首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Two hairpin-loop domains in cystatin family proteinase inhibitors form an interface surface region that slots into the active site cleft of papain-like cysteine proteinases, and determine binding affinity. The slot region surface architecture of the soybean cysteine proteinase inhibitor (soyacystatin N, scN) was engineered using techniques of in vitro molecular evolution to define residues that facilitate interaction with the proteinase cleft and modulate inhibitor affinity and function. Combinatorial phage display libraries of scN variants that contain mutations in the essential motifs of the first (QVVAG) and second (EW) hairpin-loop regions were constructed. Approximately 1010-1011 phages expressing recombinant scN proteins were subjected to biopanning selection based on binding affinity to immobilized papain. The QVVAG motif in the first hairpin loop was invariant in all functional scN proteins. All selected variants (30) had W79 in the second hairpin-loop motif, but there was diversity for hydrophobic and basic amino acids in residue 78. Kinetic analysis of isolated scN variants identified a novel scN isoform scN(LW) with higher papain affinity than the wild-type molecule. The variant contained an E78L substitution and had a twofold lower Ki (2.1 pM) than parental scN, due to its increased association rate constant (2.6 +/- 0.09 x 107 M-1sec-1). These results define residues in the first and second hairpin-loop regions which are essential for optimal interaction between phytocystatins and papain, a prototypical cysteine proteinase. Furthermore, the isolated variants are a biochemical platform for further integration of mutations to optimize cystatin affinity for specific biological targets.  相似文献   

2.
    
Protein engineering approaches are currently being devised to improve the inhibitory properties of plant proteinase inhibitors against digestive proteinases of herbivorous insects. Here we engineered a potent hybrid inhibitor of aspartate and cysteine digestive proteinases found in the Colorado potato beetle, Leptinotarsa decemlineata Say. Three cathepsin D inhibitors (CDIs) from stressed potato and tomato were first compared in their potency to inhibit digestive cathepsin D-like activity of the insect. After showing the high inhibitory potency of tomato CDI (M(r) approximately 21 kDa), an approximately 33-kDa hybrid inhibitor was generated by fusing this inhibitor to the N terminus of corn cystatin II (CCII), a potent inhibitor of cysteine proteinases. Inhibitory assays with recombinant forms of CDI, CCII, and CDI-CCII expressed in Escherichia coli showed the CDI-CCII fusion to exhibit a dual inhibitory effect against cystatin-sensitive and cathepsin D-like enzymes of the potato beetle, resulting in detrimental effects against 3rd-instar larvae fed the hybrid inhibitor. The inhibitory potency of CDI and CCII was not altered after their fusion, as suggested by IC(50) values for the interaction of CDI-CCII with target proteinases similar to those measured for each inhibitor. These observations suggest the potential of plant CDIs and cystatins as functional inhibitory modules for the design of effective broad-spectrum, hybrid inhibitors of herbivorous insect cysteine and aspartate digestive proteinases.  相似文献   

3.
The activity of alcohol acetyltransferase, bound to the cell membrane and responsible for the formation of acetate esters, was affected by the fatty acid composition of the cell membrane. When saturated fatty acids, which only slightly inhibit alcohol acetyltransferase activity, were in-corporated into the cell membrane, the enzyme activity and ester formation were only slightly affected. On. the other hand, when unsaturated fatty acids, which strongly inhibit the enzyme activity, accumulated in the cell membrane, ester formation was suppressed with inhibition of the enzyme activity. The mechanism of formation of acetate esters by brewers′ yeast was explained by the alcohol acetyltransferase activity under the influence of the fatty acid composition of the cell membrane.  相似文献   

4.
A genomic DNA clone encoding corn cystatin, a cysteine proteinase inhibitor of corn, was isolated from a λEMBL3 phage genomic library. The genomic DNA clone spans approximately 2.2 kb and consists of three exons and two introns. The exon number and the intron breakpoints coincide with those of the genes for two types of oryzacystatin.  相似文献   

5.
An antitumor antibiotic Cervicarcin has been shown to have the structure (1).  相似文献   

6.
百合的鳞茎中含有一种对木瓜蛋白酶有强抑制作用的巯基蛋白酶抑制剂.百合的鳞茎经浸取加热处理,木瓜蛋白酶偶联的Sepharose4B柱亲和层析和SephadexG-100分子筛层析,可获得在PAGE和SDS-PAGE均为单一蛋白带的百合巯基蛋白酶抑制剂(CPI).此CPI为单链蛋白,含有0.307%的中性糖;N端氨基酸为Ile;SDS-PAGE测得亚基分子量为12000;SephadexG-100测得分子量为12500.百合CPI在100℃内和pH2~12范围内非常稳定;对木瓜蛋白酶的抑制属竞争性抑制类型,其Ki值为1.15×10~(-9)mol/L,对木瓜蛋白酶的抑制摩尔比为8.5:1.  相似文献   

7.
8.
    
  相似文献   

9.
Degradation of cyclin B was effectively suppressed when cells were treated with ALLN (N-acetylleucylleucylnorleucinal) which inhibits proteasome, calpain and cysteine proteinase cathepsins. In order to examine which protease degrades cyclin B, the effect of a cathepsin inhibitor, cystatin α, was investigated. The cystatin α gene was inserted into an inducible expression vector, pMSG, and transfected into NIH3T3 mouse fibroblasts. The expression of cystatin α was induced effectively in the transfected cells after treatment with dexamethasone. Overexpression of cystatin α resulted in an increase of the amount of cyclin B, suggesting that cysteine proteinase cathepsins might be involved in the degradation of cyclin B.  相似文献   

10.
    
Human low-molecular-weight kininogen (LK) was shown by fluorescence titration to bind two molecules of cathepsins L and S and papain with high affinity. By contrast, binding of a second molecule of cathepsin H was much weaker. The 2:1 binding stoichiometry was confirmed by titration monitored by loss of enzyme activity and by sedimentation velocity experiments. The kinetics of binding of cathepsins L and S and papain showed the two proteinase binding sites to have association rate constants kass,1 = 10.7-24.5 x 10(6) M-1 s-1 and kass,2 = 0.83-1.4 x 10(6) M-1 s-1. Comparison of these kinetic constants with previous data for intact LK and its separated domains indicate that the faster-binding site is also the tighter-binding site and is present on domain 3, whereas the slower-binding, lower-affinity site is on domain 2. These results also indicate that there is no appreciable steric hindrance for the binding of proteinases between the two binding sites or from the kininogen light chain.  相似文献   

11.
Cystatin CsC, a cysteine proteinase inhibitor from chestnut (Castanea sativa) seeds, has been purified and characterized. Its full-length cDNA clone was isolated from an immature chestnut cotyledon library. The inhibitor was expressed in Escherichia coli and purified from bacterial extracts. Identity of both seed and recombinant cystatin was confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis, two-dimensional electrophoresis and N-terminal sequencing. CsC has a molecular mass of 11275 Da and pI of 6.9. Its amino acid sequence includes all three motifs that are thought to be essential for inhibitory activity, and shows significant identity to other phytocystatins, especially that of cowpea (70%). Recombinant CsC inhibited papain (Ki 29 nM), ficin (Ki 65 nM), chymopapain (Ki 366 nM), and cathepsin B (Ki 473 nM). By contrast with most cystatins, it was also effective towards trypsin (Ki 3489 nM). CsC is active against digestive proteinases from the insect Tribolium castaneum and the mite Dermatophagoides farinae, two important agricultural pests. Its effects on the cysteine proteinase activity of two closely related mite species revealed the high specificity of the chestnut cystatin.  相似文献   

12.
    
Cathepsin S (EC 3.4.22.27), a cysteine proteinase of the papain superfamily, plays a critical role in the generation of a major histocompatibility complex (MHC) class II restricted T‐­cell response by antigen‐presenting cells. Therefore, selective inhibition of this enzyme may be useful in modulating class II restricted T‐cell responses in immune‐related disorders such as rheumatoid arthritis, multiple sclerosis and extrinsic asthma. The three‐dimensional structure at 2.2 Å resolution of the active‐site Cys25→Ser mutant presented here in an unliganded state provides further insight useful for the design of selective enzyme inhibitors.  相似文献   

13.
Sumbul S  Bano B 《Neurochemical research》2006,31(11):1327-1336
Cystatin are thiol proteinase inhibitors ubiquitously present in mammalian body and serve various important physiological functions. In the present study two cystatins were isolated from goat brain using alkaline treatment, ammonium sulphate fractionation, gel filtration and ion exchange chromatography. The high molecular mass cystatin of 70.8 kDa was named as HM-GBC (high molecular mass goat brain cystatin) and the low molecular mass cystatin of 12.72 kDa was named as LM-GBC (low molecular mass goat brain cystatin). The molecular mass determined by SDS-PAGE was found to be 70.8 and 12.88 kDa for HM-GBC and LM-GBC, respectively, however with gel filtration the masses were found to be 70.8 and 12.58 kDa. Both the cystatins were found to be stable in broad range of pH and temperature. HM-GBC was found to have 2% carbohydrate content while LM-GBC lacks any carbohydrate content. Both cystatins were found to be devoid of any sulphydryl content. Stoke's radii of 36 and 16 A, and diffusion coefficient of 6.189 x 10(-15) and 1.392 x 10(-14) cm(2)/s were calculated for HM-GBC and LM-GBC. K (i) values with papain were found to be 1.875 x 10(-8) and 3.125 x 10(-8) M for HM-GBC and LM-GBC, respectively. K (+1), K (-1) and half-life calculated along with K (i) values obtained showed that HM-GBC inhibited papain more specifically as compared to LM-GBC. The IC(50) values obtained for HM-GBC and LM-GBC also showed that HM-GBC binds more effectively to papain than LM-GBC. Ultraviolet and fluorescence spectra indicated that upon formation of papain-HM-GBC/LM-GBC complex there is significant conformational change after interaction in one or both the proteins of the complex.  相似文献   

14.
Binding of cystatin-type inhibitors to papain-like exopeptidases cannot be explained by the stefin B-papain complex. The crystal structure of human stefin A bound to an aminopeptidase, porcine cathepsin H, has been determined in monoclinic and orthorhombic crystal forms at 2.8A and 2.4A resolutions, respectively. The asymmetric unit of each form contains four complexes. The structures are similar to the stefin B-papain complex, but with a few distinct differences. On binding, the N-terminal residues of stefin A adopt the form of a hook, which pushes away cathepsin H mini-chain residues and distorts the structure of the short four residue insertion (Lys155A-Asp155D) unique to cathepsin H. Comparison with the structure of isolated cathepsin H shows that the rims of the cathepsin H structure are slightly displaced (up to 1A) from their position in the free enzyme. Furthermore, comparison with the stefin B-papain complex showed that molecules of stefin A bind about 0.8A deeper into the active site cleft of cathepsin H than stefin B into papain. The approach of stefin A to cathepsin H induces structural changes along the interaction surface of both molecules, whereas no such changes were observed in the stefin B-papain complex. Carboxymethylation of papain seems to have prevented the formation of the genuine binding geometry between a papain-like enzyme and a cystatin-type inhibitor as we observe it in the structure presented here.  相似文献   

15.
The increasing antibiotic resistance of an important human pathogen Staphylococcus aureus calls for the development of new therapeutic strategies. Staphylococcal cysteine proteases have been suggested as targets for such therapies. The recent discovery of staphostatins, specific protein inhibitors of these enzymes, gives prospects for the design and production of synthetic, low molecular weight analogs which might become drugs. We have decided to structurally characterize staphostatin A, a representative inhibitor of staphylococcal cysteine proteases, and to assess its binding mode to the target protease with the view of clarifying the specificity determinants. Here we report the (1)H, (15)N and (13)C NMR resonance assignments of staphostatin A.  相似文献   

16.
The interaction between papain and synthetic peptides which tentatively mimic cystatin surfaces was investigated both enzymatically and structurally. Measurements of dissociation equilibrium constants for the interaction of papain with these peptides modified by successive deletions or substitutions demonstrated that the QVVAG segment, which is highly conserved throughout members of the cystatin superfamily, is essential for the interaction. The glycylcontaining (N-terminal) fragments and PW-containing (C-terminal) fragments were found to be of lesser importance, since each could be deleted without significantly modifying the interaction. These fragments improved the stability of the interacting QVVAG region, which appeared to be substrate-like in all peptides tested, as it was cleaved at the A-G bond upon peptide-papain interaction. Replacement of the A residue at the scissile bond of the QVVAG by a blocked cysteinyl residue reduced the rate of cleavage of the susceptible bond and therefore shifted the resulting peptide from a substrate to an inhibitor. Derivatization of this substituted peptide at its N- and C-terminal ends by fluoresceinyl groups resulted in a dramatic decrease in theKi to 0.5 µM. This improvement in the inhibitory properties of the substituted and derivatized peptides was correlated with structural changes as analyzed by molecular dynamic calculations. The results were compared to those proposed for the mechanism of inhibition by natural inhibitors of the cystatin superfamily.  相似文献   

17.
从40年代发现豆科植物中存在蛋白酶蛋白抑制剂以来,在动物、植物和微生物体内已发现普遍存在着多种类型的蛋白酶抑制剂(PI)。人们往往是为了研究某种蛋白酶的作用机制或出于某种应用目的去分离和研究PI的,对PI的真正生理功能尚不十分清楚。一般认为除防止体内不必要的蛋白降解作用、调节蛋白代谢及调节各种蛋白酶的生理活性外,很多植物的PI还具有抑制某些病源微生物及某些昆虫体内蛋白酶的作用,从而对植物有防卫功能。Hilder等和Johnson等已分别将属于丝氨酸蛋白酶抑制剂的豇豆蛋白酶抑制剂及马铃薯PⅠⅠ和PⅠⅡ基因转入烟草,结果转基因烟草对烟芽夜蛾(He-  相似文献   

18.
Novel epoxysuccinyl peptides Selective inhibitors of cathepsin B, in vitro   总被引:2,自引:0,他引:2  
A series of new epoxysuccinyl peptides were designed and synthesized to develop a specific inhibitor of cathepsin B. Of these compounds, N-(L-3-trans-ethoxycarbonyloxirane-2-carbonyl)-L-isoleucyl-L-proline (compound CA-030) and N-(L-3-trans-propylcarbamoyloxirane-2-carbonyl)-L-isoleucyl-L-proline (compound CA-074) were the most potent and specific inhibitors of cathepsin B in vitro. The carboxyl group of proline and the ethyl ester group or n-propylamide group in the oxirane ring were necessary, the ethyl ester group or the n-propylamide group being particularly effective for distinguishing cathepsin B from other cysteine proteinases such as cathepsins L and H, and calpains.  相似文献   

19.
    
The folding of human stefin B has been studied by several spectroscopic probes. Stopped-flow traces obtained by circular dichroism in the near and far UV, by tyrosine fluorescence, and by extrinsic probe ANS fluorescence are compared. Most (60 ± 5%) of the native signal in the far UV circular dichroism (CD) appeared within 10 ms in an unresolved “burst” phase, which was followed by a fast phase (t = 83 ms) and a slow phase (t = 25 s) with amplitudes of 30% and 10%, respectively. Similar fast and slow phases were also evident in the near UV CD, ANS fluorescence, and tyrosine fluorescence. By contrast, human stefin A, which has a very similar structure, exhibited only one kinetic phase of folding (t = 6 s) detected by all the spectroscopic probes, which occurred subsequent to an initial “burst” phase observed by far UV CD. It is interesting that despite close structural similarity of both homologues they fold differently, and that the less stable human stefin B folds faster by an order of magnitude (comparing the non-proline limited phase). To gain more information on the stefin B folding mechanism, effects of pH and trifluoroethanol (TFE) on the fast and slow phases were investigated by several spectroscopic probes. If folding was performed in the presence of 7% of TFE, rate acceleration and difference in the mechanism were observed. Protein 32:296–303, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号