanine hydroxylase (PAH) is the molecular basis of phenylketonuria in many individuals carrying missense mutations in the PAH gene. PAH is complexly regulated by its substrate l-Phenylalanine and its natural cofactor 6R-l-erythro-5,6,7,8-tetrahydrobiopterin (BH4). Sapropterin dihydrochloride, the synthetic form of BH4, was recently approved as the first pharmacological chaperone to correct the loss-of-function phenotype. However, current knowledge about enzyme function and regulation in the therapeutic setting is scarce. This illustrates the need for comprehensive analyses of steady state kinetics and allostery beyond single residual enzyme activity determinations to retrace the structural impact of missense mutations on the phenylalanine hydroxylating system. Current standard PAH activity assays are either indirect (NADH) or discontinuous due to substrate and product separation before detection. We developed an automated fluorescence-based continuous real-time PAH activity assay that proved to be faster and more efficient but as precise and accurate as standard methods. Wild-type PAH kinetic analyses using the new assay revealed cooperativity of activated PAH toward BH4, a previously unknown finding. Analyses of structurally preactivated variants substantiated BH4-dependent cooperativity of the activated enzyme that does not rely on the presence of l-Phenylalanine but is determined by activating conformational rearrangements. These findings may have implications for an individualized therapy, as they support the hypothesis that the patient''s metabolic state has a more significant effect on the interplay of the drug and the conformation and function of the target protein than currently appreciated.  相似文献   

16.
Azo dyes are recalcitrant and xenobiotic nature makes these compounds a challenging task for continuous biodegradation up to satisfactorily levels in large-scale. In the present report, the biodegradation efficiency of alginate immobilized indigenous Aeromonas sp. MNK1 on Methyl Orange (MO) in a packed bed reactor was explored. The experimental results were used to determine the external mass transfer model. Complete MO degradation and COD removal were observed at 0.20 cm bead size and 120 ml/h flow rate at 300 mg/l of initial dye concentration. The degradation of MO decreased with increasing bead sizes and flow rates, which may be attributed to the decrease in surface of the beads and higher flux of MO, respectively. The experimental rate constants (k ps) for various beads sizes and flow rates were calculated and compared with theoretically obtained rate constants using external film diffusion models. From the experimental data, the external mass transfer effect was correlated with a model J D = K Re ?(1 ? n). The model was tested with K value (5.7) and the Colburn factor correlation model for 0.20, 0.40 and 0.60 bead sizes were J D = 5.7 Re ?0.15, J D = 5.7 Re ?0.36 and J D = 5.7 Re ?0.48, respectively. Based on the results, the Colburn factor correlation models were found to predict the experimental data accurately. The proposed model was constructive to design and direct industrial applications in packed bed reactors within acceptable limits.  相似文献   

17.
Summary Mammalian glomerular filtration rate (GFR) autoregulation can be impaired by protocols that inhibit tubuloglomrular feedback, such as high sodium intake. Domestic fowl were fed diets containing either high sodium (0.39% Na: High-Na Group) or low sodium (0.03% Na: Low-Na Group). An arterial snare was used to reduce renal arterial perfusion pressure (RAPP) in a stepwise fashion to evaluate GFR autoregulation. Absolute sodium excretion, fractional sodium excretion (FENa), and ambient systemic arterial blood pressure were significantly elevated in the High-Na Group when compared with the Low-Na Group, and pressure natriuresis was abolished by the Low-Na diet. However, GFR autoregulatory profiles were identical in birds fed High-Na and Low-Na diets, suggesting that tubuloglomerular feed-back does not contribute significantly to avian GFR autoregulation. Filtering glomeruli were stained in vivo with alcian blue dye to determine if RAPP-induced reductions in GFR are associated with cessation of filtration (glomerular intermittency) by a portion of the nephron population. RAPP was held below the GFR autoregulatory range (experimental group) or was at ambient systemic arterial pressure (control group) during glomerular staining. Reducing RAPP below the autoregulatory range reduced GFR by 50%, but similar glomerular size distribution profiles were observed for experimental and control groups. These results indicate that sustained glomerular intermittency does not contribute to the decrease in GFR when RAPP is reduced below the autoregulatory range.Abbreviations BW body weight - C control - E excretion - FE fractional excretion - FF filtration fraction - GFR glomerular filtration rate - PAH p-amino hippuric acid - RAPP renal arterial perfusion pressure - RPF renal plasma flow - RT reptilian-type - SNGFR single nephron glomerular filtration rate - U OSM urine osmolarity - UFR urine flow rate  相似文献   

18.
19.
The causal link between disparate tropomyosin (Tm) functions and the structural instability in Tm is unknown. To test the hypothesis that the structural instability in the central region of Tm modulates the function of the overlapping ends of contiguous Tm dimers, we used transgenic mice (TmDM) that expressed a mutant α-Tm in the heart; S229E and H276N substitutions induce structural instability in the central region and the overlapping ends of Tm, respectively. In addition, two mouse cardiac troponin T mutants (TnT1–44Δ and TnT45–74Δ) that have a divergent effect on the overlapping ends of Tm were employed. The S229E-induced instability in the central region of TmDM altered the overlapping ends of TmDM, thereby it negated the attenuating effect of H276N on Ca2+-activated maximal tension. The rate of cross-bridge detachment (g) decreased in TmDM+TnTWT and TmH276N+TnTWT fibers but increased in TmDM+TnT45–74Δ fibers; however, TnT45–74Δ did not alter g, demonstrating that S229E in TmDM had divergent effects on g. The S229E substitution in TmDM ablated the H276N-induced desensitization of myofilament Ca2+ sensitivity in TmDM+TnT1–44Δ fibers. To our knowledge, novel findings from this study show that the structural instability in the central region of Tm modifies cardiac contractile function via its effect on the overlapping ends of contiguous Tm.  相似文献   

20.
Radial flow Rushton impellers were compared qualitatively with axial flow hydrofoil impellers (Maxflo T and A315) at the pilot scale. Six types of impellers were compared for qualitative differences in mass transfer. Measurements were conducted using three model systems: water, glycerol and Melojel (soluble starch). Power measurements were obtained using watt transducers, which although limited in accuracy and prone to interferences, were able to provide useful qualitative monitoring results. While there was little effect of impeller type on mass transfer as measured by the rapid pressure increase technique, significant qualitative differences were observed using the rapid temperature increase technique specifically for the Melojel and glycerol model systems. The Miller correlation, relating gassed-to-ungassed power, was used effectively to qualitatively evaluate the power drop upon gassing for both the model systems and a Streptomyces fermentation for the various impeller types. A high oxygen demand Streptomcyes fermentation then was conducted in fermenters possessing each type of impeller. Performance was not adequate with the A315 impellers pumping upwards and the small diameter Maxflo T impellers. Peak titers and profiles of the estimated apparent broth viscosity varied depending upon the impeller type. Mass transfer rates generally declined with higher viscosities when other fermentation operating conditions where held constant. Overall, values for OUR, k L a, P g /V L and other calculated mass transfer and power input quantities for the A315 pumping upwards and undersized Maxflo T (D T /D I ?=?2.3) impellers were at the lower end of the range obtained for the larger Maxflo T (D T /D I ?=?1.8–2.0) and A315 impellers pumping downwards. Rushton impellers generally behaved qualitatively similar to hydrofoil impellers based on these calculated quantities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号