首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Fatty acid synthesis, measured in the perfused liver of genetically obese (ob/ob) mice with 3H2O or [14C]actate, did not show the inhibition by [8-arginine]vasopressin (antidiuretic hormone) that is observed in livers from normal mice. 2. Hepatic glycogen breakdown in obese mice was stimuulated by vasopressin, but not as extensively as in lean mice. 3. If obese mice received a restricted amount of food, then fatty acid synthesis still did not respond to vasopressin, but glycogen breakdown was fully stimulated. 4. Cholesterol synthesis was not inhibited by vasopressin in livers from obese mice. 5. Vasopressin inhibited fatty acid synthesis in intact lean mice, but not in obese animals. 6. These results suggest that genetic obesity could be due to an inborn error within the mechanisms (other than adenylate cyclase) which mediate responses to extracellular effectors.  相似文献   

2.
The effects of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) were investigated on preparations of glycogen phosphorylase (GP) and in C57BL6J (ob/ob) mice by (13)C NMR in vivo. Independent of the phosphorylation state or the mammalian species or tissue from which GP was derived, DAB inhibited GP with K(i)-values of approximately 400 nM. The mode of inhibition was uncompetitive or noncompetitive, with respect to glycogen and P(i), respectively. The effects of glucose and caffeine on the inhibitory effect of DAB were investigated. Taken together, these data suggest that DAB defines a novel mechanism of action. Intraperitoneal treatment with DAB (a total of 105 mg/kg in seven doses) for 210 min inhibited glucagon-stimulated glycogenolysis in obese and lean mice. Thus, liver glycogen levels were 361 +/- 19 and 228 +/- 19 micromol glucosyl units/g with DAB plus glucagon in lean and obese mice, respectively, compared to 115 +/- 24 and 37 +/- 8 micromol glucosyl units/g liver with glucagon only. Moreover, with glucagon only end-point blood glucose levels were at 29 +/- 2 and 17.5 +/- 2 mM in obese and lean mice, respectively, compared to 17.5 +/- 1 and 12 +/- 1 mM with glucagon plus DAB. In conclusion, DAB is a novel and potent inhibitor of GP with an apparently distinct mechanism of action. Further, DAB inhibited the hepatic glycogen breakdown in vivo and displayed an accompanying anti-hyperglycemic effect, which was most pronounced in obese mice. The data suggest that inhibition of GP may offer a therapeutic principle in Type 2 diabetes.  相似文献   

3.
Obese-hyperglycaemic mice and lean mice were injected with dichloroacetate to determine the significance of gluconeogenesis in maintaining the hyperglycaemia of obese mice and to investigate the effects of a fall in blood glucose on fatty acid synthesis. One hour after the second of two, hourly, injections of dichloroacetate the blood glucose concentrations in fed and starved lean mice were decreased, whereas in obese mice they were sharply increased. In obese and lean mice, both fed and starved, dichloroacetate decreased plasma lactate but insulin was unchanged. The quantity of liver glycogen was decreased in all dichloroacetate treated mice, with the largest falls in fed and starved obese mice, which had much larger glycogen stores than lean mice. Dichloroacetate treatment decreased the concentration of plasma non-esterified fatty acids in fed and starved obese mice and fed lean mice but not in starved lean mice. Fatty acid synthesis in white (inguinal, subcutaneous) adipose tissue was stimulated by dichloroacetate in fed obese mice and inhibited in fed lean mice. Fatty acid synthesis in brown adipose tissue (scapular) was faster than in white adipose tissue and was less affected by dichloroacetate although the changes were in the same direction as in white adipose tissue. We attribute the increased hyperglycaemia of obese mice treated with dichloroacetate to increased glycogenolysis coupled with a failure to secrete additional insulin in response to the raised blood glucose. This high blood glucose concentration in dichloroacetate treated obese mice may in turn explain the increased fatty acid synthesis in their white adipose tissue.  相似文献   

4.
Fatty acid synthesis was measured in vivo with 3H2O in interscapular brown adipose tissue of lean and genetically obese (ob/ob) mice. At 26 days of age, before the development of hyperphagia, synthesis in brown adipose tissue was higher in the obese than in the lean mice; synthesis was also elevated in the liver, white adipose tissue and carcass of the obese mice. At 8 weeks of age, when hyperphagia was well established, synthesis remained elevated in all tissues of the obese mice, with the exception of brown adipose tissue. Elevated synthesis rates were not apparent in brown adipose tissue of the obese mice at 14 days of age, nor at 35 days of age. These results demonstrate that brown adipose tissue in ob/ob mice has a transitory hyperlipogenesis at, and just after, weaning on to a low-fat/high-carbohydrate diet. Once hyperphagia has developed, by week 5 of life, brown adipose tissue is the only major lipogenic tissue in the obese mice not to exhibit elevated rates of fatty acid synthesis; this suggests that insulin resistance develops much more rapidly in brown adipose tissue than in other lipogenic tissues of the ob/ob mouse.  相似文献   

5.
6.
1. A technique for perfusion of the mouse liver has been developed, and aspects of carbohydrate metabolism have been investigated in the perfused liver of normal and genetically obese mice, homozygous for the recessive gene ob. 2. Rates of gluconeogenesis in perfused mouse liver were faster than those reported for slices of mouse liver, particularly from lactate and pyruvate. 3. The rate of glycogen breakdown to glucose, but not to lactate, was faster in liver from fed obese mice. 4. The capacity for glycogen synthesis from glucose was enhanced in liver from 20h-starved obese mice. 5. The capacity for gluconeogenesis from a number of substrates was not significantly altered in livers from fed or starved obese mice when compared with that of lean mice. 6. These results suggest that the liver contributes to the hyperglycaemia of the obese mice by increased glycogenolysis, and that liver glycogen in obese mice is maintained by synthesis from dietary glucose.  相似文献   

7.
The intestines of obese hyperglycaemic (ob/ob) mice contain greatly increased amounts of glucagon-like immunoreactive peptides. To investigate their role in the increased activity of the entero-insular axis of these mice, the insulin-releasing effect of glucagon-like peptide-1 (GLP-1) was examined in 24 hour fasted 12-15 weeks old ob/ob mice under conditions of basal and elevated glycaemia. Compared with glucagon (100 micrograms/kg ip), which produce an approximately 3-fold increase in basal plasma glucose and insulin concentrations, GLP-1 (100 micrograms/kg ip) produce a very small (less than 1 fold) increase in plasma insulin, with no significant change in plasma glucose. The insulin-releasing effect of glucagon, but not GLP-1 was increased by administration in combination with glucose (2 g/kg ip). The results indicate that GLP-1, which exhibits considerable sequence homology with glucagon, exerts only a weak insulin-releasing effect without a significant hyperglycaemic effect in ob/ob mice. Thus GLP-1 is unlikely to be an important endocrine component of the two over-active entero-insular axis in ob/ob mice.  相似文献   

8.
The effect of physiological concentrations of glucagon and insulin on glycogenolysis was studied in the presence and absence of substrates in isolated hepatocytes containing high glycogen. In the absence of substrates glucagon stimulated glycogenolysis at 10?14M concentration, and addition of 100 μunits of insulin partially inhibited glucagon stimulated glycogenolysis (10?14M to 10?11M). However, in the presence of substrates, insulin completely inhibited glucagon stimulated glycogenolysis (10?14M to 10?11M), indicating that molar glucagon and insulin ratios control carbohydrate metabolism in liver. Additional studies showed incorporation of amino acid into protein was linear for only 3 to 4 hr in cells containing low glycogen, whereas in cells containing high glycogen, incorporation was linear for 8 to 10 hr.  相似文献   

9.
Glycerol-3-phosphate acyltransferase (GPAT) controls the first step of triglyceride (TAG) synthesis. Three distinct GPAT activities have been identified, two localized in mitochondria and one in microsomes. Mitochondrial GPAT1 (mtGPAT1) is abundantly expressed in the liver and constitutes approximately 50% of total GPAT activities in this organ. Hepatic mtGPAT1 activity is elevated in obese rodents. Mice deficient in mtGPAT1 have an improved lipid profile. To investigate if beneficial effects can result from reduced hepatic expression of mtGPAT1 in adult obese mice, adenoviral vector-based short hairpin RNA interference (shRNA) technology was used to knockdown mtGPAT1 expression in livers of ob/ob mice. Reduced expression of mtGPAT1 mRNA in liver of ob/ob mice resulted in dramatic and dose dependent reduction in mtGPAT1 activity. Reduced hepatic TAG, diacylglycerol, and free fatty acid, as well as reduced plasma cholesterol and glucose, were also observed. Fatty acid composition analysis revealed decrease of C16:0 in major lipid species. Our results demonstrate that acute reduction of mtGPAT1 in liver of ob/ob mice reduces TAG synthesis, which points to a role for mtGPAT1 in the correction of obesity and related disorders.  相似文献   

10.
Heat production, free fatty acid and glycerol release from white adipose tissue fat pads from obese (ob/ob) mice and their lean littermates are determined. Heat production was significantly lower in obese mice compared to lean mice when expressed on wet weight basis but not when expressed on DNA basis. Noradrenaline significantly increased the heat production in fat pads from both groups of animals. However, the increase in heat production due to noradrenaline addition in fat pads from lean mice was significantly higher than in fat pads from obese mice. The release of free fatty acids and glycerol before incubation with noradrenaline was similar from fat pads from both groups of animals. Addition of noradrenaline to the fat pads increased the release of free fatty acids and glycerol in both groups of animals, but the increase was significantly larger from fat pads from lean mice. In the absence of noradrenaline the free fatty acid/glycerol ratio (mol/mol) in the effluent was 7.9:1 and 4.8:1 for lean mice and obese mice, respectively. In the presence of noradrenaline the ratio decreased to 3:1 for both groups of animals.  相似文献   

11.
Hepatic mitochondrial and peroxisomal oxidative capacities were studied in young (4-5 weeks old) and adult (6-9 months old) lean and obese ob/ob mice that were fed or starved for 24 or 48 h. The adult obese mice showed elevated capacity for mitochondrial oxidation (ng-atoms of O consumed/min per mg of protein) of lipid and non-lipid substrates, with the exception of pyruvate + malate, and elevated activities of citrate synthase and total carnitine palmitoyltransferase. Oxidative rates and enzyme activities were not affected by starvation of lean or obese mice, and both males and females responded similarly. Peroxisomal palmitoyl-CoA oxidation (nmol/min per mg of peroxisomal protein) was also increased in livers of adult obese mice and did not change with starvation. In young mice, hepatic mitochondrial and peroxisomal oxidative capacities in lean and obese mice were comparable. The increased mitochondrial and peroxisomal oxidative capacities appear to develop with maturation in obese ob/ob mice.  相似文献   

12.
Hepatocytes were isolated from 3 and 5 month old female genetically obese Zucker rats and their lean littermate controls. An age-dependent loss in sensitivity of fatty acid synthesis to inhibition by both glucagon and dibutyryl cyclic AMP was observed with hepatocytes from the obese rats. Hepatocytes from lean animals were much more sensitive to these agents, regardless of age. Low concentrations of glucagon and dibutyryl cyclic AMP actually produced some stimulation of fatty acid synthesis with hepatocytes prepared from the older obese rats. 5-Tetradecyloxy-2-furoic acid, a compound which inhibits fatty acid synthesis, was a very effective inhibitor of fatty acid synthesis by hepatocytes isolated from all rats used in the study. An inhibition of lactate plus pyruvate accumulation and a strong stimulation of glycogenolysis occurred in response to both glucagon and dibutyryl cyclic AMP with hepatocytes from both age groups of lean and obese rats. The results suggest that with aging of the obese female Zucker rat some step of hepatic fatty acid synthesis becomes progressively less sensitive to inhibition by glucagon and dibutyryl cyclic AMP. This may play an important role in maintenance of obesity in these animals.  相似文献   

13.
1. The synthesis of long-chain fatty acids de novo was measured in the liver and in regions of adipose tissue in intact normal and genetically obses mice throughout the daily 24h cycle. 2. The total rate of synthesis, as measured by the rate of incorporation of 3H from 3H2O into fatty acid, was highest during the dark period, in liver and adipose tissue of lean or obese mice. 3. The rate of incorporation of 14C from [U-14C]glucose into fatty acid was also followed (in the same mice). The 14C/3H ratios were higher by a factor of 5-20 in parametrial and scapular fat than that in liver. This difference was less marked during the dark period (of maximum fatty acid synthesis). 4. In normal mice, the total rate of fatty acid synthesis in the liver was about twofold greater than that in all adipose tissue regions combined. 5. In obese mice, the rate of fatty acid synthesis was more rapid than in lean mice, in both liver and adipose tissue. Most of the extra lipogenesis occurred in adipose tissue. The extra hepatic fatty acids synthesized in obese mice were located in triglyceride rather than phospholipid. 6. In adipose tissue of normal mice, the rate of fatty acid synthesis was most rapid in the intra-abdominal areas and in brown fat. In obese mice, all regions exhibited rapid rates of fatty acid synthesis. 7. These results shed light on the relative significance of liver and adipose tissue (i.e. the adipose 'organ') in fatty acid synthesis in mice, on the mino importance of glucose in hepatic lipogenesis, and on the alterations in the rate of fatty acid synthesis in genetically obese mice.  相似文献   

14.
Plasma gastric inhibitory polypeptide (GIP) responses to equimolar intragastrically administered emulsions of fatty acids (2.62 mmol/7.5 ml/kg) were examined in 18 h fasted obese hyperglycaemic (ob/ob) mice. Propionic acid (C3:0), a saturated short-chain fatty acid, and capric acid (C10:0), a saturated medium chain fatty acid, did not signilicantly stimulate GIP release. However, the saturated long-chain fatty acid stearic acid (C18:0), and especially the unsaturated long-chain fatty acids oleic (C18:1), linoleic (C18:2) and linolenic (C18:3) acids produced a marked GIP response. The results show that chain length and to a lesser extent the degree of saturation are important determinants of fatty acid-stimulated GIP release. The GIP-release action of long-chain, but not short-chain, fatty acids may be r e l a t e d to differences in their intracellular handling.  相似文献   

15.
We have studied the correlation between cAMP-dependent protein kinase activation and rates of glycogenolysis in hepatocytes isolated from fed rats. With doses of 20 μM glucagon, the protein kinase was activated to a -cAMP/+cAMP ratio of 0.8 within 10 min and remained activated for up to 2 hours. A dose-response relationship between protein kinase activation and rates of glycogenolysis can be demonstrated to 0–20 μM glucagon. Glycogenolysis was stimulated greater than 2-fold after 2 hours of incubation with the higher doses of glucagon. Protein kinase activity ratios correlated well with the rates of glycogenolysis as the ratios varied from control levels of about 0.25 to the stimulated values of 0.5–0.6. However, as the ratios increased from 0.6 to 0.8, with higher doses of glucagon, there were no corresponding increases in the rates of glycogenolysis. These data may indicate (1) that activation of all of the protein kinase present in the liver cells is not necessary for maximal stimulation of glycogenolysis, or (2) that a specific protein kinase is involved in the intracellular control of glycogen breakdown in isolated rat hepatocytes.  相似文献   

16.
Livers from normal fed male rats were perfused in a recycling system in vitro. Glucagon was infused in varying quantities to give final concentration in the cell-free perfusate of 4.9 . 10(-10)-4.9 . 10(-7) M after 3 h of perfusion, assuming no degradation of the hormone. Where indicated, cyclic somatostatin was infused simultaneously to give a final concentration of 3.0 . 10(-6) M. In the absence of somatostatin, glucagon at a concentration as low as 4.9 . 10(-10) M increased the release of glucose and increased ketogenesis, but impaired the synthesis and release of perfusate triacylglycerol and very low density lipoprotein lipids. Somatostatin did not affect these actions of glucagon. Somatostatin alone, however, did reduce the output of very low density lipoprotein. It is suggested that the alteration of fatty acid metabolism by somatostatin in vivo results from modulation of pancreatic glucagon secretion, not from interference by somatostatin of the action of glucagon on the liver.  相似文献   

17.
Stearic acid desaturase activity was assayed in preparations from perigenital adipose tissue and liver from lean and genetically obese female mice (ob/ob). The total activity in the perigenital adipose tissue from obese mice was threefold greater than in the tissue from lean mice, but per g of adipose tissue the activity was twofold greater in tissue from lean mice. In liver, the activity in obese mice was elevated at 8 weeks of age, remained elevated up to 24 weeks and then decreased by half at 48 weeks, but at all ages was higher than that in lean mice. The decrease in desaturase activity of liver from obese mice at 48 weeks corresponded to a change in the fatty acid composition of liver lipids toward that found in lean mice. Whereas in adipose tissue much of the increased enzyme activity may be due to tissue hyperplasia, in liver it is mainly an increased activity per cell.  相似文献   

18.
To investigate the satiety defect of hyperphagic genetically obese (ob/ob) mice, acute feeding responses to three differently acting anorectic agents were determined in 7-9 weeks old lean (+/+) and ob/ob mice habituated to a restricted (0900-1230 hr) daily feeding routine. Fenfluramine (10 mg/kg), cholecystokinin (100 U/kg) and neurotensin (500 micrograms/kg), administered intraperitoneally 15 min before feeding, each produced a rapid but transient suppression of food consumption in ob/ob mice, similar to lean controls. The results suggest that neural satiety mechanisms triggered via serotoninergic pathways (fenfluramine), vagal afferents (cholecystokinin) and the hypothalamic paraventricular nucleus (neurotensin) are functional in ob/ob mice, supporting the view that the satiety defect of ob/ob mice resides outside of the nervous system.  相似文献   

19.
Hepatic plasma membrane lipids of lean (+/?) and obese (ob/ob) mice have been investigated using 1,6-diphenylhexatriene (DPH). Arrhenius plots of DPH fluorescence polarization in membranes showed the breakpoint in obese mice was reduced from 21 to 15 degrees C, whereas the breakpoint of 5'-nucleotidase activity was raised from 23 to 32 degrees C. Arrhenius break temperatures of DPH polarization and 5'-nucleotidase activity responded differently to housing mice at 34 degrees C and triiodothyronine (T3) treatment. Studies of DPH polarization in liposomes and phospholipid fatty acid composition suggested that differences in sphingomyelin acyl composition determine Arrhenius characteristics of hepatic 5'-nucleotidase in lean and obese mice.  相似文献   

20.
Posterior pituitaries of obese mice (ob/ob) contained significantly more immunoreactive dynorphin (P less than .01) and leu-enkephalin (P less than .01) than their lean littermates. Drinking in obese mice was stimulated by 0.3%, and feeding by 10%, of the dose of ethylketocyclazocine, a kappa receptor agonist, needed to produce extra feeding and drinking in lean mice. Obese mice also showed greater and longer lasting suppression of ingestion after MR-2266, a kappa antagonist, than did lean mice. MR-2266 was much more effective than naloxone in suppressing schedule-induced polydipsia in rats. These results indicate that kappa receptors are involved in feeding and drinking and that obesity is associated with changes in these receptors and their ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号