首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Susceptibility of a moss,Ceratodon purpureus (Hedw.) Brid., to photoinhibition and subsequent recovery of the photochemical efficiency of PSII was studied in the presence and absence of the chloroplast-encoded protein-synthesis inhibitor lincomycin.Ceratodon had a good capacity for repairing the damage to PSII centers induced by strong light. Tolerance against photoinhibition was associated with rapid turnover of the D1 protein, since blocking of D1 protein synthesis more than doubled the photoinhibition rate measured as the decline in the ratio of variable fluorescence to maximal fluorescence (Fv/Fmax). Under exposure to strong light in the absence of lincomycin a net loss of D1 protein occurred, indicating that the degradation of damaged D1 protein inCeratodon was rapid and independent of the resynthesis of the polypeptide. The result suggests that synthesis is the limiting factor in the turnover of D1 protein during photoinhibition of the mossCeratodon. The level of initial fluorescence (Fo) correlated with the production of inactive PSII centers depleted of D1 protein. The higher the Fo level, the more severe was the loss of D1 protein seen in the samples during photoinhibition. Restoration of Fv/Fmax at recovery light consisted of a fast and slow phase. The recovery of fluorescence yield in the presence of lincomycin, which was added at different times in the recovery, indicated that the chloroplast-encoded protein-synthesis-dependent repair of damaged PSII centers took place during the fast phase of recovery. Pulse-labelling experiments with [35S]methionine supported the conclusion drawn from fluorescence measurements, since the rate of D1 protein synthesis after photoinhibition exceeded that of the control plants during the first hours under recovery conditions.  相似文献   

2.
Development of chlorosis and loss of PSII were compared in young spinach plants suffering under a combined magnesium and sulphur deficiency. Loss of chlorophyll could be detected already after the first week of deficiency and preceded any permanent functional inhibition of PSII as detected by changes in the chlorophyll fluorescence parameter Fv/Fm. A substantial decrease in Fv/Fm was observed only after the second week of deficiency. After 4 weeks, the plants had lost about 70% of their original chlorophyll content, but fluorescence data indicated that 80% of the existing PSII centers were still capable of initiating photosynthetic electron transport. The degradation of the photosynthetic apparatus without loss of PSII activity was due to changes in protein turnover, especially of the PSII D1 reaction center protein. Already by day 7 of deficiency, a 1.4-fold increase in D1 protein synthesis was observed measured as incorporation of 14C-leucine. Immunological determination by western-blotting did not reveal a change in D1 protein content. Thus, D1 protein was also degraded more rapidly. The increased turnover was high enough to prevent any loss or inhibition of PSII. After 3 weeks, D1 protein synthesis on a chlorophyll basis was further increased by a factor of 2. However, this was not enough to prevent a net loss of D1 protein of about 70%. Immunological determination revealed that together with the D1 protein also other polypeptides of PSII became degraded. This process prevented a large accumulation of photo-inactivated PSII centers. However, it initiated the breakdown of the other thylakoid proteins, especially of LHCII, resulting in the observed chlorosis. Together with the change in protein turnover and stability, a characteristic change in thylakoid protein phosphorylation was observed. In the deficient plants steady state phosphorylation of both LHCII and PSII proteins was increased in the dark. In the light phosphorylation of PSII proteins was stimulated and after 3 weeks of deficiency was even higher in the deficient leaves than in the control plants. In contrast, the phosphorylation level of LHCII decreased in the light and could hardly be detected after 3 weeks of deficiency. Phosphorylation of the reaction center polypeptides presumably increased their stability against proteolytic attack, whereas phosphorylated LHCII seems to be the substrate for proteolysis.  相似文献   

3.
The quantum yield of PSII photoinactivation in pea leaves atlow photon exposure was 3 x 10-7 mol PSII per mol photons absorbedby PSII and 2.5 x 10-8 at high photon exposures (mol photonsm-2), regardless of photomodulation of chloroplasts. We postulatethat the doseresponse behaviour of PSII photoinactivation, whichdepends on the number of photons absorbed, results from thebalance of light consumption with supply. (Received July 18, 1995; Accepted August 8, 1995)  相似文献   

4.
The salinity and its interaction with high photon flux density (PFD) on in vivo chlorophyll fluorescence were investigated in isolated chloroplasts of mustard (Brassica juncea L. cv. Pusa Bold). Increase in salt stress decreases the protein contents of leaves and causes increase in lipid peroxidation. Fv/Fmratios suggesting that the efficiency of the photochemistry of PSII was not affected alone with the salt stressed plants. With high PFD, Fv/Fm ratio decreased with increased salt concentration. Our results indicate that salt stress enhances the photoinhibition of isolated chloroplasts.  相似文献   

5.
采用盆栽试验方法,以NaCl为盐分模拟不同盐度环境,研究了施氮(N)对盐环境下生长的甜菜(Beta vulgaris)功能叶光系统Ⅱ (PSⅡ)荧光特性的影响及光合色素含量的变化.结果表明:在轻度、中度及重度盐环境下,施N均能增大PSⅡ最大光化学效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)、PSⅡ实际光量子产量(Y(Ⅱ))、非调节性能量耗散的量子产量(Y(NO))、相对电子传递速率(ETR)及光化学猝灭系数(qp),且在适宜的施N范围内(0-1.2 g·kg-1)上述参数随施N量的增加而增大.各叶绿素荧光参数光响应的结果表明,随着光强的增加,各处理下调节性能量耗散的量子产量(KNPQ))、ETR及非光化学猝灭系数(NPQ)旱上升趋势,相反,Y(Ⅱ)、Y(NO)及qp则呈下降趋势,在有效的光强范围内(0-1 000 μmol·m-2·s-1)施N提高了甜菜功能叶PSⅡ反应中心的开放程度,并且在高光强下调节PSⅡ耗散掉过剩的光能以避免对其反应中心造成伤害.各盐度环境下施N也显著增加了甜菜功能叶叶绿素与类胡萝卜素含量,增大了叶绿素a/叶绿素b值,且叶绿素与类胡萝卜素含量随施N水平的增加而增加.说明盐环境下施N能够增强甜菜功能叶PSⅡ的活性,提高PSⅡ光能利用率,从而增强其对盐渍环境的适应性.  相似文献   

6.
The function of photosystem (PS)II during desiccation and exposure to high photon flux density (PFD) was investigated via analysis of chlorophyll fluorescence in the desert resurrection plant Selaginella lepidophylla (Hook. and Grev.) Spring. Exposure of hydrated, physiologically competent stems to 2000 mol · m–2 · s–1 PFD caused significant reductions in both intrinsic fluorescence yield (FO) and photochemical efficiency of PSII (FV/FM) but recovery to pre-exposure values was rapid under low PFD. Desiccation under low PFD also affected fluorescence characteristics. Both FV/FM and photochemical fluorescence quenching remained high until about 40% relative water content and both then decreased rapidly as plants approached 0% relative water content. In contrast, the maximum fluorescence yield (FM) decreased and non-photochemical fluorescence quenching increased early during desiccation. In plants dried at high PFD, the decrease in FV/FM was accentuated and FO was reduced, however, fluorescence characteristics returned to near pre-exposure values after 24-h of rehydration and recovery at low PFD. Pretreatment of stems with dithiothreitol, an inhibitor of zeaxanthin synthesis, accelerated the decline in FV/FM and significantly increased FO relative to controls at 925 mol · m–2 · s–1 PFD, and the differences persisted over a 3-h low-PFD recovery period. Pretreatment with dithiothreitol also significantly decreased non-photochemical fluorescence quenching, increased the reduction state of QA, the primary electron acceptor of PSII, and prevented the synthesis of zeaxanthin relative to controls when stems were exposed to PFDs in excess of 250 mol · m–2 · s–1. These results indicate that a zeaxanthin-associated mechanism of photoprotection exists in this desert pteridophyte that may help to prevent photoinhibitory damage in the fully hydrated state and which may play an additional role in protecting PSII as thylakoid membranes undergo water loss.Abbreviations and Symbols DTT dithiothreitol - EPS epoxidation state - FO yield of instantaneous fluorescence at open PSII centers - FM maximum yield of fluorescence at closed PSII centers induced by saturating light - FM FM determined during actinic illumination - FV yield of variable fluorescence (FM-FO) - FV/FM photochemical efficiency of PSII - qP photochemical fluorescence quenching - qNP non-photochemical fluorescence quenching of Schreiber et al. (1986) - NPQ non-photochemical fluorescence quenching from the Stern-Volmer equation - PFD photon flux density - RWC relative water content This paper is based on research done while W.G.E. was on leave of absence at Duke University during the fall of 1990. We would like to thank Dan Yakir, John Skillman, Steve Grace, and Suchandra Balachandran and many others at Duke University for their help and input with this research. Dr. Barbara Demmig-Adams provided zeaxanthin for standard-curve purposes.  相似文献   

7.
Doris Godde  Monika Hefer 《Planta》1994,193(2):290-299
The function of photosystem II (PSII) and the turnover of its D1 reaction-center protein were studied in spinach (Spinacia oleracea L.) plants set under mineral stress. The mineral deficiencies were induced either by supplying the plants with an acidic nutrient solution or by strongly reducing the supply of magnesium alone or together with sulfur. After exposure for 8–10 weeks to the different media, the plants were characterized by a loss of chlorophyll and an increase in starch content, indicating a disturbance in the allocation of assimilates. Depending on the severity of the mineral deficiencies the plants lost their ability to adapt even to moderate iradiances of 400 mol photons·m–2·s–1 and became photoinhibited, as indicated by the decrease in Fv/Fm (the ratio of yield of variable fluorescence to yield of maximal fluorescence when all reaction centers are closed). The loss of PSII function was induced by changes on the acceptor side of PSII. Fast fluorescence decay showed a loss of PSII centers with bound QB, the secondary quinone acceptor of PSII, and a fast reoxidation kinetic of q a - , the primary quinone acceptor of PSII, in the photoinactivated plants. No appreciable change could be observed in the amount of PSII centers with unbound QB and in QB-nonreducing PSII centers. Immunological studies showed that the contents of the D1 and D2 proteins of the PSII reaction center and of the 33-kDa protein of the water-splitting complex were diminished in the photoinhibited plants, and the occurrance of a new polypetide of 14 kDa that reacted with an antibody against the C-termius of the D1 protein. As shown by pulse-labelling experiments with [14C]leucine both degradation and synthesis of the D1 protein were enhanced in the mineral-deficient plants when compared to non-deficient plants. A stimulation of D1-protein turnover was also observed in pH 3-grown plants, which were not inhibited at growth-light conditions. Obviously, stimulation of D1-protein turnover prevented photoinhibition in these plants. However, in the Mg- and Mg/S-deficient plants even a further stimulation of D1-protein turnover could not counteract the increased rate of photoinactivation.Abbreviations amp(f,m,s) amplitude of the fast, (medium and slow) exponential component of fluorescence decay - Fm yield of maximum fluorescenc when all reaction centers are closed - Fo yield of intrinsic fluorescence at open PSII reaction centers in the dark - Fv yield of variable fluorescence, (difference between Fm and Fo) - LHC light-harvesting complex - PFD photon flux density - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII Dedicated to Professor Dr. Dres. hc. Achim Trebst on the occasion of his 65th birthdayThis work was supported by grants from the BMFT and the Ministerium für Umwelt, Raumordnung and Landwirtschaft, Nordrhein-Westfalen. The authors thank H. Wietoska and M. Bronzel for skilful technical assistance.  相似文献   

8.
Leaf discs of Capsicum annuum L. were illuminated in air enriched with 1% CO2 in the absence or presence of lincomycin, an inhibitor of chloroplast-encoded protein synthesis. The loss of functional photosystem (PS) II complexes with increase in cumulative light dose (photon exposure), assessed by the O2 yield per single-turnover flash, was greater in leaves of plants grown in low light than those in high light; it was also exacerbated in the presence of lincomycin. A single exponential decay can describe the relationship between the loss of functional PSII and increase in cumulative photon exposure. From this relationship we obtained both the maximum quantum yield of photoinactivation of PSII at limiting photon exposures and the coefficient k, interpreted as the probability of photoinactivation of PSII per unit photon exposure. Parallel measurements of chlorophyll fluorescence after light treatment showed that 1/Fo−1/Fm was linearly correlated with the functionality of PSII, where Fo and Fm are the chlorophyll fluorescence yields corresponding to open and closed PSII reaction centers, respectively. Using 1/Fo−1/Fm as a convenient indicator of PSII functionality, it was found that PSII is present in excess; only after the loss of about 40% functional PSII complexes did PSII begin to limit photosynthetic capacity in capsicum leaves.  相似文献   

9.
This study investigated the effects of cinnamic acid (CA) on growth, biochemical and physiological responses of Lactuca sativa L. CA (0.1, 0.5, 1.0 and 1.5 mM) treatments decreased plant height, root length, leaf and root fresh weight, but it did not affect the leaf water status. CA treatment (1.5 mM) significantly reduced Fv, Fm, photochemical efficiency of PSII (Fv/Fm) and quantum yield of PSII (ΦPSII) photochemistry in L. sativa. The photochemical fluorescence quenching (qP) and non-photochemical quenching (NPQ) were reduced after treatment with 1.5 mM CA. Fraction of photon energy absorbed by PS II antennae trapped by “open” PS II reaction centers (P) was reduced by CA (1.5 mM) while, portion of absorbed photon energy thermally dissipated (D) and photon energy absorbed by PSII antennae and trapped by “closed” PSII reaction centers (E) was increased. Carbon isotope composition ratios (δ13C) was less negative (−27.10) in CA (1.5 mM) treated plants as compared to control (−27.61). Carbon isotope discrimination (Δ13C) and ratio of intercellular CO2 concentration (ci/ca) from leaf to air were also less in CA treated plants. CA (1.5 mM) also decreased the leaf protein contents of L. sativa as compared to control.  相似文献   

10.
To assess the role of redox state of photosystem II (PSII) acceptor side electron carriers in PSII photochemical activity, we studied sub-millisecond fluorescence kinetics of the wild type Synechocystis PCC 6803 and its mutants with natural variability in the redox state of the plastoquinone (PQ) pool. In cyanobacteria, dark adaptation tends to reduce PQ pool and induce a shift of the cyanobacterial photosynthetic apparatus to State 2, whereas illumination oxidizes PQ pool, leading to State 1 (Mullineaux, C. W., and Holzwarth, A. R. (1990) FEBS Lett., 260, 245-248). We show here that dark-adapted Ox mutant with naturally reduced PQ is characterized by slower QA reoxidation and O2 evolution rates, as well as lower quantum yield of PSII primary photochemical reactions (Fv/Fm) as compared to the wild type and SDH–mutant, in which the PQ pool remains oxidized in the dark. These results indicate a large portion of photochemically inactive PSII reaction centers in the Ox mutant after dark adaptation. While light adaptation increases Fv/Fm in all tested strains, indicating PSII activation, by far the greatest increase in Fv/Fm and O2 evolution rates is observed in the Ox mutant. Continuous illumination of Ox mutant cells with low-intensity blue light, that accelerates QA reoxidation, also increases Fv/Fm and PSII functional absorption cross-section (590 nm); this effect is almost absent in the wild type and SDH–mutant. We believe that these changes are caused by the reorganization of the photosynthetic apparatus during transition from State 2 to State 1. We propose that two processes affect the PSII activity during changes of light conditions: 1) reversible inactivation of PSII, which is associated with the reduction of electron carriers on the PSII acceptor side in the dark, and 2) PSII activation under low light related to the increase in functional absorption cross-section at 590 nm.  相似文献   

11.
The PSII photochemical activity in a terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault during rewetting was undetectable in the dark but was immediately recognized in the light. The maximum quantum yield of PSII (Fv/Fm) during rewetting in the light rose to 85% of the maximum within ~30 min and slowly reached the maximum within 6 h, while with rewetting in the darkness for 6 h and then exposure to light the recovery of Fv/Fm required only ~3 min. These results suggested that recovery of photochemical activity might depend on two processes, light dependence and light independence, and the activation of photosynthetic recovery in the initial phase was severely light dependent. The inhibitor experiments showed that the recovery of Fv/Fm was not affected by chloramphenicol (CMP), but severely inhibited by 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU) in the light, suggesting that the light‐dependent recovery of photochemical activity did not require de novo protein synthesis but required activation of PSII associated with electron flow to plastoquinone. Furthermore, the test indicated that the lower light intensity and the red light were of benefit to its activation of photochemical activity. In an outdoor experiment of diurnal changes of photochemical activity, our results showed that PSII photochemical activity was sensitive to light fluctuation, and the nonphotochemical quenching (NPQ) was rapidly enhanced at noon. Furthermore, the test suggested that the repair of PSII by de novo protein synthesis played an important role in the acclimation of photosynthetic apparatus to high light, and the heavily cloudy day was more beneficial for maintaining high photochemical activity.  相似文献   

12.
Photochemical efficiencies of photosystem I (PSI) and photosystem II (PSII) were studied in dry thalli of the lichen Hypogymnia physodes and during their re-hydration. In dry thalli, PSII reaction centers are photochemically inactive, as evidenced by the absence of variable chlorophyll (Chl) fluorescence, whereas the primary electron donor of PSI, P700, exhibits irreversible oxidation under continuous light. Upon application of multiple- and, particularly, single-turnover pulses in dry lichen, P700 oxidation partially reversed, which indicated recombination between P700+ and the reduced acceptor FX of PSI. Re-wetting of air-dried H. physodes initiated the gradual restoration of reversible light-induced redox reactions in both PSII and PSI, but the recovery was faster in PSI. Two slow components of P700+ reduction occurred after irradiation of partially and completely hydrated thalli with strong white light. In contrast, no slow component was found in the kinetics of re-oxidation of QA, the reduced primary acceptor of PSII, after exposure of such thalli to white light. This finding indicated the inability of PSII in H. physodes to provide the reduction of the plastoquinone pool to significant levels. It is concluded that slow alternative electron transport routes may contribute to the energetics of photosynthesis to a larger extent in H. physodes than in higher plants.Abbreviations A0 and A1 Primary acceptor chlorophyll and secondary electron acceptor phylloquinone - Chl a Chlorophyll a - Fm Maximal level of chlorophyll fluorescence when all PSII centers are closed - Fo Minimal level of fluorescence when all PSII centers are open after dark adaptation - FR Far-red - Fv Variable fluorescence (=FmFo) - FX, FA, and FB Iron–sulfur centers - MT pulse Multiple-turnover pulse - PS Photosystem - P700 Reaction center chlorophyll of PSI - QA Primary quinone acceptor of PSII - QB Secondary quinone acceptor of PSII - ST pulse Single-turnover pulse  相似文献   

13.
The photosynthetic activity of the green alga Scenedesmus quadricauda was investigated during synchronous growth in light/dark cycles. The rate of O2 evolution increased 2-fold during the first 3 to 4 h of the light period, remained high for the next 3 to 4 h, and then declined during the last half of the light period. During cell division, which occurred at the beginning of the dark period, the ability of the cells to evolve O2 was at a minimum. To determine if photosystem II (PSII) controls the photosynthetic capacity of the cells during the cell cycle we measured PSII activity and heterogeneity. Measurements of electron-transport activity revealed two populations of PSII, active centers that contribute to carbon reduction and inactive centers that do not. Measurements of PSII antenna sizes also revealed two populations, PSIIα and PSIIβ, which differ from one another by their antenna size. During the early light period the photosynthetic capacity of the cells doubled, the O2-evolving capacity of PSII was nearly constant, the proportion of PSIIβ centers decreased to nearly zero, and the proportion of inactive PSII centers remained constant. During the period of minimum photosynthetic activity 30% of the PSII centers were insensitive to the inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, which may be related to reorganization of the thylakoid membrane. We conclude from these results that PSII does not limit the photosynthetic activity of the cells during the first half of the light period. However, the decline in photosynthetic activity observed during the last half of the light period can be accounted for by limited PSII activity.  相似文献   

14.
The response of a number of species to high light levels was examined to determine whether chlorophyll fluorescence from photosystem (PS) II measured at ambient temperature could be used quantitatively to estimate the photon yield of O2 evolution. In many species, the ratio of the yield of the variable (FV) and the maximum chlorophyll fluorescence (FM) determined from leaves at ambient temperature matched that from leaves frozen to 77K when reductions in FV/FM and the photon yield resulted from exposure of leaves to high light levels under favorable temperatures and water status. Under conditions which were less favorable for photosynthesis, FV/FM at ambient temperature often matched the photon yield more closely than FV/FM measured at 77K. Exposure of leaves to high light levels in combination with water stress or chilling stress resulted in much greater reductions in the photon yield than in FV/FM (at both ambient temperature and 77K) measured in darkness, which would be expected if the site of inhibition was beyond PSII. Following chilling stress, FV/FM determined during measurement of the photon yield in the light was depressed to a degree more similar to that of the depression of photon yield, presumably as a result of regulation of PSII in response to greatly reduced electron flow.Abbreviations and Symbols Fo yield of instantaneous fluorescence - FM yield of maximum fluorescence - FV yield of variable fluorescence - PFD photon flux density (400–700 nm) - PSI (II) photosystem I (II) This work was supported by the Deutsche Forschungsgemeinchaft. W.W.A. gratefully acknowledges the support of Fellowships from the North Atlantic Treaty Organization and the Alexander von Humboldt-Stiftung. We also thank Maria Lesch for plant maintenance.  相似文献   

15.
Cells of the red alga Porphyridium cruentum (ATCC 50161) exposed to increasing growth irradiance exhibited up to a three-fold reduction in photosystems I and II (PSI and PSII) and phycobilisomes but little change in the relative numbers of these components. Batch cultures of P. cruentum were grown under four photon flux densities of continuous white light; 6 (low light, LL), 35 (medium light, ML), 180 (high light, HL), and 280 (very high light, VHL) microeinsteins per square meter per second and sampled in the exponential phase of growth. Ratios of PSII to PSI ranged between 0.43 and 0.54. About three PSII centers per phycobilisome were found, regardless of growth irradiance. The phycoerythrin content of phycobilisomes decreased by about 25% for HL and VHL compared to LL and ML cultures. The unit sizes of PSI (chlorophyll/P700) and PSII (chlorophyll/QA) decreased by about 20% with increase in photon flux density from 6 to 280 microeinsteins per square meter per second. A threefold reduction in cell content of chlorophyll at the higher photon flux densities was accompanied by a twofold reduction in β-carotene, and a drastic reduction in thylakoid membrane area. Cell content of zeaxanthin, the major carotenoid in P. cruentum, did not vary with growth irradiance, suggesting a role other than light-harvesting. HL cultures had a growth rate twice that of ML, eight times that of LL, and slightly greater than that of VHL cultures. Cell volume increased threefold from LL to VHL, but volume of the single chloroplast did not change. From this study it is evident that a relatively fixed stoichiometry of PSI, PSII, and phycobilisomes is maintained in the photosynthetic apparatus of this red alga over a wide range of growth irradiance.  相似文献   

16.
Nikolaos E. Ioannidis 《BBA》2007,1767(12):1372-1382
The three major polyamines are normally found in chloroplasts of higher plants and are implicated in plant growth and stress response. We have recently shown that putrescine can increase light energy utilization through stimulation of photophosphorylation [Ioannidis et al., (2006) BBA-Bioenergetics, 1757, 821-828]. We are now to compare the role of the three major polyamines in terms of chloroplast bioenergetics. There is a different mode of action between the diamine putrescine and the higher polyamines (spermidine and spermine). Putrescine is an efficient stimulator of ATP synthesis, better than spermidine and spermine in terms of maximal % stimulation. On the other hand, spermidine and spermine are efficient stimulators of non-photochemical quenching. Spermidine and spermine at high concentrations are efficient uncouplers of photophosphorylation. In addition, the higher the polycationic character of the amine being used, the higher was the effectiveness in PSII efficiency restoration, as well as stacking of low salt thylakoids. Spermine with 50 μM increase FV as efficiently as 100 μM of spermidine or 1000 μM of putrescine or 1000 μM of Mg2+. It is also demonstrated that the increase in FV derives mainly from the contribution of PSIIα centers. These results underline the importance of chloroplastic polyamines in the functionality of the photosynthetic membrane.  相似文献   

17.
Chloroplasts of barley plants grown under red light (RL, 660 nm) dramatically differed from the chloroplasts of plants raised under blue light (BL, 450 nm) or control plants (white light). The chloroplasts under RL had an extensive membrane system with high stacking degree and disordered irregular shaped stacks (shaggy-formed grana). After 5 h in darkness, dynamic rearrangements of chloroplast architecture in RL- and especially BL-grown plants were restricted compared with control plants. The light spectral quality affected the content and proportions of photosynthetic pigments. The leaves of RL-grown plants had the increased ratio of low-temperature fluorescence bands, F741/F683, corresponding to emission of PSI and PSII, respectively. This increase can be related to specific architecture of chloroplasts in RL-treated plants, providing close spacing between the two photosystems, which enhances energy transfer from PSII to PSI and facilitates the movement of LHCII toward PSI.  相似文献   

18.
We studied the developmental changes in photosynthetic and respiration rates and thermal dissipation processes connected with chloroplasts and mitochondria activity in etiolated wheat (Triticum aestivum L., var. Irgina) seedlings during the greening process. Etioplasts gradually developed into mature chloroplasts under continuous light [190 μmol(photon) m?2 s?1] for 48 h in 5-day-dark-grown seedlings. The net photosynthetic rate of irradiated leaves became positive after 6 h of illumination and increased further. The first two hours of de-etiolation were characterized by low values of maximum (Fv/Fm) and actual photochemical efficiency of photosystem II (PSII) and by a coefficient of photochemical quenching in leaves. Fv/Fm reached 0.8 by the end of 24 h-light period. During greening, energy-dependent component of nonphotochemical quenching of chlorophyll fluorescence, violaxanthin cycle (VXC) operation, and lipoperoxidation activity changed in a similar way. Values of these parameters were the highest at the later phase of de-etiolation (4–12 h of illumination). The respiration rate increased significantly after 2 h of greening and it was the highest after 4–6 h of illumination. It was caused by an increase in alternative respiration (AP) capacity. The strong, positive linear correlation was revealed between AP capacity and heat production in greening tissues. These results indicated that VXC in chloroplasts and AP in mitochondria were intensified as energy-dissipating systems at the later stage of greening (after 4 h), when most of prolamellar bodies converted into thylakoids, and they showed the greatest activity until the photosynthetic machinery was almost completely developed.  相似文献   

19.
Leaves of Populus balsamifera grown under full natural sunlight were treated with 0, 1, or 2 l SO2·1-1 air under one of four different photon flux densities (PFD). When the SO2 exposures took place in darkness or at 300 mol photons·m-2·s-1, sulfate accumulated to the levels predicted by measurements of stomatal conductance during SO2 exposure. Under conditions of higher PFD (750 and 1550 mol·m-2·s-1), however, the predicted levels of accumulated sulfate were substantially higher than those obtained from anion chromatography of the leaf extracts. Light-and CO2-saturated capacity as well as the photon yield of photosynthetic O2 evolution were reduced with increasing concentration of SO2. At 2 l SO2·1-1 air, the greatest reductions in both photosynthetic, capacity and photon yield occurred when the leaves were exposed to SO2 in the dark, and increasingly smaller reductions in each occurred with increasing PFD during SO2 exposure. This indicates that the inhibition of photosynthesis resulting from SO2 exposure was reduced when the exposure occurred under conditions of higher light. The ratio F v/F M (variable/maximum fluorescence emission) for photosyntem II (PSII), a measure of the photochemical efficiency of PSII, remained unaffected by exposure of leaves to SO2 in the dark and exhibited only moderate reductions with increasing PFD during the exposure, indicating that PSII was not a primary site of damage by SO2. Pretreatment of leaves with SO2 in the dark, however, increased the susceptibility of PSII to photoinhibition, as such pretreated leaves exhibited much greater reductions inF V/F M when transferred to moderate or high light in air than comparable control leaves.Abbreviations and symbols A1200 photosynthetic capacity (CO2-saturated rate of O2 evolution at 1200 mol photons·m-2·s-1) - Fo instantaneous fluorescence emission - FM maximum fluorescence emission - FV variable fluorescence emission - PFD photon flux density (400–700 nm) - PSII photosystem II  相似文献   

20.
We studied the growth and photosynthetic characteristics of a toxic (CS506) and a nontoxic strain (CS509) of the bloom‐forming cyanobacterium Cylindrospermopsis raciborskii grown under identical experimental conditions. When exposed to light‐saturating growth conditions (100 μmol photons · m?2 · s?1), values for maximal photosynthetic capacity (Pmax) and maximum quantum yield (Fv/Fm) indicated that both strains had an equal ability to process captured photons and deliver them to PSII reaction centers. However, CS506 grew faster than CS509. This was consistent with its higher light requirement for saturation of photosynthesis (Ik). Greater shade tolerance of CS509 was indicated by its higher ability to harvest light (α), lower photosynthetic light compensation point (Ic), and higher chlorophyll a to biovolume ratio. Strain‐specific differences were found in relation to non‐photochemical quenching, effective absorption cross‐sectional area of PSIIα‐centers (σPSIIα), and the antenna connectivity parameter of PSIIα (JconPSIIα). These findings highlighted differences in the transfer of excitation from phycobilisome/PSII to PSI, on the dependence on different pigments for light harvesting and on the functioning of the PSII reaction centers between the two strains. The results of this study showed that both performance and composition of the photosynthetic apparatus are different between these strains, though with only two strains examined we cannot attribute the performance of strain 506 to its ability to produce cylindrospermopsins. The emphasis on a strain‐specific light adaptation/acclimation is crucial to our understanding of how different light conditions (both quantity and quality) can trigger the occurrence of different C. raciborskii strains and control their competition and/or dominance in natural ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号