首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The AAA-type ATPase Vps4 functions with components of the ESCRT (endosomal sorting complex required for transport) machinery in membrane fission events that are essential for endosomal maturation, cytokinesis, and the formation of retroviruses. A key step in these events is the assembly of monomeric Vps4 into the active ATPase complex, which is aided in part by binding of Vps4 via its N-terminal MIT (microtubule interacting and trafficking) domain to its substrate ESCRT-III. We found that the 40-amino acid linker region between the MIT and the ATPase domain of Vps4 is not required for proper function but plays a role in regulating Vps4 assembly and ATPase activity. Deletion of the linker is expected to bring the MIT domains into close proximity to the central pore of the Vps4 complex. We propose that this localization of the MIT domain in linker-deleted Vps4 mimics a repositioning of the MIT domain normally caused by binding of Vps4 to ESCRT-III. This structure would allow the Vps4 complex to engage ESCRT-III subunits with both the pore and the MIT domain simultaneously, which might be essential for the ATP-driven disassembly of ESCRT-III.  相似文献   

2.
The endosomal sorting complexes required for transport (ESCRT) are responsible for multivesicular body biogenesis, membrane abscission during cytokinesis, and retroviral budding. They function as transiently assembled molecular complexes on the membrane, and their disassembly requires the action of the AAA-ATPase Vps4. Vps4 is regulated by a multitude of ESCRT and ESCRT-related proteins. Binding of these proteins to Vps4 is often mediated via the microtubule-interacting and trafficking (MIT) domain of Vps4. Recently, a new Vps4-binding protein Vfa1 was identified in a yeast genetic screen, where overexpression of Vfa1 caused defects in vacuolar morphology. However, the function of Vfa1 and its role in vacuolar biology were largely unknown. Here, we provide the first detailed biochemical and biophysical study of Vps4-Vfa1 interaction. The MIT domain of Vps4 binds to the C-terminal 17 residues of Vfa1. This interaction is of high affinity and greatly stimulates the ATPase activity of Vps4. The crystal structure of the Vps4-Vfa1 complex shows that Vfa1 adopts a canonical MIT-interacting motif 2 structure that has been observed previously in other Vps4-ESCRT interactions. These findings suggest that Vfa1 is a novel positive regulator of Vps4 function.  相似文献   

3.
Katanin p60 (kp60), a microtubule-severing enzyme, plays a key role in cytoskeletal reorganization during various cellular events in an ATP-dependent manner. We show that a single domain isolated from the N terminus of mouse katanin p60 (kp60-NTD) binds to tubulin. The solution structure of kp60-NTD was determined by NMR. Although their sequence similarities were as low as 20%, the structure of kp60-NTD revealed a striking similarity to those of the microtubule interacting and trafficking (MIT) domains, which adopt anti-parallel three-stranded helix bundle. In particular, the arrangement of helices 2 and 3 is well conserved between kp60-NTD and the MIT domain from Vps4, which is a homologous protein that promotes disassembly of the endosomal sorting complexes required for transport III membrane skeleton complex. Mutation studies revealed that the positively charged surface formed by helices 2 and 3 binds tubulin. This binding mode resembles the interaction between the MIT domain of Vps4 and Vps2/CHMP1a, a component of endosomal sorting complexes required for transport III. Our results show that both the molecular architecture and the binding modes are conserved between two AAA-ATPases, kp60 and Vps4. A common mechanism is evolutionarily conserved between two distinct cellular events, one that drives microtubule severing and the other involving membrane skeletal reorganization.  相似文献   

4.
During endocytic transport, specific integral membrane proteins are sorted into intraluminal vesicles that bud from the limiting membrane of the endosome. This process, known as multivesicular body (MVB) sorting, is important for several important biological processes. Moreover, components of the MVB sorting machinery are implicated in virus budding. During MVB sorting, a cargo protein recruits components of the MVB sorting machinery from cytoplasmic pools and these sequentially assemble on the endosome. Disassembly of these proteins and recycling into the cytoplasm is critical for MVB sorting. Vacuolar protein sorting 4 (Vps4) is an AAA (ATPase associated with a variety of cellular activities) ATPase which has been proposed to play a critical role in disassembly of the MVB sorting machinery. However, the mechanism by which it disassembles the complex is not clear. Vps4 contains an N-terminal microtubule interacting and trafficking (MIT) domain, which has previously been shown to be required for recruitment to endosomes, and a single AAA ATPase domain, the activity of which is required for Vps4 function. In this study we have systematically characterized the interaction of Vps4 with other components of the MVB sorting machinery. We demonstrate that Vps4 interacts directly with Vps2 and Bro1. We also show that a subset of Vps4 interactions is regulated by ATP hydrolysis, and one interaction is regulated by ATP binding. Finally, we show that most proteins interact with the Vps4 MIT domain. Our studies indicate that the MIT domain has a dual role in substrate binding and recruitment to endosomes and indicate that Vps4 disassembles the MVB sorting machinery by direct effects on multiple proteins.  相似文献   

5.
The endosomal sorting complexes required for transport (ESCRT) pathway drives reverse topology membrane fission events within multiple cellular pathways, including cytokinesis, multivesicular body biogenesis, repair of the plasma membrane, nuclear membrane vesicle formation, and HIV budding. The AAA ATPase Vps4 is recruited to membrane necks shortly before fission, where it catalyzes disassembly of the ESCRT-III lattice. The N-terminal Vps4 microtubule-interacting and trafficking (MIT) domains initially bind the C-terminal MIT-interacting motifs (MIMs) of ESCRT-III subunits, but it is unclear how the enzyme then remodels these substrates in response to ATP hydrolysis. Here, we report quantitative binding studies that demonstrate that residues from helix 5 of the Vps2p subunit of ESCRT-III bind to the central pore of an asymmetric Vps4p hexamer in a manner that is dependent upon the presence of flexible nucleotide analogs that can mimic multiple states in the ATP hydrolysis cycle. We also find that substrate engagement is autoinhibited by the Vps4p MIT domain and that this inhibition is relieved by binding of either Type 1 or Type 2 MIM elements, which bind the Vps4p MIT domain through different interfaces. These observations support the model that Vps4 substrates are initially recruited by an MIM-MIT interaction that activates the Vps4 central pore to engage substrates and generate force, thereby triggering ESCRT-III disassembly.  相似文献   

6.
The conserved vacuolar protein-sorting (Vps) pathway controls the trafficking of proteins to the vacuole/lysosome. Both the internalization of ubiquitylated cargo from the plasma membrane and its sorting at the late endosome via the Vps pathway depend on ubiquitin (Ub) binding motifs present in trafficking regulators. Here we report that Ub controls yet a third step in the Vps pathway. Vps9p, which promotes endosomal and Golgi-derived vesicle fusion, binds directly to Ub via a Cue1p-homologous (CUE) domain. The CUE domain is structurally related to the Ub-associated (UBA) domain. In an assay for vacuolar delivery of a transmembrane receptor fused to Ub, a Ub mutation impairing interaction with Vps9p led to a cytoplasmic block in receptor trafficking. This block resembled that of a receptor fused to wild-type Ub but expressed in a vps9-null background. Strikingly, this trafficking defect caused by a mutant Ub was rescued by deletion of the Vps9p CUE domain, indicating that lack of the CUE domain renders Vps9p independent of Ub for activation in vivo. We thus provide evidence for biochemical and genetic interactions between Ub and a novel Ub binding domain in Vps9p. Ub plays a positive role, whereas the CUE domain plays both positive and negative roles in Vps9p function in trafficking.  相似文献   

7.
The AAA-ATPase Vps4 is critical for function of the multivesicular body sorting pathway, which impacts cellular phenomena ranging from receptor down-regulation to viral budding to cytokinesis. Vps4 activity is stimulated by the interaction between Vta1 and Vps60, but the structural basis for this interaction is unclear. The fragment Vps60(128–186) was reported to display the full activity of Vps60. Vta1 interacts with Vps60 using its N-terminal domain (Vta1NTD). In this work, the structure of Vps60(128–186) in complex with Vta1NTD was determined using NMR techniques, demonstrating a novel recognition mode of the microtubule-interacting and transport (MIT) domain in which Vps60(128–186) interacts with Vta1NTD through helices α4′ and α5′, extending over Vta1NTD MIT2 domain helices 1–3. The Vps60 binding does not result in Vta1 conformational changes, further revealing the fact that Vps4 ATPase is enhanced by the interaction between Vta1 and Vps60 in an unanticipated manner.  相似文献   

8.
J H Stack  P K Herman  P V Schu    S D Emr 《The EMBO journal》1993,12(5):2195-2204
The Vps15 protein kinase and the Vps34 phosphatidylinositol 3-kinase (PI 3-kinase) are required for the sorting of soluble hydrolases to the yeast vacuole. Over-production of Vps34p suppresses the growth and vacuolar protein sorting defects associated with vps15 kinase domain mutants, suggesting that Vps15p and Vps34p functionally interact. Subcellular fractionation and sucrose density gradients indicate that Vps15p is responsible for the association of Vps34p with an intracellular membrane fraction. Chemical cross-linking and native immunoprecipitation experiments demonstrate that Vps15p and Vps34p interact as components of a hetero-oligomeric protein complex. In addition, we show that an intact Vps15 protein kinase domain is required for activation of the Vps34 PI 3-kinase, suggesting that the Vps34 lipid kinase is regulated by a Vps15p-mediated protein phosphorylation event. We propose that Vps15p and Vps34p function together as components of a membrane-associated signal transduction complex that regulates intracellular protein trafficking decisions through protein and lipid phosphorylation events.  相似文献   

9.
Vajjhala PR  Wong JS  To HY  Munn AL 《The FEBS journal》2006,273(11):2357-2373
Endocytic and biosynthetic trafficking pathways to the lysosome/vacuole converge at the prevacuolar endosomal compartment. During transport through this compartment, integral membrane proteins that are destined for delivery to the lysosome/vacuole lumen undergo multivesicular body (MVB) sorting into internal vesicles formed by invagination of the endosomal limiting membrane. Vps4 is an AAA family ATPase which plays a key role in MVB sorting and facilitates transport through endosomes. It possesses an N-terminal microtubule interacting and trafficking domain required for recruitment to endosomes and an AAA domain with an ATPase catalytic site. The recently solved 3D structure revealed a beta domain, which protrudes from the AAA domain, and a final C-terminal alpha-helix. However, the in vivo roles of these domains are not known. In this study, we have identified motifs in these domains that are highly conserved between yeast and human Vps4. We have mutated these motifs and studied the effect on yeast Vps4p function in vivo and in vitro. We show that the beta domain of the budding yeast Vps4p is not required for recruitment to endosomes, but is essential for all Vps4p endocytic functions in vivo. We also show that the beta domain is required for Vps4p homotypic interaction and for full ATPase activity. In addition, it is required for interaction with Vta1p, which works in concert with Vps4p in vivo. Our studies suggest that assembly of a Vps4p oligomeric complex with full ATPase activity that interacts with Vta1p is essential for normal endosome function.  相似文献   

10.
The family of Bro1 proteins coordinates the activity of the Endosomal Sorting Complexes Required for Transport (ESCRTs) to mediate a number of membrane remodeling events. These events culminate in membrane scission catalyzed by ESCRT-III, whose polymerization and disassembly is controlled by the AAA-ATPase, Vps4. Bro1-family members Alix and HD-PTP as well as yeast Bro1 have central “V” domains that noncovalently bind Ub and connect ubiquitinated proteins to ESCRT-driven functions such as the incorporation of ubiquitinated membrane proteins into intralumenal vesicles of multivesicular bodies. Recently, it was discovered that the V domain of yeast Bro1 binds the MIT domain of Vps4 to stimulate its ATPase activity. Here we determine the structural basis for how the V domain of human HD-PTP binds ubiquitin. The HD-PTP V domain also binds the MIT domain of Vps4, and ubiquitin binding to the HD-PTP V domain enhances its ability to stimulate Vps4 ATPase activity. Additionally, we found that V domains of both HD-PTP and Bro1 bind CHMP5 and Vps60, respectively, providing another potential molecular mechanism to alter Vps4 activity. These data support a model whereby contacts between ubiquitin, ESCRT-III, and Vps4 by V domains of the Bro1 family may coordinate late events in ESCRT-driven membrane remodeling events.  相似文献   

11.
The endosomal sorting complexes required for transport (ESCRTs) impact multiple cellular processes including multivesicular body sorting, abscission, and viral budding. The AAA-ATPase Vps4 is required for ESCRT function, and its full activity is dependent upon the co-factor Vta1. The Vta1 carboxyl-terminal Vta1 SBP1 Lip5 (VSL) domain stimulates Vps4 function by facilitating oligomerization of Vps4 into its active state. Here we report the identification of the Vps4 stimulatory element (VSE) within Vta1 that is required for additional stimulation of Vps4 activity in vitro and in vivo. VSE activity is autoinhibited in a manner dependent upon the unstructured linker region joining the amino-terminal microtubule interacting and trafficking domains and the carboxyl-terminal VSL domain. The VSE is also required for Vta1-mediated Vps4 stimulation by ESCRT-III subunits Vps60 and Did2. These results suggest that ESCRT-III binding to the Vta1 microtubule interacting and trafficking domains relieves linker region autoinhibition of the VSE to produce maximal activation of Vps4 during ESCRT function.  相似文献   

12.
The Saccharomyces cerevisiae VPS55 (YJR044c) gene encodes a small protein of 140 amino acids with four potential transmembrane domains. VPS55 belongs to a family of genes of unknown function, including the human gene encoding the obesity receptor gene-related protein (OB-RGRP). Yeast cells with a disrupted VPS55 present normal vacuolar morphology, but exhibit an abnormal secretion of the Golgi form of the soluble vacuolar carboxypeptidase Y. However, trafficking of the membrane-bound vacuolar alkaline phosphatase remains normal. The endocytosis of uracil permease, used as an endocytic marker, is normal in vps55Delta cells, but its degradation is delayed and this marker transiently accumulates in late endosomal compartments. We also found that Vps55p is mainly localized in the late endosomes. Collectively, these results indicate that Vps55p is involved in late endosome to vacuole trafficking. Finally, we show that human OB-RGRP displays the same distribution as Vps55p and corrects the phenotypic defects of the vps55Delta strain. Therefore, the function of Vps55p has been conserved throughout evolution. This study highlights the importance of the multispanning Vps55p and OB-RGRP in membrane trafficking to the vacuole/lysosome of eukaryotic cells.  相似文献   

13.
The retromer protein complex assists in recycling selected integral membrane proteins from endosomes to the trans Golgi network. One protein subcomplex (Vps35p, Vps26p and Vps29p) combines with a second (Vps17p and Vps5p) to form a coat involved in sorting and budding of endosomal vesicles. Yeast Vps35p (yVps35) exhibits similarity to human Vps35 (hVps35), especially in a completely conserved PRLYL motif contained within an amino-terminal domain. Companion studies indicate that an R(98)W mutation in yVps35 causes defective retromer assembly in Saccharomyces cerevisiae. Herein, we find that the expression of hVps35 in yeast confers dominant-negative vacuolar proenzyme secretion and defective secretory proprotein processing. The mutant phenotype appears to be driven by hVps35 competing with endogenous yVps35, becoming incorporated into defective retromer complexes and causing proteasomal degradation of endogenous Vps26 and Vps29. Increased expression of yVps35 displaces some hVps35 to a 100 000 x g supernatant and suppresses the dominant-negative phenotype. Remarkably, mutation of the conserved R(107)W of hVps35 displaces some of the protein to the 100 000 x g supernatant, slows protein turnover and restores stability of Vps26p and Vps29p and completely abrogates dominant-negative trafficking behavior. We show that hVps35 coprecipitates Vps26, whereas the R(107)W mutant does not. In pancreatic beta cells, the R(107)W mutant shifts hVps35 from peripheral endosomes to a juxtanuclear compartment, affecting both mannose phosphate receptors and insulin. These data underscore importance of the Vps35 PRLYL motif in retromer subcomplex interactions and function.  相似文献   

14.
Retromer is a heteromeric protein complex with important roles in endosomal membrane trafficking, most notably in the retrograde transport of lysosomal hydrolase receptors from endosomes to the Golgi. The core of retromer is composed of three subunits vacuolar protein sorting (Vps)35, Vps26 and Vps29, and in mammals, there are two paralogues of the medium subunit Vps26A and Vps26B. We find that both Vps26A and Vps26B bind to Vps35/Vps29 with nanomolar affinity and compete for a single-binding site to define distinct retromer complexes in vitro and in vivo. We have determined the crystal structure of mouse Vps26B and compare this structure with that of Vps26A. Vps26 proteins have a striking similarity to the arrestin family of proteins that regulate the signalling and endocytosis of G-protein-coupled receptors, although we observe that surface residues involved in arrestin function are not conserved in Vps26. Using structure-based mutagenesis, we show that both Vps26A and Vps26B are incorporated into retromer complexes through binding of Vps35 to a highly conserved surface patch within the C-terminal subdomain and that this interaction is required for endosomal recruitment of the proteins.  相似文献   

15.
The AAA-ATPase Vps4 is critical for function of the MVB sorting pathway, which in turn impacts cellular phenomena ranging from receptor downregulation to viral budding to cytokinesis. Vps4 dissociates ESCRTs from endosomal membranes during MVB sorting, but it is unclear how Vps4 ATPase activity is synchronized with ESCRT release. Vta1 potentiates Vps4 activity and interacts with ESCRT-III family members. We have investigated the impact of Vta1 and ESCRT-III family members on Vps4 ATPase activity. Two distinct mechanisms of Vps4 stimulation are described: Vps2 can directly stimulate Vps4 via its MIT domain, whereas Vps60 stimulates via Vta1. Moreover, Did2 can stimulate Vps4 by both mechanisms in distinct contexts. Recent structural determination of the ESCRT-III-binding region of Vta1 unexpectedly revealed a MIT-like region. These data support a model wherein a network of MIT and MIT-like domain interactions with ESCRT-III subunits contributes to the regulation of Vps4 activity during MVB sorting.  相似文献   

16.
MIT domainia   总被引:1,自引:0,他引:1  
The AAA ATPase Vps4 disassembles the membrane-bound ESCRT-III lattice. Four recent publications show how Vps4 carries out this task in a partnership with another ESCRT-associated protein, Vta1. Vps4 and Vta1 both contain MIT domains, which bind to "MIT-interacting motifs" (MIMs) of ESCRT-III proteins. As new MIT domain proteins are rapidly being identified, these studies will likely have relevance well beyond Vps4.  相似文献   

17.
Class III phosphatidylinositol 3-kinase (PI3-kinase) regulates multiple membrane trafficking. In yeast, two distinct PI3-kinase complexes are known: complex I (Vps34, Vps15, Vps30/Atg6, and Atg14) is involved in autophagy, and complex II (Vps34, Vps15, Vps30/Atg6, and Vps38) functions in the vacuolar protein sorting pathway. Atg14 and Vps38 are important in inducing both complexes to exert distinct functions. In mammals, the counterparts of Vps34, Vps15, and Vps30/Atg6 have been identified as Vps34, p150, and Beclin 1, respectively. However, orthologues of Atg14 and Vps38 remain unknown. We identified putative mammalian homologues of Atg14 and Vps38. The Vps38 candidate is identical to UV irradiation resistance-associated gene (UVRAG), which has been reported as a Beclin 1-interacting protein. Although both human Atg14 and UVRAG interact with Beclin 1 and Vps34, Atg14, and UVRAG are not present in the same complex. Although Atg14 is present on autophagic isolation membranes, UVRAG primarily associates with Rab9-positive endosomes. Silencing of human Atg14 in HeLa cells suppresses autophagosome formation. The coiled-coil region of Atg14 required for binding with Vps34 and Beclin 1 is essential for autophagy. These results suggest that mammalian cells have at least two distinct class III PI3-kinase complexes, which may function in different membrane trafficking pathways.  相似文献   

18.
Vps9 and Muk1 are guanine nucleotide exchange factors (GEFs) in Saccharomyces cerevisiae that regulate membrane trafficking in the endolysosomal pathway by activating Rab5 GTPases. We show that Vps9 is the primary Rab5 GEF required for biogenesis of late endosomal multivesicular bodies (MVBs). However, only Vps9 (but not Muk1) is required for the formation of aberrant class E compartments that arise upon dysfunction of endosomal sorting complexes required for transport (ESCRTs). ESCRT dysfunction causes ubiquitinated transmembrane proteins to accumulate at endosomes, and we demonstrate that endosomal recruitment of Vps9 is promoted by its ubiquitin-binding CUE domain. Muk1 lacks ubiquitin-binding motifs, but its fusion to the Vps9 CUE domain allows Muk1 to rescue endosome morphology, cargo trafficking, and cellular stress-tolerance phenotypes that result from loss of Vps9 function. These results indicate that ubiquitin binding by the CUE domain promotes Vps9 function in endolysosomal membrane trafficking via promotion of localization.  相似文献   

19.
The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity, but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domain stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif-containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly.  相似文献   

20.
Phosphoinositide (PI) 3-kinases have been characterized as enzymes involved in receptor signal transduction in mammalian cells and in a complex which mediates protein trafficking in yeast. PI 3-kinases linked to receptors with intrinsic or associated tyrosine kinase activity are heterodimeric proteins, consisting of p85 adaptor and p110 catalytic subunits, which can generate the 3-phosphorylated forms of phosphatidylinositol (PtdIns), PtdIns4P and PtdIns(4,5)P2 as potential second messengers. Yeast Vps34p kinase, however, has a substrate specificity restricted to PtdIns and is a PtdIns 3-kinase. Here the molecular characterization of a new human PtdIns 3-kinase with extensive sequence homology to Vps34p is described. PtdIns 3-kinase does not associate with p85 and phosphorylates PtdIns, but not PtdIns4P or PtdIns(4,5)P2. In vivo PtdIns 3-kinase is in a complex with a cellular protein of 150 kDa, as detected by immunoprecipitation from human cells. Protein sequence analysis and cDNA cloning show that this 150 kDa protein is highly homologous to Vps15p, a 160 kDa protein serine/threonine kinase associated with yeast Vps34p. These results suggest that the major components of the yeast Vps intracellular trafficking complex are conserved in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号