首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
On the multiple forms of acid phosphatase in pig liver   总被引:1,自引:0,他引:1  
  相似文献   

3.
1. Horse liver acid phosphatase was separated into two partially purified fractions differing in molecular weight (enzyme I about 100 00, enzyme II about 25 000). 2. Enzyme I was separated into several subfractions by DEAE-cellulose chromatography and isoelectric focusing. 3. Molecular weight, sedimentation coefficient and effective molecular radii were determined for acid phosphatases I and II by gel filtration and density-gradient centrifugation.  相似文献   

4.
Rat liver ornithine decarboxylase induced by injection of thioacetamide has been separated into at least two fractions by covalent chromatography on an activated thiol-Sepharose 4B column. The two major fractions could be distinguished by ion exchange chromatography and electrophoresis on acrylamide gels. In addition, the two forms displayed different Km values for ornithine. Although the two forms are separable, they display identical antigenic properties, pH optima, and they appear to be the same molecular size. The biological significance or the relationship between multiple forms of ornithine decarboxylase is not understood.  相似文献   

5.
Synthase phosphatase, phosphorylase phosphatase and histone phosphatase in rat liver were measured using as substrates purified liver synthase D, phosphorylase alpha and 32P-labelled phosphorylated f1 histone, respectively. The three phosphatase enzymes had different sedimentation characteristics. Both synthase phosphatase and phosphorylase phosphatase were found to sediment with the microsomal fraction under our experimental conditions. Only 10% of histone phosphatase was in this fraction; the majority was in the cytosol. No change in histone phosphatase was observed in the adrenalectomized fasted rat whereas synthase phosphatase and phosphorylase phosphatase activities were decreased 5-10 fold. Fractionation of liver extract with ethanol produced a dissociation of the three phosphatase activities. When a partially purified fraction was put on a DEAE-cellulose column, synthase phosphatase and phosphorylase phosphatase both exhibited broad elution profiles but their activity peaks did not coincide. Histone phosphatase eluted as a single discrete peak. When the supernatant of CaCl2-treated microsomal fraction was put on a Sepharose 4B column, the majority of synthase phosphatase was found to elute with the larger molecular weight proteins whereas the majority of phosphorylase phosphatase eluted with the smaller species. Histone phosphatase migrated as a single peak and was of intermediate size. Synthase phosphorylase phosphatase by synthase D (Ki approximately 2 units/ml). The inhibition of synthase phosphatase by phosphorylase alpha was kinetically non-competitive with substrate. Histone phosphatase activity was not inhibited by synthase D or by phosphorylase alpha. The above results suggest that different proteins are involved in the dephosphorylation of synthase D, phosphorylase alpha and histone in the cell.  相似文献   

6.
Three enzyme forms (CR1, CR2 and CR3) of carbonyl reductase were purified from chicken liver with using 4-benzoylpyridine as a substrate. CR1 was a dimeric enzyme composed of two identical 25-kD subunits. CR2 and CR3 were monomeric enzymes whose molecular weights were both 32 kD. CR1 exhibited 17 beta-hydroxysteroid dehydrogenase activity as well as carbonyl reductase activity in the presence of both NADP(H) and NAD(H). CR2 and CR3 had similar properties with regard to substrate specificity and inhibitor sensitivity. They could exhibit the activity only with NADPH and had no hydroxysteroid dehydrogenase activity. CR2 and CR3 cross-reacted with anti-chicken kidney carbonyl reductase antibody, though CR1 did not. The results suggest that CR1 is a hydroxysteroid dehydrogenase, and CR2 and CR3 are similar to each other and to the kidney enzymes.  相似文献   

7.
The polyisoprenyl phosphate dephosphorylating activity of rat liver has been investigated with regard to substrate specificity, subcellular distribution, and transmembrane orientation. Total liver microsomes were employed as a source of enzymatic activity against a variety of 32P-labeled substrates. Susceptibility to dephosphorylation followed the order solanesyl phosphate greater than alpha-cis-polyprenyl 19-phosphate = alpha-trans-polyprenyl 19-phosphate = dihydrosolanesyl phosphate greater than (S)-dolichyl 19-phosphate = (R)-dolichyl 19-phosphate = (R,S)-dolichyl 11-phosphate. There appeared to be no major effect of chain length from 11 to 20 isoprenes. Data obtained from inhibition studies using solanesyl [32P]phosphate as substrate were consistent with the substrate specificity studies and suggested that a single activity is responsible. With dolichyl [32P]phosphate as substrate, the phosphatase specific activity of the subcellular fractions prepared from rat liver was found to follow the sequence Golgi = smooth endoplasmic reticulum greater than plasma membrane greater than lysosomes = rough endoplasmic reticulum greater than nuclei greater than mitochondria. Transmembrane topography studies, using enzyme latency as a criterion, were consistent with an orientation of the active site facing the cytoplasm.  相似文献   

8.
Characterization of dolichyl diphosphate phosphatase from rat liver   总被引:1,自引:0,他引:1  
Dolichyl diphosphate phosphatase (DolPPase) has been characterized in rat liver. Subcellular distribution studies indicate that the enzyme is localized in the endoplasmic reticulum. The in vitro enzymatic activity is stimulated by EDTA, due to release of inhibition by trivalent cations found in the assay tubes. All di- and trivalent cations tested were inhibitory, with the trivalent ions Al3+ and Fe3+ showing greater than 70% inhibition at a concentration of 10 microM. The assay requires the presence of a detergent for optimal activity, with Triton X-100 giving maximum activity at 0.1%. The substrate specificity of DolPPase toward polyprenyl diphosphates has been determined and indicates that there is little preference of the enzyme for substrates of different chain length, and either stereochemical orientation or degree of saturation of the alpha-isoprene unit. Km values of 11-14 microM were obtained for all substrates tested. Preliminary studies on the transmembrane topology of the DolPPase using latency assays, indicate that the active site of the enzyme may reside on the cytoplasmic face of the endoplasmic reticulum.  相似文献   

9.
10.
Phenylhydrazine treatment induced hydroxymethylbilane synthase activity (EC 4.3.1.8) in rat spleen, erythrocytes and liver by 40-fold, 7.5-fold and 6-fold respectively. Five multiple forms of the enzyme were resolved by DEAE-cellulose chromatography. In the presence of phenylmethanesulphonyl fluoride only three forms, two major and one minor, were resolved by the fractionation, suggesting that two of the original forms arose by proteolytic modification. Heat treatment (70 degrees C) in the presence of proteinase inhibitor converted one of the major forms into the other major form. Product isomer analysis suggested that this heat-labile form represented an enzyme-substrate covalent intermediate and not a hydroxymethylbilane synthase-uroporphyrinogen III synthase complex. Identical elution profiles and kinetic properties of the enzymes from rat spleen and erythrocytes suggested that the enzyme isolated from spleen was possibly from stored erythrocytes. Sephadex G-75 chromatography of the heat-stable DEAE-cellulose-purified form yielded pure enzyme as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The Mr was found to be 43000 +/- 1500. Initial-velocity studies on all enzyme forms showed a hyperbolic dependence of velocity on substrate concentration, demonstrating the existence of a displacement-type mechanism. For the heat-stable form Vmax, varied with pH as a typical bell-shaped curve, indicating that two ionizable groups with pK values of 7.4 and 8.8 are important for catalysis. Km decreased with decreasing pH on the acid side of the pH optimum, suggesting the absence of ionization of a group with pK 7.4 in free enzyme or substrate.  相似文献   

11.
Synthase phosphatase, phosphorylase phosphatase and histone phosphatase in rat liver were measured using as substrate purified liver synthase D, phosphorylase a and 32P-labelled phosphorylated f1 histone, respectively. The three phosphatase enzymes had different sedimentation characteristics. Both synthase phosphatase and phosphorylase phosphatase were found to sediment with the microsomal fraction under our experimental conditions. Only 10% of histone phosphatase was in this fraction; the majority was in the cytosol. No change in histone phosphatase was observed in the adrenalectomized fasted rat whereas synthase phosphatase and phosphorylase phosphatase activities were decreased 5–10-fold. Fractionation of liver extract with ethanol produced a dissociation of the three phosphatase activities. When a partially purified fraction was put on a DEAE-cellulose column, synthase phosphatase and phosphorylase phosphatase both exhibited broad elution profiles but their activity peaks did not coincide. Histone phosphatase eluted as a single discrete peak. When the supernatant of CaCl2-treated microsomal fraction was put on a Sepharose 4B column, the majority of synthase phosphatase was found to elute with the larger molecular weight proteins whereas the majority of phosphorylase phosphatase eluted with the smaller species. Histone phosphatase migrated as a single peak and was of intermediate size. Synthase phosphatase was inhibited by phosphorylase a (Ki < 1 unit/ml) and phosphorylase phosphatase by synthase D (K1 ≈ units/ml). The inhibition of synthase phosphatase by phosphorylase a was kinetically non-competitive with substrate. Histone phosphatase activity was not inhibited by synthase D or by phosphorylase a. The above results suggest that different proteins are involved in the dephosphorylation of synthase D, phosphorylase a and histone in the cell.  相似文献   

12.
UDP-glucuronosyltransferase (EC 2.4.1.17) activity was solubilized from male Wistar rat liver microsomal fraction in Emulgen 911, and six fractions with the transferase activity were separated by chromatofocusing on PBE 94 (pH 9.4 to 6.0). Fraction I was further separated into Isoforms Ia, Ib and Ic by affinity chromatography on UDP-hexanolamine-Sepharose 4B. UDP-glucuronosyltransferase in Fraction III was further purified by rechromatofocusing (pH 8.7 to 7.5). UDP-glucuronosyltransferases in Fractions IV and V were purified by UDP-hexanolamine-Sepharose chromatography. The transferase isoforms in Fractions II, III, IV and V were finally purified by h.p.l.c. on a TSK G 3000 SW column. Purified UDP-glucuronosyltransferase Isoforms Ia (Mr 51,000), Ib (Mr 52,000), Ic (Mr 56,000), II (Mr 52,000), IV (Mr 53,000) and V (Mr 53,000) revealed single Coomassie Blue-stained bands on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Isoform III enzyme showed two bands of Mr 52,000 and 53,000. Comparison of the amino acid compositions by the method of Cornish-Bowden [(1980) Anal. Biochem. 105, 233-238] suggested that all UDP-glucuronosyltransferase isoforms are structurally related. Reverse-phase h.p.l.c. of tryptic peptides of individual isoforms revealed distinct 'maps', indicating differences in primary protein structure. The two bands of Isoform III revealed distinct electrophoretic peptide maps after limited enzymic proteolysis. After reconstitution with phosphatidylcholine liposomes, the purified isoforms exhibited distinct but overlapping substrate specificities. Isoform V was specific for bilirubin glucuronidation, which was not inhibited by other aglycone substrates. Each isoform, except Ia, was identified as a glycoprotein by periodic acid/Schiff staining.  相似文献   

13.
D-myo-Inositol 1,4,5-trisphosphate has been previously demonstrated to act as a second messenger for the hormonal mobilization of intracellular calcium in rat liver. In this study, the breakdown of D-myo-inositol 1,4,5-trisphosphate by a phosphatase activity was characterized. Using partially purified subcellular fractions, it was found that D-myo-inositol 1,4,5-trisphosphate phosphatase (I-P3ase) specific activity was highest in the plasma membrane fraction, while D-myo-inositol 1,4-bisphosphate phosphatase specific activity was highest in the cytosolic and microsomal fractions. The plasma membrane I-P3ase was Mg2+-dependent with optimal activity observed at 0.5-1.5 mM free Mg2+. The enzyme had a neutral pH optimum, suggesting that it was neither an acid nor alkaline phosphatase. Neither LiCl nor NaF inhibited the I-P3ase activity. However, both L-cysteine and dithiothreitol stimulated the activity 2-fold. Spermine (2.0 mM) inhibited the I-P3ase activity by 50%, while putrescine and spermidine had little or no effect.  相似文献   

14.
Yeast contains multiple forms of histone acetyltransferase   总被引:1,自引:0,他引:1  
We have assayed several methods to quantitatively recover yeast histone acetyltransferases in an attempt to study the multiplicity of enzymatic activities. Two methods, namely (NH4)2SO4 precipitation and salt dissociation of chromatin in 0.5 M NaCl, yielded convenient preparations of total histone acetyltransferases. DEAE-Sepharose chromatography of the crude extracts resulted in the separation of three peaks of activity when total yeast histones were used as substrate. However, the scanning of the enzymatic activity toward individual histones along the chromatography, achieved by determining the specific activity of the individual histones after incubating whole histones and [14C]acetyl-CoA with the chromatographic fractions, yielded four peaks. The first two peaks showed specificity toward H2B and H3, respectively. Although they partially overlapped, rechromatography on cation exchangers allowed us to resolve the two activities, and several criteria were used to prove that they correspond to different enzyme molecules. The last two peaks were H4-specific, but the present data suggest that one of the activities is chromatin-bound, whereas the other surely corresponds to the cytoplasmic B-form of the enzyme. The enzyme specific for yeast H2B acetylates chicken erythrocyte H2A, rather than H2B. The detected multiplicity of yeast histone acetyltransferases may correspond to the multiplicity of roles proposed for histone acetylation.  相似文献   

15.
Studies from several laboratories have demonstrated the existence of at least three separable forms of the hepatic enzyme, tyrosine aminotransferase. The significance of these separable forms of the enzyme isolated in vitro for the nature and regulation of the enzyme in vivo has been the subject of some controversy. The studies reported in this paper demonstrate the existence of a heat-labile, pH- and temperature-dependent, nondialyzable component associated predominantly with the lysosomal and mitochondrial fraction of rat liver which catalyzes the conversion of form II to forms III and IV of the enzyme. The activity of this conversion factor is not significantly affected by F?, molybdate ions, or two inhibitors of proteases. On the other hand, the cyanate ion completely inhibits the conversion of form II to forms III and IV of tyrosine aminotransferase, as do iodoacetate and oxidized glutathione. p-Chloromercuribenzoate also markedly inhibits the conversion. Kinetic studies suggest that the shift from one form to another follows the pathway: II to III to IV. Titration of the available sulfhydryl groups of the three forms of the enzyme demonstrates that form II possesses between 16 and 17 titratable SH groups per mole, while forms III and IV possess 15 and 13 or 14, respectively. The possible catalytic mechanism by which the conversion of the multiple forms of tyrosine aminotransferase is accomplished is discussed.  相似文献   

16.
17.
Using substrates purified from liver, the apparent Km values of synthase phosphatase ([UDPglucose--glycogen glucosyltransferase-D]phosphohydrolase, EC 3.1.3.42) and phosphorylase phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17) were found to be 0.7 and 60 units/ml respectively. The maximal velocity of phosphorylase phosphatase was more than a 100 times that of synthase phosphatase. In adrenalectomized, fasted animals there was a complete loss of synthase phosphatase but only a slight decrease in phosphorylase phosphatase when activity was measured using endogenous substrates in a concentrated liver extract. When assayed under optimal conditions with purified substrates, both activities were present but had decreased to very low levels. Mixing experiments indicated that synthase D present in the extract of adrenalectomized fasted animals was altered such that it was no longer a substrate for synthase phosphatase from normal rats. Phosphorylase a substrate on the other hand was unaltered and readily converted. When glucose was given in vivo, no change in percent of synthase in the I form was seen in adrenalectomized rats but the percent of phosphorylase in the a form was reduced. Precipitation of protein from an extract of normal fed rats with ethanol produced a large activation of phosphorylase phosphatase activity with no corresponding increase in synthase phosphatase activity. Despite the low phosphorylase phosphatase present in extracts of adrenalectomized fasted animals, ethanol precipitation increased activity to the same high level as obtained in the normal fed rats. Synthase phosphatase and phosphorylase phosphatase activities were also decreased in normal fasted, diabetic fed and fasted, and adrenalectomized fed rats. Both enzymes recovered in the same manner temporally after oral glucose administration to adrenalectomized, fasted rats. These results suggest an integrated regulatory mechanism for the two phosphatase.  相似文献   

18.
G J Smith  P H Pearce  I T Oliver 《Life sciences》1976,19(11):1763-1775
A particulate factor of rat liver is described which interconverts three forms of rat liver cytosolic tyrosine aminotransferase invitro with no alteration of enzyme activity. The factor appears to be a heat- and pH-sensitive lysosomal protein. The interconversion process is stimulated invitro by 2.5 mM MgCl2 and 2.5 mM ATP. Asparate aminotransferase multiple forms are also susceptible to invitro interconversion by the lysosomal factor. The properties of the factor explain several anomalous effects of invitro manipulation on the tyrosine aminotransferase forms which have been reported in the literature and implicate the form interconversion in the degradation of tyrosine aminotransferase.  相似文献   

19.
1. Phosphoprotein phosphatase (phosphoprotein phosphohydrolase EC 3.1.3.16) in the soluble fraction of rabbit liver which catalyzes the dephosphorylation of muscle phosphorylase a and phosphohistone (P-histone) was resolved into three active fractions by NaCl gradient elution from a DEAE-cellulose column (Fraction I, 11 and III in order of elution). They have different relative reaction rates for the two substrates and different degrees of stimulation by Mn-2+. Apparent Km values of Fraction I, II and III were 15, 20 and 16 muM for phosphorylase a, and 6.9, 5.3 and 4.4 muM for P-histone, respectively (with Mn-2+ in the assay mixture). 2. On sucrose density gradient centrifugation Fraction I and II were revealed to contain a major peak (7.0 S and 7.8 S, respectively) and a minor peak (4.0 S) of activity, while Fraction III contained only one peak (5.8 S). Freezing and thawing in the presence of 0.2 M mercaptoethanol dissociated all three fractions into subunits of similar molecular size (3.4 S), with concomitant enhancement of phosphorylase phosphatase activity. The Km values all became essentially the same (20 muM for phosphorylase a and 16 muM for P-histone). 3. The phosphorylase phosphatase and P-histone phosphatase activities could not be separated with any of the procedures described. Competition between the two phosphoprotein substrates was observed with some of the fractions.?  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号