首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioreduction of hexavalent chromium (Cr(VI)) into trivalent one (Cr(III)) based on microbial immobilization techniques has been recognized as a promising way to remove Cr contaminants from wastewater. However, such a bioreduction process is inefficient due to limited electron transfer through the immobilization matrix. In this study, a modified immobilization process was proposed by impregnating carbon nanotubes (CNTs) into Ca-alginate beads, which were then used to immobilize Shewanella oneidensis MR-1 for enhanced Cr(VI) reduction. Compared with the free cells and the beads without CNTs, the AL/CNT/cell beads showed up to 4 times higher reduction rates, mainly attributed to an enhanced electron transfer by the CNTs. In addition, the dose of CNTs greatly improved the stability of beads, suggesting a high feasibility of the AL/CNT/cell beads for repeated use. The optimized CNT concentration, temperature and pH for Cr(VI) reduction by the AL/CNT/cell beads were 0.5%, 30 °C and 6.0–7.0, respectively.  相似文献   

2.
Microbial reduction is a promising strategy for chromium remediation, but the effects of competing electron acceptors are still poorly understood. We investigated chromate (Cr(VI)) reduction in batch cultures of Shewanella oneidensis MR-1 under aerobic and denitrifying conditions and in the absence of an additional electron acceptor. Growth and Cr(VI) removal patterns suggested a cometabolic reduction; in the absence of nitrate or oxygen, MR-1 reduced Cr(VI), but without any increase in viable cell counts and rates gradually decreased when cells were respiked. Only a small fraction (1.6%) of the electrons from lactate were transferred to Cr(VI). The 48-h transformation capacity (Tc) was 0.78 mg (15 micromoles) Cr(VI) reduced. [mg protein](-1) for high levels of Cr(VI) added as a single spike. For low levels of Cr(VI) added sequentially, Tc increased to 3.33 mg (64 micromoles) Cr(VI) reduced. [mg protein](-1), indicating that it is limited by toxicity at higher concentrations. During denitrification and aerobic growth, MR-1 reduced Cr(VI), with much faster rates under denitrifying conditions. Cr(VI) had no effect on nitrate reduction at 6 microM, was strongly inhibitory at 45 microM, and stopped nitrate reduction above 200 microM. Cr(VI) had no effect on aerobic growth at 60 microM, but severely inhibited growth above 150 microM. A factor that likely plays a role in Cr(VI) toxicity is intracellular reduced chromium. Transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of denitrifying cells exposed to Cr(VI) showed reduced chromium precipitates both extracellularly on the cell surface and, for the first time, as electron-dense round globules inside cells.  相似文献   

3.
Whole-genome DNA microarrays were used to examine the gene expression profile of Shewanella oneidensis MR-1 during U(VI) and Cr(VI) reduction. The same control, cells pregrown with nitrate and incubated with no electron acceptor, was used for the two time points considered and for both metals. U(VI)-reducing conditions resulted in the upregulation (> or = 3-fold) of 121 genes, while 83 genes were upregulated under Cr(VI)-reducing conditions. A large fraction of the genes upregulated [34% for U(VI) and 29% for Cr(VI)] encode hypothetical proteins of unknown function. Genes encoding proteins known to reduce alternative electron acceptors [fumarate, dimethyl sulfoxide, Mn(IV), or soluble Fe(III)] were upregulated under both U(VI)- and Cr(VI)-reducing conditions. The involvement of these upregulated genes in the reduction of U(VI) and Cr(VI) was tested using mutants lacking one or several of the gene products. Mutant testing confirmed the involvement of several genes in the reduction of both metals: mtrA, mtrB, mtrC, and menC, all of which are involved in Fe(III) citrate reduction by MR-1. Genes encoding efflux pumps were upregulated under Cr(VI)- but not under U(VI)-reducing conditions. Genes encoding proteins associated with general (e.g., groL and dnaJ) and membrane (e.g., pspBC) stress were also upregulated, particularly under U(VI)-reducing conditions, pointing to membrane damage by the solid-phase reduced U(IV) and Cr(III) and/or the direct effect of the oxidized forms of the metals. This study sheds light on the multifaceted response of MR-1 to U(VI) and Cr(VI) under anaerobic conditions and suggests that the same electron transport pathway can be used for more than one electron acceptor.  相似文献   

4.
Microbial transformation of sulfate minerals plays an important role in controlling the behavior of heavy metals in mining areas. Here, the anaerobic reduction of Cr (VI)-loaded schwertmannite by Shewanella oneidensis MR-1 (S. oneidensis MR-1) was investigated. The release of ferrous iron (Fe(II)) to the solution demonstrated the microbial reduction of structural Fe(III) from the schwertmannite to Fe(II). The concentration of Cr in solution decreased in all treatments, indicating that no Cr was released to the solution during this bio-reduction process of schwertmannite. The incorporation of chromate into the mineral structure of schwertmannite increased the microbial stability of the mineral, retarding the formation of secondary phases during bio-reduction process. Analysis of the XRD, SEM and fourier transform infrared spectroscopy (FT-IR) results further showed that goethite formed after 3 or 7 days with a lower content (0.22% or 0.37%) of Cr in schwertmannite, while no secondary mineral was observed with a higher concentration of Cr (0.6 wt%) incorporated in schwertmannite until 22 days. These results imply that microbial reduction of Cr(VI)-loaded schwertmannite does not lead to the release of Cr to the solution, and the microbial stability of schwertmannite will be increased by the incorporation of chromate.  相似文献   

5.
Chromate (Cr(VI)) reduction tests were performed with nitrate- and fumarate-grown stationary phase cultures of Shewanella oneidensis MR-1 (henceforth referred to as MR-1) and disappearance of Cr(VI) was monitored over time. A rapid initial decrease in Cr(VI) concentration was observed, which was followed by a slower, steady decrease. These observations appear to be consistent with our previous results indicating that Cr(VI) reduction in MR-1 involves at least two mechanisms (Viamajala et al., 2002b). Modeling of metal reduction kinetics is often based on single-enzyme Michaelis-Menten equations. However, these models are often developed using initial rates and do not always match actual reduction profiles. Based on the hypothesis that multiple Cr(VI) reduction mechanisms exist in MR-1, a model was developed to describe the kinetics of Cr(VI) reduction by two parallel mechanisms: (1) a rapid Cr(VI) reduction mechanism that was deactivated (or depleted) quickly, and (2) a slower mechanism that had a constant activity and was sustainable for a longer duration. Kinetic parameters were estimated by fitting experimental data, and model fits were found to correspond very closely to quantitative observations of Cr(VI) reduction by MR-1.  相似文献   

6.
【目的】研究Shewanella oneidensis MR-1厌氧生物转化2,4-二硝基甲苯(2,4-DNT)的能力、转化过程和影响因素。【方法】以乳酸钠为电子供体, 2,4-DNT为电子受体, S. oneidensis MR-1为降解菌, 黄素为胞外电子载体, 设立四个不同的对照体系并监测各体系在转化过程中2,4-DNT及其产物的动态变化。同时研究不同2,4-DNT浓度下细胞的生长情况, 以及不同黄素浓度下2,4-DNT的降解情况。【结果】S. oneidensis MR-1菌能够高效还原转化2,4-DNT为4-氨基-2-硝基甲苯(4A2NT)和2-氨基-4-硝基甲苯(2A4NT), 并将其进一步还原为2,4-二氨基甲苯(2,4-DAT), 黄素能加速转化过程。【结论】S. oneidensis MR-1菌具备高效还原转化2,4-DNT的能力, 为实际环境中硝基苯污染的原位修复提供科学依据。  相似文献   

7.
Cr(VI) was added to early- and mid-log-phase Shewanella oneidensis (S. oneidensis) MR-1 cultures to study the physiological state-dependent toxicity of Cr(VI). Cr(VI) reduction and culture growth were measured during and after Cr(VI) reduction. Inhibition of growth was observed when Cr(VI) was added to cultures of MR-1 growing aerobically or anaerobically with fumarate as the terminal electron acceptor. Under anaerobic conditions, there was immediate cessation of growth upon addition of Cr(VI) in early- and mid-log-phase cultures. However, once Cr(VI) was reduced below detection limits (0.002 mM), the cultures resumed growth with normal cell yield values observed. In contrast to anaerobic MR-1 cultures, addition of Cr(VI) to aerobically growing cultures resulted in a gradual decrease of the growth rate. In addition, under aerobic conditions, lower cell yields were also observed with Cr(VI)-treated cultures when compared to cultures that were not exposed to Cr(VI). Differences in response to Cr(VI) between aerobically and anaerobically growing cultures indicate that Cr(VI) toxicity in MR-1 is dependent on the physiological growth condition of the culture. Cr(VI) reduction has been previously studied in Shewanella spp., and it has been proposed that Shewanella spp. may be used in Cr(VI) bioremediation systems. Studies of Shewanella spp. provide valuable information on the microbial physiology of dissimilatory metal reducing bacteria; however, our study indicates that S. oneidensis MR-1 is highly susceptible to growth inhibition by Cr(VI) toxicity, even at low concentrations [0.015 mM Cr(VI)].  相似文献   

8.
9.
【目的】Shewanella oneidensis MR-1是电活性模式微生物,但目前仍缺乏对其细胞及生物膜形貌变化的系统研究,本研究旨在完善对其形貌特征的理解,为支持其作为模式微生物提供有力的基础数据。【方法】选取培养基类型、缓冲液浓度、维生素、微量元素、无机盐、电子穿梭体、电子供体、电子受体等培养条件作为变量,采用恒电位培养法获得生物膜,通过扫描电子显微镜对生物膜形貌进行观察。【结果】低浓度缓冲液中(30 mmol/L和100 mmol/L),其细胞多为短杆状,高浓度缓冲液中(200 mmol/L和300 mmol/L)细胞卷曲伸长;缺乏维生素、微量元素、无机盐则可使生物膜紧贴电极生长,变得致密;而穿梭体和电子受体对于S. oneidensis MR-1极为关键,前者的存在可显著促进生物膜的厚度,后者的缺失可迫使生物膜细胞裂解;此外,通过形貌研究发现,S. oneidensis MR-1可首尾相连形成超过100μm的长线状结构。【结论】可通过改变缓冲液浓度、培养基类型、电子穿梭体和电子供受体等变量,实现Shewanella oneidensis MR-1电极生物膜及细胞形貌的调控。  相似文献   

10.
Inhibition of hexavalent chromium [Cr(VI)] reduction due to nitrate and nitrite was observed during tests with Shewanella oneidensis MR-1 (previously named Shewanella putrefaciens MR-1 and henceforth referred to as MR-1). Initial Cr(VI) reduction rates were measured at various nitrite concentrations, and a mixed inhibition kinetic model was used to determine the kinetic parameters-maximum Cr(VI) reduction rate and inhibition constant [V(max,Cr(VI)) and K(i,Cr(VI))]. Values of V(max,Cr(VI)) and K(i,Cr(VI)) obtained with MR-1 cultures grown under denitrifying conditions were observed to be significantly different from the values obtained when the cultures were grown with fumarate as the terminal electron acceptor. It was also observed that a single V(max,Cr(VI)) and K(i,Cr(VI)) did not adequately describe the inhibition kinetics of either nitrate-grown or fumarate-grown cultures. The inhibition patterns indicate that Cr(VI) reduction in MR-1 is likely not limited to a single pathway, but occurs via different mechanisms some of which are dependent on growth conditions. Inhibition of nitrite reduction due to the presence of Cr(VI) was also studied, and the kinetic parameters V(max,NO2) and K(i,NO2) were determined. It was observed that these coefficients also differed significantly between MR-1 grown under denitrifying conditions and fumarate reducing conditions. The inhibition studies suggest the involvement of nitrite reductase in Cr(VI) reduction. Because nitrite reduction is part of the anaerobic respiration process, inhibition due to Cr(VI) might be a result of interaction with the components of the anaerobic respiration pathway such as nitrite reductase. Also, differences in the degree of inhibition of nitrite reduction activity by chromate at different growth conditions suggest that the toxicity mechanism of Cr(VI) might also be dependent on the conditions of growth. Cr(VI) reduction has been shown to occur via different pathways, but to our knowledge, multiple pathways within a single organism leading to Cr(VI) reduction has not been reported previously.  相似文献   

11.
Pertechnetate, 99Tc(VII)O4, is a highly mobile radionuclide contaminant at US Department of Energy sites that can be enzymatically reduced by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble Tc(IV)O2(s). In other microorganisms, Tc(VII)O4 reduction is generally considered to be catalysed by hydrogenase. Here, we provide evidence that although the NiFe hydrogenase of MR-1 was involved in the H2-driven reduction of Tc(VII)O4[presumably through a direct coupling of H2 oxidation and Tc(VII) reduction], the deletion of both hydrogenase genes did not completely eliminate the ability of MR-1 to reduce Tc(VII). With lactate as the electron donor, mutants lacking the outer membrane c -type cytochromes MtrC and OmcA or the proteins required for the maturation of c -type cytochromes were defective in reducing Tc(VII) to nanoparticulate TcO2·nH2O(s) relative to MR-1 or a NiFe hydrogenase mutant. In addition, reduced MtrC and OmcA were oxidized by Tc(VII)O4, confirming the capacity for direct electron transfer from these OMCs to TcO4. c -Type cytochrome-catalysed Tc(VII) reduction could be a potentially important mechanism in environments where organic electron donor concentrations are sufficient to allow this reaction to dominate.  相似文献   

12.
The reduction of Cr(VI) by the metal-reducing bacterium Shewanella oneidensis MR-1 was evaluated, to determine the potential for exploiting Cr(VI) bioreduction as a means of treating chromate conversion coating (CCC) waste streams. Inclusion of Cr(VI) at concentrations ≥1 mM inhibited aerobic growth of S. oneidensis, but that organism was able to reduce Cr(VI) at a concentration of up to 1 mM under anaerobic, nongrowth conditions. S. oneidensis reduced Cr(VI) in the presence of common CCC constituents, with the exception of ferricyanide, when these CCC constituents were included at concentrations typical of CCC waste streams. Ferricyanide inhibited neither aerobic growth nor metabolism under aerobic, nitrate- or iron-reducing conditions, suggesting that the ferricyanide-depended inhibition of Cr(VI) reduction is not due to broad metabolic inhibition, but is specific to Cr(VI) reduction. Results indicate that under some conditions, the activities of metal-reducing bacteria, such as S. oneidensis, could be exploited for the removal of Cr(VI) from CCC waste streams under appropriate conditions.  相似文献   

13.
14.
We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures.Effective bioremediation and waste management strategies at nuclear sites require an understanding of the fundamental biogeochemical processes that control the mobility of actinides. Microorganisms can influence the chemical speciation, valence state, and distribution of actinides in subsurface environments (2, 8, 12, 14). Dissimilatory metal-reducing bacteria (DMRB), which derive energy by respiring oxidized metals (Fe and Mn in nature), may play a particularly important role in the mobility of actinides, since the oxidized forms of many radionuclides are more mobile than their reduced forms. Remedial strategies have been proposed to biomineralize radionuclides via direct reduction by DMRB or indirectly by DMRB by-products (9-11). Several DMRB have been shown to conserve energy for anaerobic growth via the reduction of U(VI) (9-11, 14).Plutonium redox chemistry is more complex than that of most other actinides. Under environmental conditions, plutonium can exist in the III, IV, V, and VI oxidation states, and multiple oxidation states can coexist simultaneously (4, 5). The oxidized species of plutonium [Pu(V) and Pu(VI)] generally are much more soluble than the reduced species (4). Predicting the influence DMRB have on plutonium biogeochemistry is complicated by the fact that both Pu(III) and Pu(IV) are possible products of biological reduction. Also, the presence of chelating ligands can greatly influence the oxidation state formed during reduction as well as the reduction rate. The reduction of oxidized Pu species to Pu(IV) is desired, because it is highly insoluble and not very mobile. However, in the presence of complexing ligands and under reducing conditions the production of Pu(III) is favored, and Pu(III) complexes can be quite soluble (2). The conditions leading to the reduction of Pu(V) and Pu(VI) need to be understood and controlled so that they do not lead to the production of Pu(III), if the biological reduction of Pu(V) or Pu(VI) is to be used as an effective remediation strategy.There is little information available concerning the influence DMRB have on plutonium biogeochemistry. Few previous studies have reported the biological reduction of Pu(IV) to Pu(III) (2, 7, 16). During the earlier experiments (16), the solubilization of PuO2 increased approximately ∼40% in solutions with DMRB. In solutions with DMRB and nitrilotriacetic acid (NTA), approximately 90% of the available Pu was solubilized, but the production of Pu(III) was not observed in any of the cultures, either with or without NTA added (16). The enhanced solubility of Pu was attributed to Pu(IV) reduction, the solubilization of resultant Pu(III), and the reoxidation of Pu(III) to Pu(IV) with the NTA complexation of Pu(III). Since Pu(III) was not observed, the biological reduction of Pu(IV) was inferred from the data (16). The biological reduction of Pu(IV) to Pu(III) was first conclusively documented with the production of Pu(III) in monocultures of G. metallireducens GS-15 and S. oneidensis MR-1 both with and without the addition of a chelating agent (EDTA) (2). In experiments without EDTA, the aqueous concentration of Pu(III) in DMRB cultures was very low (<0.05 mM Pu) (2). The aqueous concentration of Pu(III) increased to approximately 60 to 80% (0.3 to 0.4 mM Pu) of the total Pu(IV) when EDTA was added to the cultures (2). To our knowledge, there are no published studies documenting the biological reduction of Pu(V) or Pu(VI) to either Pu(IV) or Pu(III). However, based on thermodynamics calculations, the reduction of Pu(V) and Pu(VI) by DMRB should be possible and yield greater energy for the bacteria than Pu(IV) reduction (2).The study presented here was designed first to assess the ability of G. metallireducens GS-15 and S. oneidensis MR-1 to reduce Pu(V) and Pu(VI) in monocultures under cell resting and growth conditions. Second, the aqueous and solid phases produced during the experiments were analyzed to determine the extent of biological reduction [i.e., to Pu(IV) or Pu(III)].  相似文献   

15.
ABSTRACT Chemical reduction of Cr(VI) can be a strategy to detoxify toxic metals in oxidized states, whereas reduction of Fe(III) could enhance the availability of Fe in the form of Fe(II) to boost plant growth. However, it creates another problem of chemical sludge disposal. Hence, microbial conversion of Cr(VI) to Cr(III) and Fe(III) to Fe(II) is preferred over the chemical method. Out of 11 bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dump sites, four isolates were selected for the reduction of Cr(VI) and Fe(III) and were identified as Micrococcus roseus NBRFT2 (MTCC 9018), Bacillus endophyticus NBRFT4 (MTCC 9021), Paenibacillus macerans NBRFT5 (MTCC 8912), and Bacillus pumilus NBRFT9 (MTCC 8913). These strains were individually tested for survival at different concentrations of Cr(VI) and Fe(III), pH, and temperature, and then, their ability for reduction of both metals was evaluated at optimum pH 8.0 and temperature 35°C. The results indicated that NBRFT5 was able to reduce the maximum amount, 99% Cr(VI) and 98% Fe(III). Other strains also reduced these metals to different levels, but less than NBRFT5. Hence, these strains may be used for decontamination of metal-contaminated sites, particularly with Cr(VI) and Fe(III) through the reduction process.  相似文献   

16.
AIM: To determine if the outer membrane (OM) cytochromes OmcA and OmcB of the metal-reducing bacterium Shewanella oneidensis MR-1 have distinct or overlapping roles in the reduction of insoluble manganese(IV) oxide. METHODS AND RESULTS: The gene replacement mutant (OMCA1) which lacks OmcA was partially deficient in Mn(IV) reduction. Complementation of OMCA1 with a vector (pVK21) that contains omcB but not omcA restored Mn(IV) reduction to levels that were even greater than those of wild-type. Examination of the OM of OMCA1/pVK21 revealed greater than wild-type levels of OmcB protein and specific haem content. CONCLUSIONS: Overexpression of OmcB can compensate for the absence of OmcA in the reduction of insoluble Mn(IV) oxides. Therefore, there is at least a partial overlap in the roles of these OM cytochromes in the reduction of insoluble Mn(IV) oxide. SIGNIFICANCE: The overlapping roles of these two cytochromes has important implications for understanding the mechanism by which MR-1 reduces insoluble metal oxides. There is no obligatory sequential electron transfer from one cytochrome to the other. They could both potentially serve as terminal reductases for extracellular electron acceptors.  相似文献   

17.
Qian Y  Paquete CM  Louro RO  Ross DE  Labelle E  Bond DR  Tien M 《Biochemistry》2011,50(28):6217-6224
In the model microbe Shewanella oneidensis, multi-heme proteins are utilized for respiratory metabolism where metals serve as the terminal electron acceptor. Among those is the periplasm-localized small tetraheme cytochrome (STC). STC has been extensively characterized structurally and electrochemically to which electron flow in and out of the protein has been modeled. However, until the present work, no kinetic studies have been performed to probe the route of electron flow or to determine the iron-binding site on STC. Using iron chelated by EDTA, NTA, or citrate, we have used chemical modification, site-directed mutagenesis along with isothermal titration calorimetry (ITC), and stopped-flow measurements to identify the iron binding site of STC. Chemical modifications of STC revealed that carboxyl groups on STC are involved in binding of EDTA-Fe(3+). Scanning mutagenesis was performed on Asp and Glu to probe the putative iron-binding site on STC. Two STC mutants (D21N; D80N) showed ~70% decrease in observed electron transfer rate constant with EDTA-Fe(3+) from transient-state kinetic measurements. The impaired reactivity of STC (D80N/D21N) with EDTA-Fe(3+) was further confirmed by a significant decrease (>10-fold) in iron binding affinity.  相似文献   

18.
We compared the performance of aerobic Cr(VI)-reducing bacteria isolated from Cr(VI)-contaminated soil in pure and mixed cultures of five isolated strains. The mixed culture had increased reduction rates compared to individual cultures. Cr(VI) reduction was observed in sterile soil inoculated with Pseudomonas fluorescens and in non-sterile soil with and without inoculation with P. fluorescens at initial pore water concentrations up to 1,600 mg Cr(VI)/L, whereas in culture the maximum inhibitory concentration was 500 mg Cr(VI)/L. Linear rates of Cr(VI) reduction in non-sterile soil amended with peptone were ~5 to 8 times higher than those observed in the mixed culture. Inoculation of non-sterile soil with P. fluorescens did not further enhance Cr(VI) reduction rates. Our results indicate that evaluation of Cr(VI) reduction capacity in Cr(VI)-contaminated soil for in-situ bioremediation purposes should not be done solely in pure culture. Although the latter may be used initially to assess the effects of process parameters (e.g., pH, temperature), the rate and extent of Cr(VI) reduction should be determined in soil for bioremediation design purposes.  相似文献   

19.
Aim:  Characterization of an anaerobic thermophilic bacterium and subcellular localization of its Cr(VI)-reducing activity for potential bioremediation applications.
Methods and Results:  16S rRNA gene sequence-based analyses of bacterial strains isolated from sediment samples of a Bakreshwar (India) hot spring, enriched anaerobically in iron-reducing medium, found them to be 86–96% similar to reported Thermoanaerobacter strains. The most efficient iron reducer among these, BSB-33, could also reduce Cr(VI) at an optimum temperature of 60°C and pH 6·5. Filtered culture medium could reduce Cr(VI) but not Fe(III). Cell-free extracts reduced Cr(VI) inefficiently under aerobic conditions but efficiently anaerobically. Fractionation of the cell-free extracts showed that chromium reduction activity was present in both the cytoplasm and membrane.
Conclusions:  BSB-33 reduced Fe(III) and Cr(VI) anaerobically at 60°C optimally. After fractionation, the reducing activity of Cr(VI) was found in both cytoplasmic and membrane fractions.
Significance and Impact of the Study:  To the best of our knowledge, this is the first systematic study of anaerobic Cr(VI) reduction by a gram-positive thermophilic micro-organism and, in contrast to our results, none of the earlier reports has mentioned Cr(VI)-reducing activity to be present both in the cytoplasm and membrane of an organism. The strain may offer itself as a potential candidate for bioremediation.  相似文献   

20.
Industrial waste streams may contain contaminants that are valuable like Pd(II) and/or toxic and mutagenic like Cr(VI). Using Serratia sp. biofilm the former was biomineralized to produce a supported nanocrystalline Pd(0) catalyst, and this biofilm–Pd heterogeneous catalyst was then used to reduce Cr(VI) to less dangerous Cr(III) at room temperature, with formate as the electron donor. Cr(VI)(aq) is non‐paramagnetic while Cr(III)(aq) is paramagnetic, which enabled spatial mapping of Cr species concentrations within the reactor cell using non‐invasive magnetic resonance (MR) imaging experiments. Spatial reactivity heterogeneities were thus examined. In batch reactions, these could be attributed primarily to heterogeneity of Pd(0) distribution and to the development of gas bubbles within the reactor. In continuous flow reactions, spatial reactivity heterogeneities resulted primarily from heterogeneity of Cr(VI) delivery. Biotechnol. Bioeng. 2010;107: 11–20. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号