首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The function of the Notch gene is required in cell interactions defining alternative cell fates in several developmental processes. The Notch gene encodes a transmembrane protein with 36 epidermal growth factor (EGF)-like repeats in its extracellular domain. This protein functions as a receptor that interacts with other transmembrane proteins, such as Serrate and Delta, which also have EGF repeats in their extracellular domain. The Abruptex mutations of the Notch locus are associated with amino acid substitutions in the EGF repeats 24-29 of the Notch protein. We have studied, in genetic combinations, the modifications of Notch function caused by Abruptex mutations. These mutations lead to phenotypes which are opposite to those caused by Notch deletions. The Abruptex phenotypes are modified by the presence of mutations in other loci, in particular in the genes Serrate and Delta as well as Hairless, and groucho. The results suggest that all Abruptex mutations cause stronger than normal Notch activation by the Delta protein. Some Abruptex alleles also display an insufficiency of N function. Abruptex alleles which produce stronger enhancement of Notch activation also display stronger Notch insufficiency. This insufficiency could be due to reduced ability of Abruptex proteins to interact with Notch ligands and/or to form functional Notch dimers.  相似文献   

2.
3.
The Notch signaling pathway plays an important role in development and physiology. In Drosophila, Notch is activated by its Delta or Serrate ligands, depending in part on the sugar modifications present in its extracellular domain. O-fucosyltransferase-1 (OFUT1) performs the first glycosylation step in this process, O-fucosylating various EGF repeats at the Notch extracellular domain. Besides its O-fucosyltransferase activity, OFUT1 also behaves as a chaperone during Notch synthesis and is able to down regulate Notch by enhancing its endocytosis and degradation. We have reevaluated the roles that O-fucosylation and the synthesis of GDP-fucose play in the regulation of Notch protein stability. Using mutants and the UAS/Gal4 system, we modified in developing tissues the amount of GDP-mannose-deshydratase (GMD), the first enzyme in the synthesis of GDP-fucose. Our results show that GMD activity, and likely the levels of GDP-fucose and O-fucosylation, are essential to stabilize the Notch protein. Notch degradation observed under low GMD expression is absolutely dependent on OFUT1 and this is also observed in Notch Abruptex mutants, which have mutations in some potential O-fucosylated EGF domains. We propose that the GDP-fucose/OFUT1 balance determines the ability of OFUT1 to endocytose and degrade Notch in a manner that is independent of the residues affected by Abruptex mutations in Notch EGF domains.  相似文献   

4.
Truncated Notch receptors have transforming activity in vitro and in vivo. However, the role of wild-type Notch signaling in neoplastic transformation remains unclear. Ras signaling is deregulated in a large fraction of human malignancies and is a major target for the development of novel cancer treatments. We show that oncogenic Ras activates Notch signaling and that wild-type Notch-1 is necessary to maintain the neoplastic phenotype in Ras-transformed human cells in vitro and in vivo. Oncogenic Ras increases levels and activity of the intracellular form of wild-type Notch-1, and upregulates Notch ligand Delta-1 and also presenilin-1, a protein involved in Notch processing, through a p38-mediated pathway. These observations place Notch signaling among key downstream effectors of oncogenic Ras and suggest that it might be a novel therapeutic target.  相似文献   

5.
Neurogenic and antineurogenic effects from modifications at the Notch locus   总被引:4,自引:0,他引:4  
The best studied mutations at the Notch locus produce a neurogenic phenotype, with a massive overgrowth of the nervous system at the expense of epidermis. We report here that, in the development of the adult peripheral nervous system, the Abruptex alleles of Notch have the opposite phenotype, namely an underproduction of sensory organs or sensilla. This arises primarily not from an arrest of the lineages that produce sensilla, from the degeneration of sensillar cells, or from the transformation into neurons of cells that normally secrete the cuticular components of a sensillum (as can happen in Notch alleles). Rather, our evidence argues strongly that the sensillar mother cells never form. This implies that the Notch protein plays a role in the process that first generates a difference between sensillar mother cells and ordinary epidermal cells. The number of sensilla formed on the wing of flies carrying multiple doses of Notch+ is virtually the same as that of wild type, i.e. the Abruptex phenotype is not reproduced to any significant extent. This suggests that the single amino acid substitutions that occur in Abruptex mutants confer on the protein some functionally distinctive feature, possibly more powerful intermolecular binding or altered stability.  相似文献   

6.
The mutant form of the intracellular asymmetrically localized Numb membrane-bound protein of Drosophila melanogaster suppresses the negative complementation of certain Abruptex (Ax) mutations of the Notch (N) locus encoding a transmembrane receptor protein in which the Ax mutations are mutations in the epidermal growth factor (EGF)-like repeats of the extracellular domain of the receptor. One model for how Ax mutants affect N function is that they are refractory to an antagonistic signal generated by an excess of N ligands. Genetically numb (nb) is an antagonist of N. In the absence of nb, cells follow the same fate as they would in the presence of a gain-of-function N allele, such as Ax. Numb has been shown to interact with the cytoplasmic domain of Notch. It is therefore suggested that numb counteracts the effect of Abruptex on Notch ligand binding, i.e. that Numb is an antagonist to the activation of the Notch signal generated by Notch ligands. Numb might accomplish this by interfering with the proteolytic cleavage of the Notch intracellular domain at the cell membrane. Thus, it seems possible that the mechanism of negative complementation of certain Ax mutants is the failure of this cleavage. Other possible mechanisms for negative complementation are also discussed.  相似文献   

7.
The novel pyrazolopyrimidine ligand, N,N-diethyl-2-[2-(4-methoxyphenyl)-5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-3-yl]-acetamide 1 (DPA-713), has been reported as a potent ligand for the peripheral benzodiazepine receptor (PBR) displaying an affinity of K(i)=4.7 nM. In this study, 1 was successfully synthesised and demethylated to form the phenolic derivative 6 as precursor for labelling with carbon-11 (t(1/2) = 20.4 min). [11C]1 was prepared by O-alkylation of 6 with [11C]methyl iodide. The radiochemical yield of [(11)C]1 was 9% (non-decay corrected) with a specific activity of 36 GBq/micromol at the end of synthesis. The average time of synthesis including formulation was 13.2 min with a radiochemical purity >98%. In vivo assessment of [11C]1 was performed in a healthy Papio hamadryas baboon using positron emission tomography (PET). Following iv administration of [11C]1, significant accumulation was observed in the baboon brain and peripheral organs. In the brain, the radioactivity peaked at 20 min and remained constant for the duration of the imaging experiment. Pre-treatment with the PBR-specific ligand, PK 11195 (5 mg/kg), effectively reduced the binding of [11C]1 at 60 min by 70% in the whole brain, whereas pre-treatment with the central benzodiazepine receptor ligand, flumazenil (1mg/kg), had no inhibitory effect on [11C]1 uptake. These results indicate that accumulation of [11C]1 in the baboon represents selective binding to the PBR. These exceptional in vivo binding properties suggest that [11C]1 may be useful for imaging the PBR in disease states. Furthermore, [11C]1 represents the first ligand of its pharmacological class to be labelled for PET studies and therefore has the potential to generate new information on the pathological role of the PBR in vivo.  相似文献   

8.
The receptor encoded by the Notch gene plays a central role in preventing cells from making decisions about their fates until appropriate signals are present. This function of Notch requires the product of the Suppressor of Hairless gene. Loss of either Notch or Suppressor of Hairless function results in cells making premature and incorrect cell fate decisions, whilst increases in Notch signalling prevent cells from making these decisions. Here we find that the proneural clusters are not established correctly in certain Abruptex mutations of Notch and this failure to establish proneural clusters correctly is not due to increased Notch signalling during lateral inhibition. In addition we show that the overexpression of certain dominant negative Notch molecules can disrupt the initiation of proneural cluster development in a manner similar to the Abruptex mutants.  相似文献   

9.
The interaction of three neurogenic loci viz. Delta, Enhancer of split and Notch, and a related gene, Hairless, of Drosophila melanogaster was investigated at the adult morphology level by measuring the effects of the mutations of the three other genes on the expression of the recessive lethal antimorphic Abruptex mutations of the Notch locus. The Abruptex mutations were also coupled in cis or trans with facet-glossy or split mutations of the Notch locus. In some of the experiments, the genotype of the fly was homozygous for either facet-glossy or split mutation or their wild type alleles but heterozygous for the Abruptex. Facet-glossy is located in a large intron of the locus, whereas split is located in the same exon as Abruptex. In all compounds studied, Delta suppressed the expression of Abruptex while Hairless and Enhancer of split enhanced it. The interactions of the four genes studied were allele specific, suggesting an interaction at the protein level. The comparison of the results presented in this study on the interaction of the neurogenic genes with other results on the same subject suggests that the interactions are similar in embryonic and imaginal development.  相似文献   

10.
Lack of requirement for presenilin1 in Notch1 signaling   总被引:1,自引:0,他引:1  
  相似文献   

11.
Dissecting the mechanisms of suppressor of hairless function   总被引:1,自引:0,他引:1  
  相似文献   

12.
The Delta-Notch pathway is an evolutionarily conserved signaling pathway which controls a broad range of developmental processes including cell fate determination, terminal differentiation and proliferation. In mammals, four Notch receptors (NOTCH1-4) and five activating canonical ligands (JAGGED1, JAGGED2, DLL1, DLL3 and DLL4) have been described. The precise function of noncanonical Notch ligands remains unclear. Delta-like 1 homolog (DLK1), the best studied noncanonical Notch ligand, has been shown to act as an inhibitor of Notch signaling in vitro, but its function in vivo is poorly understood. In this review we summarize Notch signaling during development and highlight recent studies in DLK1expression that reveal new insights into its function.  相似文献   

13.
Onali P  Adem A  Karlsson E  Olianas MC 《Life sciences》2005,76(14):1547-1552
The mamba toxin MT-7 is the most selective ligand currently available for the muscarinic M1 receptor subtype. The toxin binds stably to the receptor and blocks the agonist-induced activation non-competitively. Although its mode of action on M1 receptors is not yet fully understood, some of the toxin properties support an allosteric mechanism. Thus, the toxin fails to elicit a complete inhibition of the binding of either the muscarinic antagonist [3H]N-methyl-scopolamine ([3H]NMS) or the agonist [3H]acetylcholine ([3H]ACh). When added to ligand-occupied M1 receptors, the toxin slows the dissociation rate of [3H]NMS and increases that of [3H]ACh. Site-directed mutagenesis studies have provided important information about the toxin amino acid residues which are critical for the stable binding to the receptor and for the allosteric modulation of antagonist dissociation. In vivo studies have shown that the intracerebral injection of MT-7 causes a long-lasting blockade of M1 receptor, thus providing a tool for the characterization of the functional role of this receptor subtype in discrete brain areas.  相似文献   

14.
路遥  蒋立科  陈美玲  还连栋  钟瑾 《微生物学报》2010,50(11):1481-1487
【目的】通过定点突变技术改变乳链菌肽(nisin)特定位置氨基酸,获得性质改善的nisin突变体,为扩大其应用范围提供依据。【方法】在抑菌谱扩大的nisin单突变体M21K nisinZ的基础上,对M21K nisZ基因第29位丝氨酸密码子进行定点突变;将其克隆至乳酸菌表达载体pMG36e,并在Lactococcus lactis NZ9800中进行表达;双突变体M21K/S29K nisinZ经分离纯化后检测其在抑菌活性、抑菌谱和稳定性等方面的变化。【结果】与单突变体M21K nisinZ及野生型nisinZ(wild-type,WT)相比,双突变体M21K/S29K nisinZ对指示菌的抑菌活性虽有所下降,但其对温度及pH值的稳定性有显著提高。同时其抑菌谱与M21K nisinZ相同,可抑制革兰氏阴性菌,扩大了WT的抑菌谱。【结论】通过改变nisin分子特定位置的氨基酸可以改善nisin分子的理化性质,有可能得到应用范围更广的nisin品种。  相似文献   

15.
The main objective of the present study was to determine whether cholinergic markers (choline acetyltransferase activity and nicotinic and muscarinic receptors) are altered in Alzheimer's disease. Choline acetyltransferase activity in Alzheimer's brains was markedly reduced in various cortical areas, in the hippocampus, and in the nucleus basalis of Meynert. The maximal density of nicotinic sites, measured using the novel nicotinic radioligand N-[3H]methylcarbamylcholine, was decreased in cortical areas and hippocampus but not in subcortical regions. M1 muscarinic cholinergic receptor sites were assessed using [3H]pirenzepine as a selective ligand; [3H]pirenzepine binding parameters were not altered in most cortical and subcortical structures, although the density of sites was modestly increased in the hippocampus and striatum. Finally, M2-like muscarinic sites were studied using [3H]-acetylcholine, under muscarinic conditions. In contrast to M1 muscarinic sites, the maximal density of M2-like muscarinic sites was markedly reduced in all cortical areas and hippocampus but was not altered in subcortical structures. These findings reveal an apparently selective alteration in the densities of putative nicotinic and muscarinic M2, but not M1, receptor sites in cortical areas and in the hippocampus in Alzheimer's disease.  相似文献   

16.
The substitution of 6-fluoroquinolines was modified in ring positions 2 and 4. The new compounds were tested in vitro for their activities against a sensitive and a multidrug resistant strain of Plasmodium falciparum. Some physicochemical parametres were calculated (log P, log D, ligand efficiency) or determined experimentally (permeability). The most promising compounds were tested for their in vivo activity against Plasmodium berghei in a mouse model. The 6-fluoro-2-{4-[(4-methylpiperazin-1-yl)methyl]phenyl}-N-[2-(pyrrolidin-1-yl)ethyl]quinoline-4-carboxamide possessed proper physicochemical properties and showed high antiplasmodial activity in vitro (IC50?≤?0.0029?µM) and in vivo (99.6% activity).  相似文献   

17.
Interaction of Notch receptors with Delta- and Serrate-type ligands is an evolutionarily conserved mechanism that mediates direct communication between adjacent cells and thereby regulates multiple developmental processes. Posttranslational modifications of both receptors and ligands are pivotal for normal Notch pathway function. We have identified by mass spectrometric analysis two serine and one threonine phosphorylation sites in the intracellular domain of the mouse Notch ligand DLL1. Phosphorylation requires cell membrane association of DLL1 and occurs sequentially at the two serine residues. Phosphorylation of one serine residue most likely by protein kinase B primes phosphorylation of the other serine. A DLL1 variant, in which all three identified phosphorylated serine/threonine residues are mutated to alanine and valine, was more stable than wild-type DLL1 but had reduced relative levels on the cell surface and was more effectively cleaved in the extracellular domain. In addition, the mutant variant activated Notch1 significantly less efficient than wild-type DLL1 in a coculture assay in vitro. Mice, however, whose endogenous DLL1 was replaced with the phosphorylation-deficient triple mutant developed normally, suggesting compensatory mechanisms under physiological conditions in vivo.  相似文献   

18.
Petter Portin 《Genetics》1975,81(1):121-133
The mutations of the Abruptex locus in Drosophila melanogaster fall into three categories. There are recessive lethal alleles and viable alleles. The latter can be divided into suppressors and nonsuppressors of Notch mutations. The recessive lethals are lethal in heterozygous combination with Notch. As a rule the recessive lethals are lethal also in heterozygous combination with the viable alleles. Heterozygous combinations of certain viable alleles are also lethal. In such heterozygotes, one heteroallele is a suppressor of Notch and the other is a nonsuppressor. Other heterozygous combinations of viable alleles are viable and have an Abruptex phenotype. The insertion of the wild allele of the Abruptex locus as an extra dose (carried by a duplication) into the chromosomal complement of the fly fully restores the viability of the otherwise lethal heterozygotes if two viable alleles are involved. The extra wild allele also restores the viability of heterozygotes in which a lethal and a suppressor allele are present. If, however, a lethal and a nonsuppressor are involved, the wild allele only partly restores the viability, and the effect of the wild allele is weakest if two lethal alleles are involved. It seems likely that of the viable alleles the suppressors of Notch are hypermorphic and the nonsuppressors are hypomorphic. The lethal alleles share properties of both types, and are possibly antimorphic mutations. It is suggested that the locus is responsible for a single function which, however, consists of two components. The hypermorphic mutations are defects of the one component and the hypomorphic mutations of the other. In heterozygotes their cumulative action leads to decreased viability. The lethal alleles are supposed to be defects of the function as a whole. The function controlled by the locus might be a regulative function.  相似文献   

19.
Summary The fine structure of the indirect flight muscles was studied by electron microscopy in the following Notch locus mutants of Drosophila melanogaster reared at 18° C or 29° C for 6 days after eclosion: Ax 16172/Ax16172, Ax28/ Ax28, l(1)Nts1/l(1)Nts1,l(1)Nts1/Y and in wild-type controls. The flies were raised up to eclosion at 25° C or 18° C. It was observed that the l(1)Nts1 flies gradually became flightless within a few days if reared at 29° C as adults, and gross changes in the fine structure of the flight muscles were also observed in flies of this genotype. Peripheral myofilaments of myofibrils were disarranged and the mitochondria diminutive. At 18° C the flight muscles remained normal. In all of the Abruptex (Ax) combinations the flight muscles remained similar to the wild-type controls at both 18° C and 29° C, i.e. they were normal. The results suggest that the Notch gene is active in adult flies in addition to its activity during embryonic, larval and pupal stages, and is directly or indirectly involved in the adult development of the muscle tissue.  相似文献   

20.
Liu Y  Fallon L  Lashuel HA  Liu Z  Lansbury PT 《Cell》2002,111(2):209-218
The assumption that each enzyme expresses a single enzymatic activity in vivo is challenged by the linkage of the neuronal enzyme ubiquitin C-terminal hydrolase-L1 (UCH-L1) to Parkinson's disease (PD). UCH-L1, especially those variants linked to higher susceptibility to PD, causes the accumulation of alpha-synuclein in cultured cells, an effect that cannot be explained by its recognized hydrolase activity. UCH-L1 is shown here to exhibit a second, dimerization-dependent, ubiquityl ligase activity. A polymorphic variant of UCH-L1 that is associated with decreased PD risk (S18Y) has reduced ligase activity but comparable hydrolase activity as the wild-type enzyme. Thus, the ligase activity as well as the hydrolase activity of UCH-L1 may play a role in proteasomal protein degradation, a critical process for neuronal health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号