首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sublethal concentrations of the bisacylhydrazine moulting hormone agonists, RH-5849, and tebufenozide (RH-5992) were fed to sixth (final) instar larvae of Spodoptera litura. Both RH-5849 and tebufenozide adversely affected the mating success of S. litura when the surviving treated males were crossed with normal females. The ecdysone agonists decreased the longevity of treated males and of untreated females when crossed with treated males. The number of eggs laid by untreated females mated to treated males was decreased, and the fertility (percentage of hatching success) of the resulting eggs was reduced. These effects on male reproductive success were at least in part explained by a reduction in the number of sperm transferred during mating. The adverse effects of tebufenozide on male reproductive function were qualitatively the same as those of RH-5849, but tebufenozide was active at lower concentrations. To understand the reason for these adverse effects on male reproduction, we investigated the effects of the insecticides on male reproductive physiology. Male reproductive tract development and testicular volume of resulting adult moths were adversely affected by sublethal larval exposure to the ecdysone agonists. Dose-dependent reductions occurred in the production of eupyrene and apyrene spermatozoa in the adult testes, and in the number of spermatozoa released from the testes into the male reproductive tract. The descent into the male tract of both eupyrene and apyrene sperm was found to start at the normal stage of development in both normal and treated insects, but the daily rhythm of sperm descent was subsequently disturbed in the insecticide-treated moths. This affected the numbers of sperm in the upper vas deferens (UVD), seminal vesicle (SV), and duplex (duplex). Injections of RH-5849 given to pharate adult or newly emerged adult S. litura also caused drastic reduction in the number of sperm in the upper regions of the male tract, when measured 24 h after injection. The possible importance of pest population reduction through the sublethal anti-reproductive effects of insecticides is discussed.  相似文献   

2.
Summary

Eupyrene and apyrene spermatozoa are contained in separate cysts in the testis of the butterfly Atrophaneura alcinous. Spermatozoa of both types from various parts of the male reproductive tract were examined with particular reference to their morphological characteristics. All spermatozoa collected from the vas deferens and the vesicula seminalis were found to be immotile under a dissecting microscope. No spermatozoa of either type were recognized in any part of the ejaculatory duct. Within the testis, eupyrene spermatozoa are present in bundles and each spermatozoon has a slender nucleus with an acrosome and a long flagellum containing mitochondrial derivatives. Two kinds of appendages, lacinate and reticular, are present on the surface of the sperm membrane. They are replaced with an extracellular sheath during passage through the vas deferens. In contrast, apyrene spermatozoa have neither nucleus nor acrosome, whereas a cup-shaped structure was found at the sperm tip instead of the acrosome. Unlike eupyrene spermatozoa, they are surrounded by a concentric sheath outside the sperm membrane in the vas deferens. Individual apyrene spermatozoa and coiled bundles of eupyrene spermatozoa were both found to accumulate in the vesicula seminalis before mating. These morphological changes during passage through the male reproductive tract suggests the occurrence of a kind of maturation and capacitation process reminiscent of mammalian spermatozoa.  相似文献   

3.
Summary

The present study was undertaken to describe the morphological and organizational modifications that occur in apyrene and eupyrene spermatozoa along the male adult reproductive tract of the butterfly, Euptoieta hegesia. Testis, vas deferens, vesicula seminalis and ductus ejaculatorius were studied by transmission electron microscopy. In the testis, both sperm types are organized into cysts; apyrene sperm are devoid of extracellular structures while eupyrene ones have lacinate and reticular appendages. In the testis basal region, both sperm pass through an epithelial barrier and lose their cystic envelope. The eupyrene morphological and organizational modifications are more drastic than the apyrene ones. From the vas deferens to the ductus ejaculatorius, apyrene sperm are dispersed in the lumen and acquire several concentric layers that are formed by the folding of their abundant cell membrane. The apyrene distribution observed here suggests that their functions include eupyrene transportation. Eupyrene sperm, however, remain aggregated along the tract. In the vas deferens, they are covered by a filamentous material that develops into a homogeneous matrix surrounding the spermatozoa coat in the vesicula seminalis and the ductus ejaculatorius. Eupyrene sperm undergo complex morphological changes that include the loss of lacinate appendages and the formation of a dense and heterogeneous extracellular coat. The formation of the matrix and the coat in eupyrene extratesticular sperm is related to the loss of lacinate appendages. These changes are in general extracellular and are probably important for sperm maturation.  相似文献   

4.
《Journal of Asia》2022,25(2):101916
There are two sperm morphs of silkworm, the nucleated spermatozoa (eupyrene) and anucleated spermatozoa (apyrene). Eupyrene sperm cannot complete fertilization successfully without the apyrene sperm. Here a modified rapid and efficient method for sperm identification was developed, after 10 s of fixation in paraformaldehyde and 30 s of 4′6-diamidino-2-phenylindole (DAPI) or propidium Iodide (PI) staining, the sperm bundles can be detected easily using a fluorescence microscope. Sperm maturation process of silkworm from the fifth instar larvae to the adult was described with the above method, the precise time of earliest elongate apyrene bundles was detected on day 2 of pre-pupation, with a ratio of 5% in total sperm bundles, after which the percentage of apyrene sperm bundles increased rapidly and attained a relatively stable ratio of 75% at the end of pupation and nearly 80% after eclosion. Delayed mating leads to apyrene sperm accumulation and damaged fertilization. Previous study showed that ecdysone can increase the frequency of apyrene sperm bundles in vitro. Here 20-hydroxyecdysone (20E) was injected into hemolymph of the 2-d-old fifth instar larvae, the worms entered into mounting period after three days injection, but no apyrene sperm bundles were induced unless day 2 of pre-pupation. Interestingly, maturation of eupyrene sperm bundles were accelerated, and the ratio of eupyrene sperm bundles increased and exhibited a dose-dependent effect after 20E injection, which indicated that the development of eupyrene sperm can be accelerated by ecdysone before pupation of silkworm in vivo. These results will provide new clues for lepidopteran pest control.  相似文献   

5.
This paper describes the physiological mechanism of action of chlorfluazuron on testicular development and spermatogenesis when sublethal doses (LD10: 1.00 ng/larva or LD30: 3.75 ng/larva) are applied topically to the cuticle of newly moulted fifth instars of the common cutworm Spodoptera litura (F.) (Lepidoptera, Noctuidae). These doses disrupt the growth and development of testes by decreasing the volume and weight of testes and thickness of testes sheath as compared with that of the controls. Sublethal doses of chlorfluazuron also significantly reduce the protein content of the testis, but do not affect the carbohydrate and lipid contents in newly emerged treated males when measured in μg/mg of testis as compared with that of the controls. Additionally, such doses disrupt spermatogenesis by reducing the number and size of eupyrene and apyrene sperm bundles in the testis. Very few or no eupyrene sperm bundles are observed in vas deferens of pre‐ and newly moulted adults compared with controls. This result shows that the transfer of sperm bundles from testes to vas deferens is delayed in treated males. The effects of chlorfluazuron on testicular development and spermatogenesis is thought to be one of the factors responsible for the reduction in fecundity, fertility and hatchability caused by sublethal doses of chlorfluazuron.  相似文献   

6.
In the oblique-banded leafroller, Choristoneura rosaceana, and the spruce budworm, C. fumiferana, male reproductive performance decreases with consecutive matings. While the onset time of mating did not vary, the time spent mating was longer in mated than in virgin males. Furthermore, a decline observed in the spermatophore mass with successive matings was associated with a concomitant decline in its apyrene and eupyrene spermatozoa content. In the hours following mating, spermatozoa migrate from the spermatophore, located in the bursa copulatrix, to the spermatheca. Regardless of the male's previous mating history, the number of apyrene sperm dropped rapidly in the days following mating whereas the number of eupyrene spermatozoa declined gradually. As the temporal pattern of sperm movement was similar in all treatments, females mated with previously-mated males would suffer from sperm shortage sooner than those mated with virgins. Large C. rosaceana females stored more apyrene spermatozoa in their spermatheca than small ones, irrespective of the time after mating or male mating history, while only large females mated with once-mated males received more apyrene sperm and accessory gland secretions than small ones mated with virgin or twice-mated males. The results obtained in this study are discussed in relation with their potential impact on the reproductive success of both sexes.  相似文献   

7.

Background  

Reproductive systems of male moths contain circadian clocks, which time the release of sperm bundles from the testis to the upper vas deferens (UVD) and their subsequent transfer from the UVD to the seminal vesicles. Sperm bundles are released from the testis in the evening and are retained in the vas deferens lumen overnight before being transferred to the seminal vesicles. The biological significance of periodic sperm retention in the UVD lumen is not understood. In this study we asked whether there are circadian rhythms in the UVD that are correlated with sperm retention.  相似文献   

8.
Hamada H  Fugo H 《Zoological science》2007,24(12):1251-1258
Like other Lepidoptera, the silkworm (Bombyx mori) has both nucleated eupyrene and anucleated apyrene sperm that are derived from the same spermatocysts. The former type is responsible for egg fertilization, while the function of the latter is still uncertain. Many hypotheses have been presented concerning the role of the apyrene sperm in mating and fertilization, but none is supported by a convincing experimental approach. The aim of the present study was to enhance the production of apyrene sperm in vitro by using different concentrations of fetal bovine serum (FBS), namely 20%, 30% and 40%, in the culture medium used for cultivating the naked spermatocysts isolated from the silkworm testes at 0 hr, 120 hr, and 192 to approximately 360 hr after the fourth molt. Cultivation of 0-hr spermatocysts was not successful. The development of spermatocysts into eupyrene and apyrene sperm bundles was slightly slower in vitro than in vivo. The overall growth percentage of both eupyrene and apyrene bundles was satisfactory when the spermatocysts were cultivated in TC-100 culture medium containing 30% FBS.  相似文献   

9.
In the gypsy moth, Lymantria dispar, the release of sperm bundles from the testis into the upper vas deferens (UVD) is precisely timed within each 24 h period by a circadian mechanism located in the reproductive system. In males kept under light:dark cycles of 16:8, release of sperm bundles is limited to the 3 h period that starts before lights off. Sperm released from the testis remains in the UVD for about 12 h and then moves into the seminal vesicles, so that the UVD stays empty until the next cycle of sperm release begins. The rhythm of release appears to play a role in the terminal stages of sperm maturation and is essential for the fertility of males. Sperm bundles undergo substantial morphological changes during the release from the testis and while they are retained in the UVD. In this study, using gel electrophoresis, we compared protein patterns in sperm and in the UVD during the daily cycle of sperm release and maturation. Several protein bands evident in the sperm bundles contained in the testis were missing from the sperm bundles that had passed from the testis into the UVD. Furthermore, a number of new proteins appeared in the sperm bundles as they remained in the UVD. Some of these proteins appeared to be secreted from the UVD epithelium into the UVD lumen before being incorporated into sperm bundles. Correlations between changes in protein patterns and ultrastructural changes in sperm during the cycle of sperm release and maturation are discussed. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Lepidopteran males produce two sperm types: nucleated eupyrene sperm and non‐nucleated apyrene sperm. Although apyrene sperm are infertile, both sperm types migrate from the spermatophore to the spermathecal after copulation. As a dominant adaptive explanation for migration of apyrene sperm in polyandrous species, the cheap filler hypothesis suggests that the presence of a large number of motile apyrene sperm in the spermatheca reduces female receptivity to re‐mating. However, apyrene sperm are also produced in males of the monandrous swallowtail butterfly Byasa alcinous Klug. To identify the role of apyrene sperm in these males, the present study examines the number of spermatozoa produced and transferred and the dynamics and motility of spermatozoa in the spermatheca for each type of sperm. Apyrene sperm represents approximatey 89% of the sperm produced and transferred, which is comparable to polyandrous species. Two‐day‐old males transfer approximately 17 000 eupyrene and 230 000 apyrene spermatozoa to a spermatophore; approximately 5000 eupyrene and 47 000 apyrene spermatozoa arrive at the spermatheca. Eight days after copulation, most eupyrene spermatozoa remain in the spermatheca and a quarter of them are still active. However, the number of apyrene spermatozoa decreases and those remaining lose their motility after the arriving at the spermatheca. Consequently, 8 days after copulation, no motile apyrene sperm are found. The high proportion of apyrene sperm in the spermatophore, as well as in sperm migration, suggests that the production and migration of apyrene sperm is not simply an evolutionary vestigial trait. The possible functions of apyrene sperm in monandrous species are discussed.  相似文献   

11.
When swallowtail butterflies, Papilio xuthus, are mated by the hand-pairing method, both types of sperm, eupyrene and apyrene sperm, are transferred from the male to the spermatheca via the spermatophore in the bursa copulatrix. This mechanism is demonstrated by two different kinds of experiments. The first set of experiments employed interrupted copulation, and the second set was examination of the sperm in the spermatophore and spermatheca after the termination of copulation. The sperm was transferred 30 min after the start of copulation. The eupyrene sperm was still in the bundle; the number of the bundles ranged from 9 to 108 (mean, 42.7; n = 27). The bundles were gradually released after the completion of copulation, and the free eupyrene spermatozoa then remained in the spermatophore at least 2 h before migrating to the spermatheca. On the other hand, about 160 000 apyrene spermatozoa were transferred to the spermatophore and remained there for more than 1 h. We observed 11 000 apyrene spermatozoa in the spermatheca 12 h after the completion of copulation, but most of this type of sperm disappeared shortly thereafter. In contrast, the eupyrene sperm arrived in the spermatheca more than 1 day after the completion of copulation and remained there at least 1 week. Therefore, these findings suggest that apyrene sperm migrate from the spermatophore to the spermatheca earlier than eupyrene sperm. Accordingly, if females mated multiply, the time difference might avoid the mixing of sperm. In addition, the predominance of sperm from the last mating session may occur not in the bursa copulatrix but in the spermatheca. Received: January 7, 2000 / Accepted: May 24, 2000  相似文献   

12.
In this investigation, two kinds of sperm (apyrene and eupyrene) were found in the potato moth. At each mating, a single spermatophore containing both types of sperm was passed to the female. Sperm storage was observed in males in the duplex and in the females in the spermatheca. The fertility of eggs was greater than 90 per cent. Sperm survival in females was from one to 12 days after mating, as determined by egg hatching. Parthenogenesis was absent.  相似文献   

13.
Sperm deliver the male complement of DNA to the ovum, and thus play a key role in sexual reproduction. Accordingly, spermatogenesis has outstanding significance in fields as disparate as infertility treatments and pest-control, making it a broadly interesting and important focus for molecular genetics research in a wide range of species. Here we investigate spermatogenesis in the model lepidopteran insect Bombyx mori (silkworm moth), with particular focus on the gene PMFBP1 (polyamine modulated factor 1 binding protein 1). In humans and mouse, PMFBP1 is essential for spermatogenesis, and mutations of this gene are associated with acephalic spermatozoa, which cause infertility. We identified a B. mori gene labeled as “PMFBP1” in GenBank’s RefSeq database and sought to assess its role in spermatogenesis. Like in mammals, the silkworm version of this gene (BmPMFBP1) is specifically expressed in testes. We subsequently generated BmPMFBP1 mutants using a transgenic CRISPR/Cas9 system. Mutant males were sterile while the fertility of mutant females was comparable to wildtype females. In B. mori, spermatogenesis yields two types of sperm, the nucleated fertile eupyrene sperm, and anucleated unfertile apyrene sperm. Mutant males produced abnormal eupyrene sperm bundles but normal apyrene sperm bundles. For eupyrene sperm, nuclei were mislocated and disordered inside the bundles. We also found the BmPMFBP1 deficiency blocked the release of eupyrene sperm bundles from testes to ejaculatory seminalis. We found no obvious abnormalities in the production of apyrene sperm in mutant males, and double-matings with apyrene-deficient sex-lethal mutants rescued the ΔBmPMFBP1 infertility phenotype. These results indicate BmPMFBP1 functions only in eupyrene spermatogenesis, and highlight that distinct genes underlie the development of the two sperm morphs commonly found in Lepidoptera. Bioinformatic analyses suggest PMFBP1 may have evolved independently in lepidoptera and mammals, and that despite the shared name, are likely not homologous genes.  相似文献   

14.
Abstract. Mating behaviour, sperm transfer and sperm precedence were studied in the moth Spodoptera litura (Fabr.) (Lepidoptera: Noctuidae). There existed a rhythmic, diel pattern of mating behaviour of this moth during the scotophase, presumably set with respect to an endogenous activity rhythm. Approximately 30 min after copulation had started, the formation of the corpus of the spermatophore began in the bursa copulatrix of the female moth, but full inflation of the corpus was not completed until 45–60 min after mating had started. The mature spermatophore contained about 350 eupyrene sperm bundles and a large number of individual (loose) apyrene spermatozoa. The mating status and the age of the male insect influenced the number of sperm transferred to the female within the spermatophore, and also affected the consequent fertility. There was no evidence of sperm reflux within the male tract. Within the female, dissociation of eupyrene sperm bundles was evident within the spermatophore less than 15 min after the completion of mating. Spermatozoa began to move from the bursa (in which the spermatophore is lodged) into the spermatheca 30–45 min after the end of the copulation, and the quantity of sperm in the spermatheca reached a plateau at 90 min after mating. Apyrene sperm reached the spermatheca first, followed by eupyrene sperm. Examination of total (apyrene plus eupyrene) sperm in the female tract showed that 86% of mated females received an apparently normal amount of total sperm from the male. Examination of eupyrene sperm alone showed that 81% of matings resulted in an apparently normal transfer of eupyrene sperm. A small proportion (approximately 8%) of the matings, however, were identified as transferring a clearly subnormal quantity of eupyrene sperm to the spermatheca. The eggs produced as a result of such pairings displayed much reduced fertility (about 43%) compared to those from matings confirmed to have transferred normal quantities of sperm, which showed about 92% fertility. This shows that the availability of eupyrene sperm in the spermatheca may be an important constraint on fertility in normal populations of insects. In the laboratory, S. litura females exhibited multiple matings. Of the females, 93% mated, and the mean frequency of mating was 1.69. Mating with a fertile male led to the oviposition of an increased number of eggs. This effect continued even when the female subsequently mated with an infertile male. Displacement of sperm from previous matings is known to be an important factor in the evolution of multiple mating strategies. Our results on sperm utilization by S. litura indicated that after a second mating, the sperm utilized for subsequent fertilization were almost exclusively from the last mating with little mixing. The proportion of eggs fertilized by sperm from the second mating (P2) was calculated as 0.95, indicating almost complete sperm precedence from the last mating.  相似文献   

15.
The Lepidopteran spermatocyte is bipotential producing first eupyrene (nucleate) and later apyrene (anucleate) spermatozoa. It is proposed that this shift in commitment of the spermatocyte from eupyrene to apyrene spermatogenesis is related to an apyrene-spermatogenesis-inducing factor. Using testes transplantations we show that: (1) Apyrene-spermatogenesis-inducing factor becomes active towards pupation since apyrene spermatogenesis appears precociously when the testes of 4th-instar larvae are transplanted into pupae, but not into early 5th-instar larvae, and when testes of diapausing larvae are transplanted into pupae (2) The factor is a haemolymph factor since the experimental testes are transplanted into the thorax, far from their normal location in the abdomen (3) The factor is not sex-determined since both male and female hosts equally induce apyrene spermatogenesis in testes transplanted from diapausing larvae into pupae.  相似文献   

16.
Extragonadal sperm reserves in male rats were measured in different regions of the genital tract before and subsequent to normal ejaculation. In sexually rested rats, the sperm count (million spermatozoa for the paired organs) in different regions was: distal vas, 18; proximal vas, 9.8; cauda epididymidis, 229; caput + corpus epididymidis, 154. Following mating, the sperm count was reduced in the proximal and distal vas deferens and in the cauda epididymidis. The reproductive tract of mated females was found to contain 29% (no copulatory plug) or 59% (with copulatory plug) of the estimated mean ejaculate, which was estimated from the difference between the sperm counts in the sexually rested rat and following ejaculation. It is concluded that in the rat the immediate source of spermatozoa for ejaculation is the cauda epididymidis, with a smaller contribution arising from the vas deferens.  相似文献   

17.
In a light-dark (LD) regimen, sperm, first apyrene and then eupyrene, start moving out of the fused testes of the Mediterranean flour moth, Anagasta kuehniella, toward the beginning of the scotophase. At 27° ± 2°C, the sperm mass remains in the proximal part of the vasa deferentia for 10 to 12 hr and then passes rapidly into the seminal vesicles, remains in these organs for about 5 hr, and is then transported to the ductus ejaculatoris duplex where it becomes available for ejaculation. The phases of sperm movement appear to be closely related to sperm development, and the reproductive activity of the moths. In isolated abdomens there is a significant reduction in the amount of sperm released from the testes, but normal periodicity of sperm release and movement continues in either LD or continuous dark (DD) regimens, and rapid phase shifting occurs when a LD regimen is reversed. All stages of sperm movement are disrupted in continuous light (LL), but normal periodicity is usually resumed when isolated abdomens of the LL moths are placed in LD or DD regimens. Normal periodicity also occurs in moths paralyzed with tetrodotoxin or procaine. Removal of any one of the four abdominal ganglia from LL moths does not prevent increased sperm release when the moths are placed in LD, though with each ganglion there is some disruption of the normal pattern of movement down the vasa deferentia. It is thought that the testes and vasa deferentia down to at least the seminal vesicles represent a semiautonomous complex in which periodicity is maintained by endogenous circadian activity in cells of the testes (and possibly the vasa deferentia) or more probably in a peripheral control center.  相似文献   

18.
In the gypsy moth, Lymantria dispar, release of sperm bundles from the testis into the upper vas deferens (UVD) and subsequent transfer of sperm bundles into the seminal vesicles (SV) occurs in a daily rhythm. The UVD undergoes different types of contractions despite the fact that its musculature appears to receive no innervation. Patterns of the UVD movements were recorded throughout the daily sperm release and transfer cycle. In males kept in light-dark cycles, transfer of sperm from the UVD to the SV was accompanied by a characteristic pattern of UVD contractions of high frequency and amplitude. In males kept in constant light, which fail to transfer sperm, this contraction pattern was absent. It is concluded that the vas deferens muscles undergo daily changes in contraction pattern in phase with the light-dark cycle. The increased muscular contractions appear to be a causal factor in the gated sperm transfer from the UVD to the SV.Abbreviations LD light-dark - LL constant light - SV seminal vesicle - UVD upper vas deferens  相似文献   

19.
The objective of this study was to examine whether domestic fowl (Gallus domesticus) sperm undergo maturation in their capacity for survival and fertilization in the male reproductive tract. Sperm collected from the testis, epididymis and the proximal, middle and distal vas deferens were simultaneously stored in vitro in minimum essential medium (MEM) at 39°C for 0, 3 and 6h, and at 4°C for 24 and 48h. Sperm membrane integrity was measured using the dual fluorescent stain SYBR-14/propidium iodide (PI). Aliquots of sperm from the various sites were subjected to artificial insemination (AI) into the uteri of hens to assess the duration of sperm survival in the oviduct and to determine the fertility status of the sperm. Testicular sperm exhibited a very low capacity to survive under in vitro liquid storage conditions, irrespective of the storage temperature used, and in the oviduct, and they had a low ability to fertilize the ovum. On the contrary, sperm from the distal vas deferens had a higher survival rate during in vitro storage periods, a longer life span in the oviduct, and high fertility. Survival and fertilizing capacity of the sperm recovered from the testes increased gradually (P<0.05) from the testes to the distal vas deferens. In conclusion, we suggest that fowl sperm may undergo functional maturation through a process of gradual changes in their survival and fertilization capacities during their passage through the successive parts of the male reproductive tract.  相似文献   

20.
Silkworm (Lepidoptera) males produce dimorphic sperm, nucleate eupyrene sperm, and anucleate apyrene sperm. The eupyrene sperm is the ordinary sperm fertilizing eggs, while the function of the apyrene sperm, which are about four times as numerous as the eupyrene sperm, is still uncertain. We found the peristaltic phenomenon at the very late stage of spermatogenesis. Peristalsis occurs in both eupyrene and apyrene sperm bundles. Through peristaltic action, cytoplasm of the eupyrene sperm and both cytoplasm and nuclei of the apyrene sperm are discarded from the posterior end of the sperm bundles. Peristaltic squeezing seems to be a process to eliminate the irregular nuclei of apyrene sperm while preserving the nuclei of eupyrene sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号