首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【背景】商业酵母的使用造成葡萄酒同质化问题严重,发掘优良本土酿酒酵母具有十分重要的意义。【目的】从168株宁夏本土酿酒酵母菌株中筛选出性能优良、具有出色葡萄酒发酵能力的菌株。【方法】基于杜氏管发酵试验和乙醇、高糖等耐受性试验分析产H2S能力及生长曲线测定的方法,筛选出发酵力好、耐受性强、低产H2S的本土酿酒酵母进行赤霞珠葡萄酒发酵试验,测定葡萄酒样基础理化指标、酚类物质和挥发性成分,探究筛选出的酿酒酵母发酵特性。【结果】初步筛选出发酵快速,能适应13%乙醇、350 g/L葡萄糖、250 mg/L SO2、pH 1.0的生存环境且低产H2S的4株本土酿酒酵母YC-E8、QTX-D17、QTX-D7、YQY-E18。菌株YC-E8产甘油能力强,所发酵酒样香气与商业酵母XR、F33最为接近,适用于赤霞珠葡萄酒的发酵。菌株QTX-D17发酵酒样中酒精、单宁、总酚和花色苷含量最高,表现出本土酿酒酵母优良的发酵特性。菌株QTX-D7所发酵酒样香气中乙酸乙酯、辛酸乙酯、1-壬醇等物质含量较高,赋予了葡萄酒香蕉味、苹果味、菠萝味、椰子味等愉悦花果香。【结论】最终筛选出3株优良本土酿酒酵母QTX-D17...  相似文献   

2.
The use of selected yeasts for winemaking has clear advantages over the traditional spontaneous fermentation. The aim of this study was to select an indigenous Saccharomyces cerevisiae yeast isolate in order to develop a regional North Patagonian red wine starter culture. A two-step selection protocol developed according to physiological, technological and ecological criteria based on killer interactions was used. Following this methodology, S. cerevisiae isolate MMf9 was selected among 32 indigenous yeasts previously characterized as belonging to different strains according to molecular patterns and killer biotype. This isolate showed interesting technological and qualitative features including high fermentative power and low volatile acidity production, low foam and low sulphide production, as well as relevant ecological characteristics such as resistance to all indigenous and commercial S. cerevisiae killer strains assayed. Red wines with differential volatile profiles and interesting enological features were obtained at laboratory scale by using this selected indigenous strain.  相似文献   

3.
The aim of this study was to evaluate the MPK1 (SLT2) gene deletion upon filamentous growth induced by isoamyl alcohol (IAA) in two haploid industrial strains of Saccharomyces cerevisiae using oligonucleotides especially designed for a laboratory S. cerevisiae strain. The gene deletion was performed by replacing part of the open reading frames from the target gene with the KanMX gene. The recombinant strains were selected by their resistance to G418, and after deletion confirmation by polymerase chain reaction, they were cultivated in a yeast extract peptone dextrose medium + 0.5% IAA to evaluate the filamentous growth in comparison to wild strains. Mpk1 derivatives were obtained for both industrial yeasts showing the feasibility of the oligonucleotides especially designed for a laboratory strain (Σ1278b) by Martinez-Anaya et al. (In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint. J Cell Sci 116:3423–3431, 2003). The filamentation rate in these derivatives was significantly lower for both strains, as induced by IAA. This drastic reduction in the filamentation ability in the deleted strains suggests that the gene MPK1 is required for IAA-induced filamentation response. The growth curves of wild and derivative strains did not differ substantially. It is not known yet whether the switch to filamentous growth affects the fermentative characteristics of the yeast or other physiological traits. A genetically modified strain for nonfilamentous growth would be useful for these studies, and the gene MPK1 could be a target gene. The feasibility of designed oligonucleotides for this deletion in industrial yeast strains is shown.  相似文献   

4.
Inoculation of active dry yeasts during the wine-making process has become a common practice in most wine-producing regions; this practice may affect the diversity of the indigenous population of Saccharomyces cerevisiae in the winery. The aim of this work was to study the incidence of commercial yeasts in the experimental winery of Estación de Viticultura e Enoloxía de Galicia (EVEGA) and their ability to lead spontaneous fermentations. To do this, 64 spontaneous fermentations were carried out in the experimental cellar of EVEGA over a period of 7 years. Samples were taken from must and at the beginning, vigorous and final stages of fermentation. A representative number of yeast colonies was isolated from each sample. S. cerevisiae strains were characterised by analysis of mitochondrial DNA restriction patterns. The results showed that although more than 40 different strains of S. cerevisiae were identified, only 10 were found as the dominant strain or in codominance with other strains in spontaneous fermentations. The genetic profiles (mtDNA-RFLPs) of eight of these strains were similar to those of different commercial yeasts that had been previously used in the EVEGA cellar. The remaining two strains were autochthonous ones that were able to reach implantation frequencies as high of those of commercial yeasts. These results clearly indicated that commercial wine yeasts were perfectly adapted to survive in EVEGA cellar conditions, and they successfully competed with the indigenous strains of S. cerevisiae, even during spontaneous fermentations. On the other hand, autochthonous dominant strains that presented desirable oenological traits could be of interest to preserve wine typicity.  相似文献   

5.
Significant changes in the intracellular concentrations of adenosine phosphates and nicotinamide adenine dinucleotides were observed during fermentation of grape must by three different strains ofSaccharomyces cerevisiae: S. cerevisiae var.cerevisiae, a typical fermentative yeast strain and two flor-veil-forming strains,S. cerevisiae var.bayanus andS. cerevisiae var.capensis. The intracellular concentration of ATP was always higher inS. cerevisiae var.cerevisiae than in the flor-veil-forming strains. NAD+ and NADP+ concentrations decreased at faster rates in the flor-veil-forming yeasts than in the other yeast but NADH concentration was the same in all yeasts for the first 10 days of fermentation. NADPH concentration was always lower inS. cerevisiae var.cerevisiae than in the other yeasts and this yeast also showed higher rates of growth and fermentation during the early stages of the fermentation and the presence of non-viable cells at the end of fermentation. In contrast, the flor-veil-forming strains maintained growth and fermentation capabilities for a relatively long time and viable cells were present throughout the entire fermentation process (31 days).The authors are with the Department of Microbiology, Faculty of Sciences, University of Cordoba, Avda. San Alberto Magno s/n, 14004-Córdoba, Spain  相似文献   

6.
A system for genotyping Saccharomyces cerevisiae is described based on a multiplex of ten microsatellite loci and the MAT locus. A database of genotypes has been developed for 246 yeast strains, including a large set of commercial wine yeasts, as well as 35 sequenced natural isolates currently being sequenced. The latter allow us, for the first time, to make direct comparisons of the relationship between DNA sequence data and microsatellite-based genotypes. The genotyping system provides a rapid and valuable system for strain identification as well as studying population genetics of S. cerevisiae.  相似文献   

7.
The extreme variability of the killer phenomenon in nature, expressed differently in different strains of the same yeast species, embodies an exceptional potential for the discrimination of yeasts at the strain level. Killer-sensitive relationships between a killer reference panel of 24 yeasts belonging to 13 species of six genera, and different industrial wine-starters ofSaccharomyces cerevisiae can be used profitably for a rapid and simple fingerprinting procedure.  相似文献   

8.
[背景]酵母菌在葡萄酒酿造中起到重要的作用,接种商业活性干酵母(active dry yeast,ADY)进行葡萄酒酿造在国内较为普遍,然而商业酿酒酵母(Saccharomyces cerevisiae)对我国本土酵母菌资源的影响及二者竞争关系的相关报道不多.[目的]比较商业酿酒酵母在不同品种葡萄酒工业化生产中的定殖差...  相似文献   

9.
Genetic analysis was performed on 45 commercial yeasts which are used in winemaking because of their superior fermentation properties. Genome sizes were estimated by propidium iodide fluorescence and flow cytometry. Forty strains had genome sizes consistent with their being diploid, while five had a range of aneuploid genome sizes that ranged from 1.2 to 1.8 times larger. The diploid strains are all Saccharomyces cerevisiae, based on genetic analysis of microsatellite and minisatellite markers and on DNA sequence analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA of four strains. Four of the five aneuploid strains appeared to be interspecific hybrids between Saccharomyces kudriavzevii and Saccharomyces cerevisiae, with the fifth a hybrid between two S. cerevisiae strains. An identification fingerprint was constructed for the commercial yeast strains using 17 molecular markers. These included six published trinucleotide microsatellites, seven new dinucleotide microsatellites, and four published minisatellite markers. The markers provided unambiguous identification of the majority of strains; however, several had identical or similar patterns, and likely represent the same strain or mutants derived from it. The combined use of all 17 polymorphic loci allowed us to identify a set of eleven commercial wine yeast strains that appear to be genetically homozygous. These strains are presumed to have undergone inbreeding to maintain their homozygosity, a process referred to previously as ‘genome renewal’.  相似文献   

10.
11.
Fifty-one yeast strains isolated from fermented mash of Balinese rice wine, brem, fermented using five different types of starters, ragi tape, were identified on the basis of their internal transcribed spacer (ITS) regions and their 18S rDNA sequences. The results revealed that Saccharomyces cerevisiae(35 strains), Candida glabrata(six strains), Pichia anomala(three strains) and Issatchenkia orientalis(seven strains) were the main yeasts in the fermentation of the rice wine. These yeasts undergo succession during the fermentation in which S. cerevisiae was mostly found as the principal yeast at the end of fermentation. Phylogenetic analysis based on the 18S rDNA sequences of selected strains placed the isolated S. cerevisiae strains in the Saccharomyces sensu stricto group. Karyotype analysis of the S. cerevisiae strains resolved using pulsed field gel electrophoresis (PFGE) showed that the strains are typically associated with different types of starters.  相似文献   

12.
Comparative genomics of yeast species: new insights into their biology   总被引:2,自引:0,他引:2  
The genomes of two hemiascomycetous yeasts (Saccharomyces cerevisiae and Candida albicans) and one archiascomycete (Schizosaccharomyces pombe) have been completely sequenced and the genes have been annotated. In addition, the genomes of 13 more Hemiascomycetes have been partially sequenced. The amount of data thus obtained provides information on the evolutionary relationships between yeast species. In addition, the differential genetic characteristics of the microorganisms explain a number of distinctive biological traits. Gene order conservation is observed between phylogenetically close species and is lost in distantly related species, probably due to rearrangements of short regions of DNA. However, gene function is much more conserved along evolution. Compared to S. cerevisiae and S. pombe, C. albicans has a larger number of specific genes, i.e., genes not found in other organisms, a fact that can account for the biological characteristics of this pathogenic dimorphic yeast which is able to colonize a large variety of environments.  相似文献   

13.
Evolutionary history and early association with anthropogenic environments have made Saccharomyces cerevisiae the quintessential wine yeast. This species typically dominates any spontaneous wine fermentation and, until recently, virtually all commercially available wine starters belonged to this species. The Crabtree effect, and the ability to grow under fully anaerobic conditions, contribute decisively to their dominance in this environment. But not all strains of Saccharomyces cerevisiae are equally suitable as starter cultures. In this article, we review the physiological and genetic characteristics of S. cerevisiae wine strains, as well as the biotic and abiotic factors that have shaped them through evolution. Limited genetic diversity of this group of yeasts could be a constraint to solving the new challenges of oenology. However, research in this field has for many years been providing tools to increase this diversity, from genetic engineering and classical genetic tools to the inclusion of other yeast species in the catalogues of wine yeasts. On occasion, these less conventional species may contribute to the generation of interspecific hybrids with S. cerevisiae. Thus, our knowledge about wine strains of S. cerevisiae and other wine yeasts is constantly expanding. Over the last decades, wine yeast research has been a pillar for the modernisation of oenology, and we can be confident that yeast biotechnology will keep contributing to solving any challenges, such as climate change, that we may face in the future.  相似文献   

14.
The aim of this research was the study of indigenous yeasts isolated from spontaneous fermentation of Inzolia grapes, one of the most widespread native white grapes in Sicily (Italy). The use of selective medium for the isolation and the screening for sulphur dioxide tolerance were useful for the first selection among 640 isolates. The yeasts characterized by high SO2 tolerance were identified at species level by restriction analysis of ITS region; although the majority of isolates were identified as S. cerevisiae, some non-Saccharomyces yeasts were found. Forty-seven selected yeasts, both S. cerevisiae and non-Saccharomyces yeasts, were characterized for genetic and technological diversity. The genetic polymorphism was evaluated by RAPD-PCR analysis, whereas the technological diversity was analyzed by determining the main secondary compounds in the experimental wines obtained by inoculating these yeasts. Both the molecular and metabolic profiles of selected yeasts were able to clearly discriminate S. cerevisiae from non-Saccharomyces yeasts. This research was useful for the constitution of a collection of selected indigenous yeast strains, including S. cerevisiae and non-Saccharomyces species possessing interesting enological traits. This collection represents a source of wild yeasts, among of which it is possible to select indigenous starters able to maintain the specific organoleptic characteristics of Inzolia wine.  相似文献   

15.
One hundred and fifty-four yeast strains were isolated from grapes and musts of Uruguayan vineyards and wineries. Only thirty strains showed β-glucosidase activity in Esculin Glycerol Agar (EGA) solid medium. Twenty-one were non-Saccharomyces and nine were Saccharomyces cerevisiae strains. The objective of this study was to evaluate the suitability of Esculin Glycerol Agar (EGA) solid medium for screening β-glucosidase activity in native yeasts strains. Halo sizes measured in the EGA solid medium were correlated to the Glycosyl-Glucose (GG) indexes measured after fermentation of grape musts with each strain. The two S. cerevisiae strains with the best performance were selected for further fermentations on a Muscat Miel grape must, rich in bound monoterpenes. The levels of free linalool, hodiol I and geraniol increased significantly as compared to fermentation with a commercial wine yeast strain. These results show the suitability of this simple and economic medium to identify S. cerevisiae glucosidase producers with a potential impact on real winemaking conditions. On the other hand, great variability was found for the non-Saccharomyces strains, and this would demand further studies for each species. In conclusion, the use of EGA solid medium shows that the screening method is suitable for exploring the glucosidase activity of native strains of S. cerevisiae and shows good correlation with its real impact on free aroma compounds in the final wine.  相似文献   

16.
The PCR amplification and subsequent restriction analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene was applied to the identification of yeasts belonging to the genus Saccharomyces. This methodology has previously been used for the identification of some species of this genus, but in the present work, this application was extended to the identification of new accepted Saccharomyces species (S. kunashirensis, S. martiniae, S. rosinii, S. spencerorum, and S. transvaalensis), as well as to the differentiation of an interesting group of Saccharomyces cerevisiae strains, known as flor yeasts, which are responsible for ageing sherry wine. Among the species of the Saccharomyces sensu lato complex, the high diversity observed, either in the length of the amplified region (ranged between 700 and 875 bp) or in their restriction patterns allows the unequivocal identification of these species. With respect to the four sibling species of the Saccharomyces sensu stricto complex, only two of them, S. bayanus and S. pastorianus, cannot be differentiated according to their restriction patterns, which is in accordance with the hybrid origin (S. bayanus × S. cerevisiae) of S. pastorianus. The flor S. cerevisiae strains exhibited restriction patterns different from those typical of the species S. cerevisiae. These differences can easily be used to differentiate this interesting group of strains. We demonstrate that the specific patterns exhibited by flor yeasts are due to the presence of a 24-bp deletion located in the ITS1 region and that this could have originated as a consequence of a slipped-strand mispairing during replication or be due to an unequal crossing-over. A subsequent restriction analysis of this region from more than 150 flor strains indicated that this deletion is fixed in flor yeast populations.  相似文献   

17.
The present study has been carried out in an organic winery established in 2003 in the Denomination of Origin “Sierras de Málaga” (Southern Spain) region during the 2007 vintage. The aim of this work was to ascertain the yeast microflora present in the winery and during the vinifications and to obtain a collection of autochthonous S. cerevisiae strains from this area. Yeast populations from three vats containing fermenting musts from different grape varieties were analysed. Two of them were inoculated with a natural “pied de cuve” while the third one was sown with a rehydrated commercial yeast strain. A total of 382 yeasts were isolated and identified, initially by restriction analysis of ribosomal DNA and further by sequencing of this region. Non-Saccharomyces yeasts were found in all three musts but they practically disappeared as the fermentations progressed. Analysis of mitochondrial DNA RFLP revealed 13 different restriction patterns of Saccharomyces cerevisiae strains, five of them similar to those of commercial strains used in the winery. Commercial strains were found even in vats inoculated with a “pied de cuve” generated by spontaneous fermentation of a must sample. The analysis of samples recovered from different winery surfaces and equipments demonstrated that non-Saccharomyces and both commercial and autochthonous Saccharomyces strains were part of the resident microflora in the winery. Biodiversity of autochthonous S. cerevisiae in fermentation vats was low but two of them were able to compete with the commercial ones and they were isolated even at the end of the fermentation.  相似文献   

18.
The physiological characteristics of two strains of brewery ale yeasts,Saccharomyces cerevisiae, with sedimentation abilities, were investigated to see if the strains were suitable for lager beer production. Compared with typical industrial ale strains ofS. cerevisiae and lager strains ofS. uvarum (nowS. cerevisiae), the investigated strains differ in fermentation dynamics, as well as in biological properties. The differences, however, particularly between the two strains and the lager brewing yeasts, were not significant.  相似文献   

19.
Increasingly, winemakers are looking for ways to introduce aroma and flavour diversity to their wines as a means of improving style and increasing product differentiation. While currently available commercial yeast strains produce consistently sound fermentations, there are indications that sensory complexity and improved palate structure are obtained when other species of yeast are active during fermentation. In this study, we explore a strategy to increase the impact of non-Saccharomyces cerevisiae inputs without the risks associated with spontaneous fermentations, through generating interspecific hybrids between a S. cerevisiae wine strain and a second species. For our experiments, we used rare mating to produce hybrids between S. cerevisiae and other closely related yeast of the Saccharomyces sensu stricto complex. These hybrid yeast strains display desirable properties of both parents and produce wines with concentrations of aromatic fermentation products that are different to what is found in wine made using the commercial wine yeast parent. Our results demonstrate, for the first time, that the introduction of genetic material from a non-S. cerevisiae parent into a wine yeast background can impact favourably on the wine flavour and aroma profile of a commercial S. cerevisiae wine yeast.  相似文献   

20.
The comparative analysis of growth, intracellular content of Na+ and K+, and the production of trehalose in the halophilic Debaryomyces hansenii and Saccharomyces cerevisiae were determined under saline stress. The yeast species were studied based on their ability to grow in the absence or presence of 0.6 or 1.0 M NaCl and KCl. D. hansenii strains grew better and accumulated more Na+ than S. cerevisiae under saline stress (0.6 and 1.0 M of NaCl), compared to S. cerevisiae strains under similar conditions. By two methods, we found that D. hansenii showed a higher production of trehalose, compared to S. cerevisiae; S. cerevisiae active dry yeast contained more trehalose than a regular commercial strain (S. cerevisiae La Azteca) under all conditions, except when the cells were grown in the presence of 1.0 M NaCl. In our experiments, it was found that D. hansenii accumulates more glycerol than trehalose under saline stress (2.0 and 3.0 M salts). However, under moderate NaCl stress, the cells accumulated more trehalose than glycerol. We suggest that the elevated production of trehalose in D. hansenii plays a role as reserve carbohydrate, as reported for other microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号