共查询到20条相似文献,搜索用时 0 毫秒
1.
根据OC-IΔD86基因序列, 设计合成了7条寡核苷酸片段, 通过重叠延伸PCR技术合成了OC-IΔD86基因, 利用设计好的BamH I/ Xho I酶切位点将OC-IΔD86基因克隆到原核表达载体pet21b中, 在1 mmol/L的IPTG 诱导后5 h, OC-IDD86融合基因在大肠杆菌中得到表达, 表达产物处于可溶状态, 其表达量占总蛋白的11.4%, 可溶性蛋白的16.4%; 利用Ni-NTA系统纯化该蛋白并经PEG20000浓缩后, 活性分析表明该蛋白酶抑制剂在体外表现出对木瓜蛋白酶明显的抑制作用。这为转OC-IΔD86基因的抗根结线虫植物基因工程抗体制备, 以及进一步体内的抗根结线虫研究奠定了基础。 相似文献
2.
Saliou C Rimbach G Moini H McLaughlin L Hosseini S Lee J Watson RR Packer L 《Free radical biology & medicine》2001,30(2):154-160
3.
4.
The differentiation of murine erythroleukemia cells and the expression of SCL, Id1 and c-myc regulatory genes were studied. The first gene is a positive regulator of differentiation, while the other two are both negative regulators of differentiation and positive regulators of proliferation. Accordingly, our data show that when differentiation is stimulated SCL is upregulated while Id1 and c-myc are, coordinately, downregulated. The cultures were treated with two adenosine derivatives, 3-deazaadenosine and 3-deazaaristeromycin, known to act on the metabolic pathway of the methyl donor S-adenosylmethionin, in order to assess the possibility of a coordinated modulation, by these drugs, of regulatory gene expression and erythroid cell differentiation. 3-Deazaaristeromycin caused the simultaneous downregulation of Id1 and c-myc, whereas 3-deazaadenosine caused their upregulation; both drugs produced a transient increase in SCL expression. The use of these drugs evidenced a predominant regulatory effect of negative regulators in the control of erythroid differentiation. The distinct effects of the two drugs on regulatory gene expression led to an increased differentiation induced by 3-deazaaristeromycin and to a reduced differentiation induced by 3-deazaadenosine, if compared with controls. Southern analysis of DNA digested with methylation-specific restriction endonucleases showed that the administration of 3-deazaaristeromycin resulted in hypomethylation of SCL and c-myc, thus evidencing, in these cells, a clear correlation between DNA hypomethylation and differentiation but no straightforward correlation between DNA methylation and gene expression. 相似文献
5.
6.
Dimerization and nuclear localization of ku proteins 总被引:7,自引:0,他引:7
7.
Grant M Alturaihi H Jaquet P Collier B Kumar U 《Molecular endocrinology (Baltimore, Md.)》2008,22(10):2278-2292
Somatostatin (SST) analogs have been successfully used in the medical treatment of acromegaly, caused by GH hypersecreting pituitary adenomas. Patients on SST analogs rarely develop tachyphylaxis despite years of continuous administration. It has been recently proposed that a functional association between SST receptor (SSTR) subtypes 2 and 5 exists to account for this behavior; however, a physical interaction has yet to be identified. Using both coimmunoprecipitation and photobleaching fluorescence resonance energy transfer microscopy techniques, we determined that SSTR2 and SSTR5 heterodimerize. Surprisingly, selective activation of SSTR2 and not SSTR5, or their costimulation, modulates the association. The SSTR2-selective agonist L-779,976 is more efficacious at inhibiting adenylate cyclase, activating ERK1/2, and inducing the cyclin-dependent kinase inhibitor p27(Kip1) in cells expressing both SSTR2 and SSTR5 compared with SSTR2 alone. Furthermore, cell growth inhibition by L-779,976 treatment was markedly extended in coexpressing cells. Trafficking of SSTR2 is also affected upon heterodimerization, an attribute corresponding to modifications in beta-arrestin association kinetics. Activation of SSTR2 results in the recruitment and stable association of beta-arrestin, followed by receptor internalization and intracellular receptor pooling. In contrast, heterodimerization increases the recycling rate of internalized SSTR2 by destabilizing its interaction with beta-arrestin. Given that SST analogs show preferential binding to SSTR2, these data provide a mechanism for their effectiveness in controlling pituitary tumors and the absence of tolerance seen in patients undergoing long-term administration. 相似文献
8.
9.
To better understand how Ras controls development of multicellular organisms, we have chosen Aspergillus nidulans as a model system. When grown on solid medium, this fungus follows a well-defined program of development, sequentially giving rise to several cell types which produce three distinct structures: vegetative hyphae, aerial hyphae, and the conidiophore structure. Here we describe a ras homolog found in this fungus (Aras) and demonstrate that it is an essential gene that regulates the ordered program of development. We created dominant alleles of this gene and expressed them to different levels in order to vary the ratio of GTP-bound (active) to GDP-bound (inactive) A-Ras protein. When the amount of active Ras is large, nuclear division proceeds, but further development is inhibited at the early step of germ tube formation. At an intermediate level of active Ras, aerial hypha formation is inhibited, while at a low level, conidiophore formation is inhibited. Maintenance of an even lower level of the active Ras is essential for initiation and progression of conidiophore formation, the final stage of development. When the level of active Ras is artificially lowered, each stage of development is initiated prematurely except germination, the initial stage of development. Therefore, the progression of the ordered developmental pathway of A. nidulans is dependent upon an initial high level of active Ras followed by its gradual decrease. We propose that several concentration threshold exist, each of which allows development to proceed to a certain point, producing the proper cell type while inhibiting further development. 相似文献
10.
Tovar-Palacio C Tovar AR Torres N Cruz C Hernández-Pando R Salas-Garrido G Pedraza-Chaverri J Correa-Rotter R 《American journal of physiology. Renal physiology》2011,300(1):F263-F271
Obesity is a risk factor for the development of chronic kidney disease (CKD) and end-stage renal disease. It is not clear whether the adoption of a high-protein diet in obese patients affects renal lipid metabolism or kidney function. Thus the aims of this study were to assess in obese Zuckerfa/fa rats the effects of different types and amounts of dietary protein on the expression of lipogenic and inflammatory genes, as well as renal lipid concentration and biochemical parameters of kidney function. Rats were fed different concentrations of soy protein or casein (20, 30, 45%) for 2 mo. Independent of the type of protein ingested, higher dietary protein intake led to higher serum triglycerides (TG) than rats fed adequate concentrations of protein. Additionally, the soy protein diet significantly increased serum TG compared with the casein diet. However, rats fed soy protein had significantly decreased serum cholesterol concentrations compared with those fed a casein diet. No significant differences in renal TG and cholesterol concentrations were observed between rats fed with either protein diets. Renal expression of sterol-regulatory element binding protein 2 (SREBP-2) and its target gene HMG-CoA reductase was significantly increased as the concentration of dietary protein increased. The highest protein diets were associated with greater expression of proinflammatory cytokines in the kidney, independent of the type of dietary protein. These results indicate that high soy or casein protein diets upregulate the expression of lipogenic and proinflammatory genes in the kidney. 相似文献
11.
12.
Regulation of gene expression by nuclear hormone receptors 总被引:14,自引:0,他引:14
13.
Neprilysin activity and expression are controlled by nicastrin 总被引:4,自引:0,他引:4
Pardossi-Piquard R Dunys J Yu G St George-Hyslop P Alves da Costa C Checler F 《Journal of neurochemistry》2006,97(4):1052-1056
14.
Navarro-Aviñó JP Bellés JM Serrano R 《Biochemical and biophysical research communications》2003,302(1):41-45
Yeast lithium-sensitive inositol monophosphatase (IMPase) is encoded by a non-essential gene pair (IMP1 and IMP2). Inhibition of IMPase with either Li(+) or Na(+) or a double null mutation imp1 imp2 causes increased levels of inositol monophosphates and reduced level of inositol 1,4,5-trisphosphate. Overexpression of the IMP2 gene has the opposite effects and these results suggest that IMPase activity is limiting for the inositol cycle. Addition of ammonium to cells starved for this nutrient results in a decrease of inositol monophosphates and an increase of inositol 1,4,5-triphosphate, pointing to simultaneous regulation of both inositol 1,4,5-triphosphate production and IMPase activity. 相似文献
15.
16.
17.
The nuclear envelope, muscular dystrophy and gene expression 总被引:16,自引:0,他引:16
Wilson KL 《Trends in cell biology》2000,10(4):125-129
Lamins and other nuclear envelope proteins organize nuclear architecture through structural attachments that vary dynamically during the cell cycle and cell differentiation. Genetic studies have now shown that people with mutations in either lamins A/C or emerin, a nuclear membrane protein, develop Emery-Dreifuss muscular dystrophy. A mouse model for this rare disease has been created by knocking out the gene that encodes lamin A/C. This article discusses these and other recent results in the wider context of nuclear envelope function, as a framework for thinking about the possible ways in which defects in nuclear envelope proteins can lead to disease. 相似文献
18.
Alessandro Cestelli Roberto Gristina Daniele Castiglia Carlo Di Liegro Giovanni Savettieri Guiseppe Salemi Italia Di Liegro 《Neurochemical research》1992,17(11):1049-1055
The effect of triiodothyronine (T3) on the rate of synthesis of nuclear proteins was studied during terminal differentiation of rat cortical neurons cultured in a serum-free medium. To this aim total and acid soluble nuclear proteins were analyzed by different electrophoretic techniques. Our results show that: 1) during maturation in vitro, neuronal nuclei undergo a dramatic change in the rate at which different classes of histones and high mobility group (HMG) proteins are synthesized; the synthetic activity, measured as incorporation of radioactive precursors into nuclear proteins, slows indeed down with age: especially evident is the decrease in core histones synthesis; at day 15, on the other hand, HMG 14 and 17 and ubiquitinated H2A (A24) are synthesized at a high rate, especially in T3-treated neurons; 2) neurons treated with T3 show, at any age tested, a higher level of lysine incorporation into nuclear proteins; 3) even if during the first days of culture neurons synthesize core histones more actively in the presence of T3, there is no accumulation of these proteins at later stages, as compared with untreated cells. Possible implications of these data and relationship with the chromatin rearrangement which accompanies neuronal terminal differentiation are discussed. 相似文献
19.
20.
Filosto S Ashfaq M Chung S Fry W Goldkorn T 《The Journal of biological chemistry》2012,287(1):514-522
We previously presented that the neutral sphingomyelinase 2 (nSMase2) is the only SMase activated in human airway epithelial (HAE) cells following exposure to oxidative stress (ox-stress), yielding ceramide accumulation and thereby inducing apoptosis. Furthermore, we reported that nSMase2 is a phospho-protein in which the level of phosphorylation controls nSMase2 activation induced by ox-stress. Here we identify five specific serines that are phosphorylated in nSMase2 and demonstrate that their phosphorylation controls the nSMase2 activity upon ox-stress exposure in an interdependent manner. Furthermore, we show that the nSMase2 protein stability and thus its level of expression is also post-translationally regulated by these five serine phosphorylation sites. This study provides initial structure/function insights regarding nSMase2 phosphorylation sites and offers some new links for future studies aiming to fully elucidate nSMase2 regulatory machinery. 相似文献