首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Bioclimatic conditions have been assessed for a large urban area located in the tropical highlands of central Mexico using the indices (in °C) of resultant temperature (RT) and effective temperature (ET). The well-developed heat island effect the city generates, reduces the number of nights categorized as cold (ET between 5 and 15° C) to cool (ET from 15 to 18.5° C). Most days fall in the cold to cool range and during the warm season (April to June) the bioclimate of Mexico City is mostly within the neutral (comfort) range. The effect of the nocturnal (to the west) and daytime (to the east of the town) heat island is noticeable in the central and northern sectors. The daytime heat island located in these regions, albeit small (urban air temperature 2–3° C greater than rural), compared with the nocturnal heat island intensity (9–10° C) still adds energy to the already heated afternoon urban air. ET values in the north and central sectors approach the threshold for comfort (ET of 25° C) during the warm months around noon. It is not surprising to find that as the nocturnal heat island has increased over the years (1921–1985) as the city grew, so has the ET for the central district and indicating the dominating role of temperature in the ET index. Assessment of the diurnal cycle of bioclimatic conditions in downtown Mexico City by means of two empirical indices (effective temperature and thermopreferendum) throughout the years gave similar results to those obtained from the application of Fanger’s predicted mean vote (PMV) model. An attempt has been made to characterize four bioclimatic zones in the capital city. Received: 8 March 1994 / Revised: 15 July 1996 / Accepted: 9 September 1996  相似文献   

2.
The concept of physiologically equivalent temperature (PET) has been applied to the analysis of thermal bioclimatic conditions in Freiburg, Germany, to show if days with extreme bioclimatic conditions will change and how extreme thermal conditions can be modified by changes in mean radiant temperature and wind speed. The results show that there will be an increase of days with heat stress (PET > 35°C) in the order of 5% (from 9.2% for 1961–1990) and a decrease of days with cold stress (PET < 0°C) from 16.4% to 3.8% per year. The conditions can be modified by measures modifying radiation and wind speed in the order of more than 10% of days per year by reducing global radiation in complex structures or urban areas.  相似文献   

3.
Diving birds can lose significant body heat to cold water, but costs can be reduced if heat from exercising muscles or the heat increment of feeding (HIF) can substitute for thermogenesis. Potential for substitution depends jointly on the rate of heat loss, the rate of heat produced by exercise, and the level of HIF. To explore these interactions, we measured oxygen consumption by lesser scaup ducks (Aythya affinis) diving to depths of 1.2 and 2 m at thermoneutral (23°C) and sub-thermoneutral (18 and 8°C) temperatures. Birds dove while fasted and when feeding on blue mussels (Mytilus edulis). Substitution occurred if HIF or costs of diving above resting metabolic rate (RMR) were lower at 18 or 8°C than at 23°C, indicating reduction in the thermoregulatory part of RMR. For fasted scaup diving to 1.2 m, substitution from exercise heat was not apparent at either 18 or 8°C. At 2 m depth, dive costs above RMR were reduced by 5% at 18°C and by 40% at 8°C, indicating substitution. At 1.2 m depth (with voluntary intake of only 14–17% of maintenance requirements), HIF did not differ between temperatures, indicating no substitution. However, at 2 m (intake 13–25% of maintenance), substitution from HIF was 23% of metabolizable energy intake at 18°C and 22% at 8°C. These results show that even with low HIF due to low intake rates, substitution from HIF can add to substitution from the heat of exercise.  相似文献   

4.
Water spray cooling during handling of feedlot cattle   总被引:1,自引:0,他引:1  
Activities involved in receiving or working (e.g., sorting, dehorning, castration, weighing, implanting, etc.) of feedlot cattle cause an increase in body temperature. During hot weather the increased body temperature may disrupt normal behaviors including eating, which can be especially detrimental to the well-being and performance of the animals. Sprinkle cooling of animals has been successfully employed within the pen; however, added moisture to the pens’ surface increases odor generation from the pen. A study was conducted to investigate the effectiveness of a single instance of wetting an animal within the working facility instead of in the pen, which could potentially provide extra evaporative cooling to offset the added heat produced by activity. Sixty-four cross-bred heifers were assigned to one of eight pens on the basis of weight. On four separate occasions during hot conditions (average temperature 28.2 ± 1.9°C, 29.1 ± 2.0°C, 28.9 ± 3.0°C, and 26.8 ± 1.6°C; with the temperature ranging from 22.6 to 32.5°C during the trials), the heifers were moved from their pens to and from the working facility (a building with a scale and squeeze chute located 160–200 m away). While in the squeeze chute, four of the pens of heifers were sprinkle cooled and the remaining four pens were worked as normal. The heifers that were treated had a body temperature that peaked sooner (31.9 ± 0.63 min compared to 37.6 ± 0.62) with a lower peak body temperature (39.55 ± 0.03°C compared to 39.74 ± 0.03°C), and recovered sooner (70.5 ± 2.4 min compared to 83.2 ± 2.4 min). The treated animals also had a lower panting score, a visual assessment of level of cattle heat stress (1.1 ± 0.2 compared to 1.16 ± 0.2). The behavior measurements that were taken did not indicate a change in behavior. It was concluded that while a single instance of wetting an animal within the working facility did not completely offset the increase in body temperature, it was beneficial to the animals without needing to add water to the pen surface, thus reducing the potential for odor generation.  相似文献   

5.
Elevated soil and air temperatures in urban heat islands have been exerting evolutionary pressure on organisms for decades in some cities. We measured thermal reaction norms (18–26 °C) for growth rate of four species of common chitinolytic fungi from an oak forest in an urban heat island and a corresponding rural area. Urban isolates of Chrysosporium pannorum and Trichoderma koningii grew faster than rural isolates at 26 °C, but grew slower than rural isolates at 18 °C. Urban isolates of Torulomyces lagena and Penicillium bilaii grew as fast or faster than rural isolates at all temperatures. These differences in thermal reaction norms between urban and rural isolates suggest that urbanization has caused both thermal specialization and counter-gradient variation in the fungal community.  相似文献   

6.

This study investigated the influence of thermal treatment (30 °C to 110 °C, 30 min) on the physicochemical and rheological properties of an emulsion stabilized by black tilapia (Oreochromis mossambicus) skin at pH 4. The protein pattern of tilapia gelatin did not have any significant difference after the gelatin was heated within a temperature range of 30 °C to 70 °C. However, at 90 °C and 110 °C, denaturation occurred where α-, β- and γ-chains of the gelatin were degraded, leading to a concomitant increase in low molecular peptides. The emulsion stability was investigated through a particle size analyzer, zeta potential, microscopic observation and creaming index. The gelatin emulsion was physically stable at 30 °C to 70 °C with a mean droplet size of less than 13 μm. When the heating temperature was increased to 90 °C and 110 °C, the emulsion showed a pronounced increase in droplet size due to coalescence. The gelatin emulsion heated at 90 °C and 110 °C also displayed instability against creaming after storage at room temperature for 7 days. As the heating temperature increased, the gelatin emulsion exhibited a decrease in apparent viscosity and the flow behavior changed from shear thinning to Newtonian. The rheological data also showed that the storage modulus (G′) of emulsion became more frequency dependent as the heating temperature increased, indicating weak droplet interactions. The tilapia gelatin emulsion was physically unstable when subjected to thermal treatment above 70 °C. The data reported in this study provides useful insight into the formulation of acidic food emulsions that require thermal treatment.

  相似文献   

7.
During long-term monitoring (more than 20 years) of the hydrologic regime at 20 mountainous sites in the Czech Republic (altitude 600–1400 m a.s.l.; vegetation season April-September; mean air temperature 8–10°C; mean total precipitation 400–700 mm; mean duration of sunshine 1100–1300 hours; mean potential transpiration 200–250 mm) it was found that plant temperature does not rise above about 25°C when plants transpire. According to the ecological optimality theory, the phytocenosis that is able to survive unfavourable conditions and produce the biggest amount of phytomass will prevail at sites occurring in long-term stable natural conditions. Simulation of phytomass productivity based on the optimum temperature for plant growth showed that plants with an optimum leaf temperature of about 25°C can survive the unfavourable conditions and produce the largest amount of phytomass at the site studied in the long-term.  相似文献   

8.
Wind is one of the main factors affecting people's outdoor thermal sensation. Ongoing urbanization and urban densification are transforming the urban climate and complicating the pedestrian-level wind environment. Therefore, the main aim of this research is to evaluate the potential wind-cooling effect on human outdoor thermal conditions. Accordingly, the current research attempts determine the best wind directions for thermal comfort at the studied stations and how these factors will be changed under the effects of global warming. Outdoor thermal conditions were modeled based on the physiologically equivalent temperature (PET) thermal index using RayMan software for the decades of the 2000s and the 2040s in different climate types of Iran (Csb, BWh, Csa, and BSh) To estimate the potential cooling effect of wind, the PET was calculated (1) under actual wind conditions, and (2) under calm wind (0.05 m/s) conditions. Then, the ΔPET for these two conditions, which indicates the cooling potential effect (CPE) of the wind, was calculated for four representative stations (Ardebil, Bandar Abbas, Gorgan, and Shiraz). In comparison with the 2000s, the results indicated that by the 2040s, the predicted wind cooling potential will have increased in Ardebil, Shiraz, Bandar Abbas and Gorgan (CPE of 13.2 °C, 13.1 °C, 11.2 °C, and 11 °C, respectively). Based on the overall average of two climate change scenarios (A2 and B1) used in this study, the occurrence of “comfortable” conditions by the 2040s will have increased in Bandar Abbas, Shiraz, and Ardebil by 1.1%, 0.4%, and 0.3%, respectively, while it will have decreased in Gorgan by 1.5%. Accounting for the cooling effect of wind, the comfort cooling potential of wind is predicted to rise by an average of 1.6 °C in the 2040s compared with the 2000s in all the studied stations. Therefore, this will affect the microclimates positively and could reduce the urban heat island effects.  相似文献   

9.
Pleasant outdoor thermal conditions depend on a wide range of climatic elements. The impact of rainfall events, as important climatic elements, on providing thermal comfort, has been less explored in the available literature. The work presented herein investigates the impact of Rainy Days as well as a Day Prior to (Dprior) and a Day Post rain (Dpost) events on thermal conditions in the southern coastal region of the Caspian Sea. In this study, rainfall events during 1961–2017 observational period were categorized based on their intensity. Then, human thermal comfort during non-rainy (sunny) and rainy days was estimated and compared by using the radiation-driven Physiological Equivalent Temperature (PET) index, Universal Thermal Climate Index (UTCI) and Perceived Temperature (PT) index. Furthermore, difference between the average of thermal conditions in rainy days compared to a day prior and a day post rain events was calculated separately for comfort, cold and heat stress thresholds of each bioclimatic index. Finally, the correlation between the average of indices for rainy days and the frequency of rainfall events of each specific year was computed. Results suggested that overall average of studied indices for all rainy days is lower than the average for days prior and post the rain events. PET index has shown to be most impacted and reduced as a result of rain events and therefore more indicative of a cool ing effect. The observed difference in total average of PET in rainy days compared to non-rainy days were 8.30 °C, 5.86 °C and 8.85 °C for Babolsar, Rahst and Gorgan stations, respectively. Generally, the cooling effect of rain events on the temperature for a day prior rain events is higher than a day post rainfall. Finally, the trend analysis on rainy days in the studied period revealed that the average of bioclimatic indices in western stations (Babolsar and Rasht) are increasing whereas a decreasing trend was observed for Gorgan as more of an eastern station.  相似文献   

10.
Tunas (family Scombridae) are exceptional among most teleost fishes in that they possess vascular heat exchangers which allow heat retention in specific regions of the body (termed ‘regional heterothermy’). Seemingly exclusive to heterothermic fishes is a markedly reduced temperature dependence of blood–oxygen (blood–O2) binding, or even a reversed temperature dependence where increasing temperature increases blood–O2 affinity. These unusual binding properties have been documented in whole blood and in haemoglobin (Hb) solutions, and they are hypothesised to prevent oxygen loss from arteries to veins within the vascular heat exchangers and/or to prevent excessive oxygen unloading to the warm tissues and ensure an adequate supply of oxygen to tissues positioned efferent to the heat exchangers. The temperature sensitivity of blood–O2 binding has not been characterised in an ectothermic scombrid (mackerels and bonitos), but the existence of the unusual binding properties in these fishes would have clear implications for their proposed association with regional heterothermy. Accordingly, the present study examined oxygenation of whole blood of the chub mackerel (Scomber japonicus) at 10, 20 and 30°C and at 0.5, 1 and 2% CO2. Oxygen affinity was generally highest at 20°C for all levels of CO2. Temperature-independent binding was observed at low (0.5%) CO2, where the PO2 at 50% blood–O2 saturation (P 50) was not statistically different at 10 and 30°C (2.58 vs. 2.78 kPa, respectively) with an apparent heat of oxygenation (∆H°) close to zero (−6 kJ mol−1). The most significant temperature-mediated difference occurred at high (2%) CO2, where the P 50 at 10°C was twofold higher than that at 20°C with a corresponding ∆H° of +43 kJ mol−1. These results provide clear evidence of independent and reversed open-system temperature effects on blood oxygenation in S. japonicus, and it is therefore speculated that these unusual blood–O2 binding characteristics may have preceded the evolution of vascular heat exchangers and regional heterothermy in fishes.  相似文献   

11.
The objective of this study was to investigate thermoregulatory responses to heat in tropical (Malaysian) and temperate (Japanese) natives, during 60 min of passive heating. Ten Japanese (mean ages: 20.8 ± 0.9 years) and ten Malaysian males (mean ages: 22.3 ± 1.6 years) with matched morphological characteristics and physical fitness participated in this study. Passive heating was induced through leg immersion in hot water (42°C) for 60 min under conditions of 28°C air temperature and 50% RH. Local sweat rate on the forehead and thigh were significantly lower in Malaysians during leg immersion, but no significant differences in total sweat rate were observed between Malaysians (86.3 ± 11.8 g m−2 h−1) and Japanese (83.2 ± 6.4  g m−2 h−1) after leg immersion. In addition, Malaysians displayed a smaller rise in rectal temperature (0.3 ± 0.1°C) than Japanese (0.7 ± 0.1°C) during leg immersion, with a greater increase in hand skin temperature. Skin blood flow was significantly lower on the forehead and forearm in Malaysians during leg immersion. No significant different in mean skin temperature during leg immersion was observed between the two groups. These findings indicated that regional differences in body sweating distribution might exist between Malaysians and Japanese during heat exposure, with more uniform distribution of local sweat rate over the whole body among tropical Malaysians. Altogether, Malaysians appear to display enhanced efficiency of thermal sweating and thermoregulatory responses in dissipating heat loss during heat loading. Thermoregulatory differences between tropical and temperate natives in this study can be interpreted as a result of heat adaptations to physiological function.  相似文献   

12.
This paper examines the influence of a medium-sized city (Szeged, Hungary) on the bioclimatological conditions of human beings. With the help of suitable indices for the available data set, differences in the annual and diurnal variation of human bioclimatic characteristics between an urban and rural environment are evaluated over a 3-year period. These indices are the thermohygrometric index (THI, defined by air temperature and relative humidity), the relative strain index (RSI, defined by air temperature and vapour pressure) and the number of ”beergarden days” (defined by air temperature at 2100 hours). In urban and rural areas, ”hot” THI conditions characterize 6% and 1% of the year, ”comfortable” conditions 30% and 20%, ”cool” conditions 10% and 12%, and ”cold” conditions 54% and 66% respectively. Over longer periods (e.g. one, month) RSI remains below the threshold value for strong heat stress in the city. The monthly frequencies of beergarden days show that these days appears from May until October and the city has almost twice as many pleasant evenings as the rural areas. Consequently, the city favourably modifies the main climatological elements within the general climate of its region; periods likely to be comfortable are therefore found more frequently in the city than in rural areas. Received: 24 November 1998 / Revised: 14 June 1999 / Accepted: 4 August 1999  相似文献   

13.
Models of impacts of climate change on species are generally based on correlations between current distributions and climatic variables, rather than a detailed understanding of the mechanisms that actually limit distribution. Many of the vertebrates endemic to rainforests of northeastern Australia are restricted to upland forests and considered to be threatened by climate change. However, for most of these species, the factors controlling their distributions are unknown. We examined the role of thermal intolerance as a possible mechanism limiting the distribution of Pseudochirops archeri (green ringtail possum), a specialist arboreal folivore restricted to rainforests above an altitude of 300 m in Australia’s Wet Tropics. We measured short-term metabolic responses to a range of ambient temperatures, and found that P. archeri stores heat when ambient temperatures exceed 30°C, reducing water requirements for evaporative cooling. Due to the rate at which body temperature increases with ambient temperatures >30°C, this strategy is not effective over periods longer than 5 h. We hypothesise that the distribution of P. archeri is limited by interactions between (i) the duration and severity of extreme ambient temperatures (over 30°C), (ii) the scarcity of free water in the rainforest canopy in the dry season, and (iii) constraints on water intake from foliage imposed by plant secondary metabolites and fibre. We predict that dehydration becomes limiting for P. archeri where extreme ambient temperatures (>30°C) persist for more than 5 h per day over 4–6 days or more. Consistent with our hypothesis, the abundance of P. archeri in the field is correlated with the occurrence of extreme temperatures, declining markedly at sites where the average maximum temperature of the warmest week of the year is above 30°C. Assuming the mechanism of limitation is based on extreme temperatures, we expect impacts of climate change on P. archeri to occur in discrete, rapid events rather than as a slow contraction in range.  相似文献   

14.
We present a reconstruction of forest history and climatic change based on 11 pollen records from eight sites, all located in the lower montane forest belt of the northern Andes in Colombia. We compared records from the Popayán area in southern Colobia, Timbio (1750 m), Genagra (1750 m) and Pitalito (1300 m) and the new Piagua (1700 m) record with the records from Lusitania (1500 m), Libano (1820 m), Pedro Palo (2000 m) and Ubaqué (2000 m) from Central Colombia. The changes of the altitudinal position of the lower/upper montane (= subandean/Andean, S/At) forest belt transition were used to estimate temperature change for the last 50 kyr. We infer a Last Glacial Maximum (LGM) temperature drop of 6°–7°C at 1700 m, and a steeper LGM lapse rate of 0.76°C/100 m compared to today (ca. 0.6°C/100 m). Around 50 uncal. kyr B.P. the temperature at 1700 m was ca. 3°C lower than today. Until 20 uncal. kyr B.P. the temperature oscillated and gradually decreased. During the LGM, temperature was down to ca. 6°–7°C lower than today. After the LGM, temperature increased and ca. 14 uncal. kyr B.P. it was 2°–3°C lower than today (S/At at ca. 1800 m, 500 m below present elevation; Susacá interstadial). An unquantified cooling (Ciega stadial) followed. During ca. 12.3–11.7 uncal. kyr B.P. the S/At shifted upslope to 2100 m indicating a temperature of 1°–2°C cooler than today (Guantiva interstadial). From 11.7–10.9 uncal. kyr B.P. the S/At was at 1800 m indicating that the temperature was ca. 3°C lower than today and wet conditions prevailed (partly coinciding with the El Abra stadial). The period 10.9–9 uncal. kyr B.P. was also cool, but drier. During 9–7.5 uncal. kyr B.P. temperature was ca. 1°C warmer relative to today (mid Holocene hypsithermal). During the last 5 kyr the presence of cultivated plants demonstates human colonization of the lower montane zone in Colombia. Received June 14, 2000 / Accepted December 19, 2000  相似文献   

15.
People adapt to thermal environments, such as the changing seasons, predominantly by controlling the amount of clothing insulation, usually in the form of the clothing that they wear. The aim of this study was to determine the actual daily clothing insulation on sedentary human subjects across the seasons. Thirteen females and seven males participated in experiments from January to December in a thermal chamber. Adjacent months were grouped in pairs to give six environmental conditions: (1) January/February = 5°C; (2) March/April = 14°C; (3) May/June = 25°C; (4) July/August = 29°C; (5) September/October = 23°C; (6) November/December = 8°C. Humidity(45 ± 5%) and air velocity(0.14 ± 0.01 m/s) were constant across all six experimental conditions. Participants put on their own clothing that allowed them to achieve thermal comfort for each air temperature, and sat for 60 min (1Met). The clothing insulation (clo) required by these participants had a significant relationship with air temperature: insulation was reduced as air temperature increased. The range of clothing insulation for each condition was 1.87–3.14 clo at 5°C(Jan/Feb), 1.62–2.63 clo at 14°C(Mar/Apr), 0.87–1.59 clo at 25°C(May/Jun), 0.4–1.01 clo at 29°C(Jul/Aug), 0.92–1.81 clo at 23°C (Sept/Oct), and 2.12–3.09 clo at 8°C(Nov/Dec) for females, and 1.84–2.90 clo at 5°C, 1.52–1.98 clo at 14°C, 1.04–1.23 clo at 25°C, 0.51–1.30 clo at 29°C, 0.82–1.45 clo at 23°C and 1.96–3.53 clo at 8°C for males. The hypothesis was that thermal insulation of free living clothing worn by sedentary Korean people would vary across seasons. For Korean people, a comfortable air temperature with clothing insulation of 1 clo was approximately 27°C. This is greater than the typical comfort temperature for 1 clo. It was also found that women clearly increased their clothing insulation level of their clothing as winter approached but did not decrease it by the same amount when spring came.  相似文献   

16.
When aspirating human red blood cells (RBCs) into 1.3 μm pipettes (ΔP = −2.3 kPa), a transition from blocking the pipette below a critical temperature T c = 36.3 ± 0.3°C to passing it above the T c occurred (micropipette passage transition). With a 1.1 μm pipette no passage was seen which enabled RBC volume measurements also above T c. With increasing temperature RBCs lost volume significantly faster below than above a T c = 36.4 ± 0.7 (volume transition). Colloid osmotic pressure (COP) measurements of RBCs in autologous plasma (25°C ≤ T ≤ 39.5°C) showed a T c at 37.1 ± 0.2°C above which the COP rapidly decreased (COP transition). In NMR T1-relaxation time measurements, the T1 of RBCs in autologous plasma changed from a linear (r = 0.99) increment below T c = 37 ± 1°C at a rate of 0.023 s/K into zero slope above T c (RBC T1 transition). In conclusion: An amorphous hemoglobin–water gel formed in the spherical trail, the residual partial sphere of the aspirated RBC. At T c, a sudden fluidization of the gel occurs. All changes mentioned above happen at a distinct T c close to body temperature. The T c is moved +0.8°C to higher temperatures when a D2O buffer is used. We suggest a mechanism similar to a “glass transition” or a “colloidal phase transition”. At T c, the stabilizing Hb bound water molecules reach a threshold number enabling a partial Hb unfolding. Thus, Hb senses body temperature which must be inscribed in the primary structure of hemoglobin and possibly other proteins. This article is dedicated to Ludwig Artmann who died on July 21, 2001 on a beautiful summer day during which we performed experiments far away. Ludwig Artmann was a man who encouraged us to be strong and to study hard no matter what were the costs.  相似文献   

17.
Of the few studies that have examined in situ coral growth responses to recent climate change, none have done so in equatorial waters subject to relatively high sea temperatures (annual mean >27°C). This study compared the growth rate of Porites lutea from eight sites at Phuket, South Thailand between two time periods (December 1984–November 1986 and December 2003–November 2005). There was a significant decrease in coral calcification (23.5%) and linear extension rates (19.4–23.4%) between the two sampling periods at a number of sites, while skeletal bulk density remained unchanged. Over the last 46 years, sea temperatures (SST) in the area have risen at a rate of 0.161°C per decade (current seasonal temperature range 28–30°C) and regression analysis of coral growth data is consistent with a link between rising temperature and reduced linear extension in the order of 46–56% for every 1°C rise in SST. The apparent sensitivity of linear extension in P. lutea to increased SST suggests that corals in this part of the Andaman Sea may already be subjected to temperatures beyond their thermal optimum for skeletal growth. Communicated by Environment Editor Prof. Rob van Woesik  相似文献   

18.
Evaluation of mean skin temperature formulas by infrared thermography   总被引:5,自引:0,他引:5  
 To study the reliabiliity of formulas for calculating mean skin temperature (T sk), values were computed by 18 different techniques and were compared with the mean of 10,841 skin temperatures measured by infrared thermography. One hundred whole-body infrared thermograms were scanned in ten resting males while changing the air temperature from 40° C to 4° C. Local, regional average and mean skin temperatures were obtained using an image processing system. The agreement frequency, defined as the percentage of the calculated T sk values which agreed with the corresponding infrared thermographic T sk within ±0.2° C, ranged for with the various formulas from 7% to 80%. In many sites, the local skin temperature did not coincide with the regional average skin temperature. When the local skin temperatures which showed the highest percentage similarity to the regional average skin temperature within ±0.4° C were applied to the formula, the agreement frequency was markedly improved for all formulas. However, the agreement frequency was not affected by changing the weighting factors from specific constants to individually measured values of regional surface area. By applying the physiologically reliable accuracy range of ±0.2° C in the moderate and ±0.4° C in the cool condition, agreement frequencies of at least 95% were observed in formulas involving seven or more skin temperature measurement sites, including the hand and foot. We conclude that calculation of a reliable mean skin temperature must involve more than seven skin temperature measurement sites regardless of ambient temperature. Optimal sites for skin temperature measurement are proposed for various formulas. Received: 2 December 1996 / Accepted: 25 June 1997  相似文献   

19.
1. Mutualisms may be particularly vulnerable to climate change as interacting species are likely to respond differently, which could destabilise interactions. 2. Temperate zone insects typically experience mean temperatures below their thermal optima, making them less vulnerable than tropical insects to small increases in mean temperature. However, they are likely to experience a higher frequency of extreme heat events, putting mutualism persistence in jeopardy. 3. This study investigated the potential impacts of climate change on Pleistodontes imperialis, a temperate Australian fig wasp that pollinates Port Jackson figs (Ficus rubiginosa). Wasp emergence and longevity were measured at temperatures ranging from those commonly experienced in nature (25 °C) to high values (> 40 °C) that are currently infrequent, but which are becoming more common with climate change. 4. Wasp emergence was unaffected by temperatures up to 39 °C, but it declined drastically above 39 °C. Adult longevity was unaffected by temperatures up to 30 °C, but decreased at 35 °C and above. Low humidity reduced wasp longevity across all temperatures. 5. Fitness reductions were observed at temperatures ~5 °C above the summer daily mean maximum, suggesting that P. imperialis has a high thermal tolerance, but is vulnerable to extreme heat. Figs located in the shade may provide protected microhabitats under hot conditions. 6. Tropical pollinators may be threatened by small increases in mean temperature. In contrast, it is shown here that temperate pollinators may face a different primary threat from climate change – the increasing frequency of extreme heat events – despite their higher thermal tolerances.  相似文献   

20.
Six Angus steers (319 ± 8.5 kg) were assigned to one of two groups (hot or cold exposure) of three steers each, and placed into two environmental chambers initially maintained at 16.5–18.8°C air temperature (T a). Cold chamber T a was lowered to 8.4°C, while T a within the hot chamber was increased to 32.7°C over a 24-h time period. Measurements included respiration rate, and air and body (rectal and skin) temperatures. Skin temperature was measured at shoulder and rump locations, with determination of sweat rate using a calibrated moisture sensor. Rectal temperature did not change in cold or hot chambers. However, respiration rate nearly doubled in the heat (P < 0.05), increasing when T a was above 24°C. Skin temperatures at the two locations were highly correlated (P < 0.05) with each other and with T a. In contrast, sweat rate showed differences at rump and shoulder sites. Sweat rate of the rump exhibited only a small increase with T a. However, sweat rate at the shoulder increased more than four-fold with increasing T a. Increased sweat rate in this region is supported by an earlier report of a higher density of sweat glands in the shoulder compared to rump regions. Sweat rate was correlated with several thermal measurements to determine the best predictor. Fourth-order polynomial expressions of short-term rectal and skin temperature responses to hot and cold exposures produced r values of 0.60, 0.84, and 0.98, respectively. These results suggest that thermal inputs other than just rectal or skin temperature drive the sweat response in cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号