首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pigment-dispersing factor (PDF) is an octadeca-neuropeptide widely distributed in the insect brain and suggested to be involved in the insect circadian systems. We have examined its effects on the neuronal activity of the brain efferents in the optic stalk including medulla bilateral neurons (MBNs) in the cricket, Gryllus bimaculatus. The MBNs are visually responding interneurons connecting the bilateral medulla, which show a clear day/night change in their light responsiveness that is greater during the night. Microinjection of PDF into the optic lobe induced a significant increase in the spontaneous activity of the brain efferents and the photo-responsiveness of the MBNs during the day, while little change was induced during the night. The enhancing effects began to occur about 20 min after the injection and another 10 min was necessary to reach the maximal level. The effects of PDF were dose-dependent. When 22 nl of anti-Gryllus-PDF (1:200) IgG was injected into the medulla, the photo-responsiveness of the MBNs was suppressed in both the day and the night with greater magnitude during the night. No significant suppression was induced by injection of the same amount of IgG from normal rabbit serum. These results suggest that in the cricket optic lobe, PDF is released during the night and enhances MBNs' photo-responsiveness to set their night state.  相似文献   

2.
Pigment-dispersing factor (PDF) is a neuropeptide playing important roles in insect circadian systems. In this study, we morphologically and physiologically characterized PDF-immunoreactive neurons in the optic lobe and the brain of the cricket Gryllus bimaculatus. PDF-immunoreactivity was detected in cells located in the proximal medulla (PDFMe cells) and those in the dorsal and ventral regions of the outer chiasma (PDFLa cells). The PDFMe cells had varicose processes spread over the frontal surface of the medulla and the PDFLa cells had varicose mesh-like innervations in almost whole lamina, suggesting their modulatory role in the optic lobe. Some of PDFMe cells had a hairpin-shaped axonal process running toward the lamina then turning back to project into the brain where they terminated at various protocerebral areas. The PDFMe cells had a low frequency spontaneous spike activity that was higher during the night and was often slightly increased by light pulses. Six pairs of PDF-immunoreactive neurons were also found in the frontal ganglion. Competitive ELISA with anti-PDF antibodies revealed daily cycling of PDF both in the optic lobe and cerebral lobe with an increase during the night that persisted in constant darkness. The physiological role of PDF is discussed based on these results.  相似文献   

3.
The coupling mechanism between weakly coupled two optic lobe circadian pacemakers in the cricket Gryllus bimaculatus was investigated by recording the locomotor activity, under light-dark cycles with various lengths, after the optic nerve was unilaterally severed. The activity rhythm split into two components under the light cycles different from 24 h: one was readily entrained to the light cycle and the other only loosely entrained or freeran. Additional removal of the optic lobe on the intact side resulted in a loss of the entrained component and that on the blinded side caused the reverse effect, indicating that the entrained component was driven by the pacemaker on the intact side and the other by the one on the blinded side. The synchronization between the two components was achieved only in light cycles with a limited length between 23 and 25 h. Without this range, the desynchronization of the components occurred. In the split rhythm, the phase-dependent modulation of the period of freerunning component and the mutual suppression of locomotor activity during the subjective day phase were clearly observed. The suppression was also evident in the lights-on peak that was the masking effect of light. The light cycle with dim light significantly reduced the ratio of animals with the pacemaker coupling as well as the magnitude of the period modulation. These results suggest (1) that the mutual coupling is achieved only when the difference in the periods between the two pacemakers is within an allowable range, (2) that the photic information is also involved in the mechanism of mutual coupling, and (3) that the suppression of activity occurs at the regulatory center for locomotion.Abbreviations CT circadian time - DD constant darkness - LL constant light - LD light to dark cycle - T length of light to dark cycle - freerunning period  相似文献   

4.
The bilaterally paired optic lobe pacemakers of the cricket Gryllus bimaculatus are mutually coupled. In the present study we recorded the neural activity conveyed from the brain toward the optic lobe with a suction electrode to examine the coupling signals. The results demonstrated that the brain efferents to the optic lobe encode the circadian information: Both in constant light (LL) and constant darkness (DD), the neural activity of brain efferents showed a clear circadian rhythm with a nocturnal peak. Since the rhythm survived the severance of the contralateral optic nerve but disappeared when the contralateral optic lobe was removed, it is apparent that the rhythm originates from the contralateral optic lobe. The amplitude of the rhythm was greater in LL than in DD, suggesting that light affects the amplitude of the rhythm. This was confirmed by the fact that the light-induced response was under circadian control, being greater during the subjective night. These data suggest that the bilaterally paired optic lobe pacemakers exchange circadian information as well as light information. The data are also consistent with the results of previous behavioral experiment.Abbreviations DD constant darkness - LD light dark cycle - LL constant light  相似文献   

5.
The coupling mechanism between the bilaterally paired optic lobe circadian pacemakers in the cricket Gryllus bimaculatus was investigated by recording locomotor activity, under constant light or constant red light, after the optic nerve was unilaterally severed.
1.  The majority (about 70%) of the animals showed a locomotor rhythm with 2 rhythmic components; one freerunning with a period of 25.33 ± 0.41 (SD) h and the other with 24.36 ± 0.37 (SD) h under constant light (Fig. 3A).
2.  Removal of the intact side optic lobe abolished the longer period component (Fig. 4A), while the operation on the operated side caused a reverse effect (Fig. 4B), indicating that the longer and the shorter period components are driven by the pacemaker on the intact and the operated side, respectively.
3.  The activity driven by a pacemaker was inhibited during the subjective day of the contralateral pacemaker (circadian time 0–10, Fig. 5).
4.  The freerunning periods of the two components were not constant but varied as a function of the mutual phase angle relationship (Figs. 3A, 7, 8).
These results suggest that the 2 optic lobe pacemakers weakly couple to one another and that the cricket maintains a stable temporal structure in its behavior through the phase-dependent mututal inhibition of activity and the phase-dependent freerunning period modulation.  相似文献   

6.
The waveform and the free-running period of circadian rhythms in constant conditions are often modulated by preceding lighting conditions. We have examined the modulatory effect of variable length of light phase of a 24h light cycle on the ratio of activity (alpha) and rest phase (rho) as well as on the free-running period of the locomotor rhythm in the cricket Gryllus bimaculatus. When experienced the longer light phases, the alpha/rho-ratio was smaller and the free-running period was shorter. The magnitude of changes in alpha/rho-ratio was dependent on the number of cycles exposed, while the free-running period was changed by a single exposure, suggesting that there are separate regulatory mechanisms for the waveform and the free-running period. The neuronal activity of the optic lobe showed the alpha/rho-ratio changing with the preceding photoperiod. When different photoperiodic conditions were given to each of the two optic lobe pacemakers, the alpha/rho-ratio of a single pacemaker was rather intermediate between those of animals treated with either of the two conditions. These results suggest that the storage of the photoperiodic information occurs at least in part in the optic lobe pacemaker, and that the mutual interaction between the bilateral optic lobe pacemakers is involved in the photoperiodic modulation.  相似文献   

7.
Summary The nature of the circadian rhythms of the optic lamina-medulla compound eye complex was examined in male crickets Gryllus bimaculatus by recording the multiple unit activity from the optic lobe in situ and in vitro. In most in situ preparations, the neural activity of the complex was higher during the subjective night than during the subjective day, both under constant light and dark. The same pattern was also obtained from nymphal crickets, suggesting that the properties of the pacemaker are common to both nymphs and adults. In a few cases, both diurnal and nocturnal increments in the activity were simultaneously observed, indicating there are two neuronal groups conveying different circadian information. The circadian rhythm was also demonstrated in the optic lobes in vitro, providing evidence that the optic lobe contains the circadian pacemaker that is capable of generating the rhythmicity without any neural or humoral factors from the rest of the animal.Abbreviations DD constant darkness - JST Japanese standard time - LD light to dark cycle - LL constant light  相似文献   

8.
Bilateral optic stalk severance or lamina-medulla region removal were carried out in 47 adult male crickets Gryllus bimaculatus DeGeer. Effects of the operations on circadian locomotor activity were investigated under 12 h light: 12 h dark and at a constant temperature of 26°C. In the pre-operative days, 39 of the animals showed a typical nocturnal activity rhythm (normal rhythm), but the remaining 8 exhibited an atypical rhythm which is diurnal rather than nocturnal (abnormal rhythm). The operations eventually caused an arrhythmicity in all animals, suggesting that the crucial part of the central nervous system controlling the cricket circadian activity is located in the lamina-medulla region. However, in some of the post-operative crickets, the rhythm did not immediately disappear but persisted for a while: the diurnal increase of activity was observed up to 2 weeks in all 8 abnormal- and 4 normal-rhythm animals. In addition, 8 out of 39 normal-rhythm animals showed a single well-defined post-operative peak which occurred approximately in phase with the nocturnal peak prior to surgery. These results are discussed in relation to a possibility of involvement of the oscillatory structure outside the optic lobes.  相似文献   

9.
Fifteen local spiking interneurons (LSIs) and twentyone local non-spiking interneurons (LNIs) were identified in the terminal abdominal ganglion (TAG) of the cricket Gryllus bimaculatus on the basis of intracellular recording and staining (Figs. 1, 5, 6). Although the majority of LNIs showed sharp directionalities (Fig. 7) the LSIs did not (Fig. 3). The directionality of LNIs varied with the recording sites within a single cell (Fig. 8). Electrical stimulations of the cereal sensory nerve suggested that the LNIs are connected monosynaptically with the sensory afferents of both the cerci, and that LSIs may possess a variety of bilateral combinations of polysynaptic connections with the sensory afferents. We found that the spiking and the non-spiking local interneurons in the cereal sensory system differ not only in their membrane properties, but also in their afferent connections, and concluded that their differing connectivity to the sensory afferents will associate them with different roles in signal processing.Abbreviations TAG terminal abdominal ganglion - LSI local spiking interneuron - LNI local non-spiking interneurons - CNS central nervous system - PSP post synaptic potential - GI giant interneuron  相似文献   

10.
In the cricket ear, sound acts on the external surface of the tympanum and also reaches the inner surface after travelling in at least three pathways in the tracheal system. We have determined the transmission gain of the three internal sound pathways; that is, the change of amplitude and phase angle from the entrances of the tracheal system to the inner surface of the tympanum. In addition, we have measured the diffraction and time of arrival of sound at the ear and at the three entrances at various directions of sound incidence. By combining these data we have calculated how the total driving force at the tympanum depends on the direction of sound. The results are in reasonable agreement with the directionality of the tympanal vibrations as determined with laser vibrometry.At the frequency of the calling song (4.7 kHz), the direction of the sound has little effect on the amplitudes of the sounds acting on the tympanum, but large effects on their phase angles, especially of the sound waves entering the tracheal system at the contralateral side of the body. The master parameter for causing the directionality of the ear in the forward direction is the sound wave entering the contralateral thoracic spiracle. The phase of this sound component may change by 130–140° with sound direction. The transmission of sound from the contralateral inputs is dominated by a very selective high-pass filter, and large changes in amplitude and phase are seen in the transmitted sounds when the sound frequency changes from 4 to 5 kHz. The directionality is therefore very dependent on sound frequency.The transmission gains vary considerably in different individuals, and much variation was also found in the directional patterns of the ears, especially in the effects of sounds from contralateral directions. However, the directional pattern in the frontal direction is quite robust (at least 5 dB difference between the 330° and 30° directions), so these variations have only little effect on how well the individual animals can approach singing conspecifics.Abbreviations CS contralateral spiracle - CT contralateral tympanum - IS ipsilateral spiracle - IT ipsilateral tympanum - P the vectorial sum of the sounds acting on the tympanum  相似文献   

11.
The deflection sensitivities of cercal filiform hairs of the cricket, Gryllus bimaculatus, were determined by direct measurement. The tangential velocity of deflecting hair shafts in response to stimulus air motion was measured in situ by a laser-Doppler velocimeter with surface scattering of the shaft. The velocity of the stimulus air motion in a small wind tunnel was calibrated by the same velocimeter with smoke from a joss-stick. The mobility of the hair was obtained from former measurements with reference to the latter calibration of the single apparatus. A Gaussian white noise signal was employed as a stimulus waveform, and the stimulus-response transfer function was calculated through a cross-correlation method, which provides greater precision and wider frequency for a longer period of measurement. The mobility of hair was expressed in deflection amplitudes and phase shifts in reference to the velocity sinusoid of a stimulus at various frequencies. The measurements established the following conclusions. The wind receptor hairs comprise an array of mechanical band-pass filters whose best frequencies are inversely proportional to the length. The motion dynamics of the wind-receptor hairs have strong damping. Accepted: 24 February 1998  相似文献   

12.
Summary Between two mating acts of the male cricket (Gryllus bimaculatus), spermatophore protrusion (SP) and courtship stridulation (CS), there is a fixed time interval. This interval lasts about 1 h. During the period from SP to CS, the male cricket does not stridulate nor make any type of mating sound (post-spermatophore protrusion silence: PSPS) and tolerates external sensory stimuli. We examined the effects of injections of hemolymph and ganglia extracts on the interval. Extracts obtained from crickets which had just started CS (CS crickets) and those which had finished SP (SP crickets) were effective. The extracts were fractionated by ul trafiltration. Fractions with a molecular weight of less than 1 kdalton affected the length of the PSPS. The fractions from both the hemolymph and the mesothoracic ganglion of CS crickets shortened the PSPS. On the other hand, the fractions from the hemolymph and the brain of SP crickets lengthened the PSPS. We estimated, by gel filtration, the molecular weight of the effective fractions from the mesothoracic ganglion and the brain to be 100–200 daltons. We also examined the effects of biogenic amines on the PSPS. Octopamine shortened the PSPS, whereas serotonin lengthened it. The results in dicate that at least two neurohormones from the brain and the mesothoracic ganglion reciprocally control the elicitation of CS and provide an appropriate interval in the mating sequence of the male cricket. Octopamine and serotonin are possible candidates for these neurohormones.Abbreviations CP copulation - CS courtship stridulation - SP spermatophore protrusion - PSPS post-spermatophore protrusion silence  相似文献   

13.
Summary The intact male nymph cricket, Gryllus bimaculatus DeGeer, was found to show mating-like behavior, that is, courtship-like behavior (CSLB) and copulation-like behavior (CPLB), in the 7th and 8th (last) instars. The 8th instar nymph exhibited less CSLB and CPLB than the adult but much more than the 7th instar nymph. The movement patterns of CSLB and CPLB were essentially the same as those of adults except for motor acts requiring the use of the genitalia. CSLB was short and often ceased spontaneously before it switched to CPLB. CPLB also ended earlier than in adults. The occurrence of CSLB and CPLB was almost zero the few days around ecdysis. The nymph was very sensitive to disturbance, so that he often stopped courtship for more than 30 min after stimulation. CSLB was similarly induced in the male nymph (8th instar) by pairing with a female adult, male adult, female nymph (8th) and male nymph (8th). The female nymph (8th) was observed to mount not only the male adult but also the male nymph (8th). A fixed time sexual refractoriness forming a basis of cyclical mating activity was not present after CPLB in the nymph. It appeared in association with the emergence of spermatophore protrusion behavior around day 3 after the imaginal molt. In fledglings, there were some transitions during the sexual maturation process, such as failures in hook hanging, spermatophore extrusion, and spermatophore transfer to the female. The decerebration experiments on nymphs and fresh adults agreed with behavioral observations. These results suggest that the development of mating behavior in the male cricket is a process of enhancement of basic motor patterns but not a process of addition of new movements by changes in pattern generation circuits in the central nervous system.Abbreviations CPLB copulation-like behavior - CPPT interval between copulation and spermatophore protrusion - CSCP interval between calling song and copulation - CSLB courtship-like behavior - CSS courtship song - PTCS interval between spermatophore protrusion and calling song - SPE spermatophore extrusion  相似文献   

14.
In the cricket Gryllus bimaculatus, it is demonstrated that the medial septum in the prothoracic trachea of the auditory system plays an important role in shaping the directional sensitivity of the ear.After perforation of the medial septum, the directional characteristic of intact animals, showing a mean right-to-left difference in sensitivity of 14 dB, becomes more omnidirectional with a mean right-to-left difference of only 7 dB. Correspondingly, the rate of change in auditory sensitivity for a sound source moving from frontal to contralateral is reduced to 0.78 dB/10° versus 1.5 dB/10° in intact animals (Figs. 2, 3).A computer simulation of phonotaxis based on these findings predicts a reduction in phonotactic performance in animals with a perforated septum. This prediction is in good quantitative agreement with experimental data (Fig. 4) and emphasizes the importance of an intact septum for effective phonotaxis in crickets.  相似文献   

15.
The auditory organs of the cricket which are situated in the front legs are joined together by a large transverse trachea which decisively influences their directional characteristics. The transverse trachea is medially divided by a septum. The importance of this septum for the localization of a sound source was tested by means of behavioural experiments in which the phonotactic movements of intact Gryllus bimaculatus females were compared quantitatively with those of the same specimen after perforation of the septum. The septal perforation does not noticeably influence locomotion in the absence of acoustic stimuli but selectively changes essential characteristics of phono taxis: 1) The animals walk in less straight lines. The oscillations around the mean course, typical of phonotaxis, are increased in amplitude, while the frequency decreases. 2) Course deviations from the direction of the sound source become more pronounced. 3) The threshold for phonotaxis is raised by about 10 dB. 4) Both the speed at which the animals walk and the proportion of time during which they are mobile are reduced. The results are discussed in relation to the role of the septum in the mechanism of sound localization, and with regard to its possible importance for the recognition of acoustic patterns.  相似文献   

16.
Light and serotonin were found to cause phase shifts of the circadian neural activity rhythm in the optic lobe of the cricket Gryllus bimaculatus cultured in vitro. The two phase-shifting agents yielded phase-response curves different in shape. Light induced phase delay and advance in the early and late subjective night, respectively, and almost no shifts in the subjective day, whereas serotonin phase-advances the clock during the subjective day and induced delay shifts during the subjective night. The largest phase advance and delay occurred at circadian time 21 and 12, respectively, for light, and circadian time 3 and 18, respectively, for serotonin. Quipazine, a nonspecific serotonin agonist, induced phase advance and phase delay at circadian time 3 and 18, respectively, like serotonin. (±)8-OH-DPAT, a specific 5-HT1A agonist, phase delayed by 2 h at the subjective night, but produced no significant phase shifts at the subjective day. When NAN-190, a specific 5-HT1A antagonist, was applied together with quipazine, it completely blocked the phase delay at circadian time 18, whereas it had no effect on the advance shifts induced by quipazine. The results suggest that the phase dependency of serotonin-induced phase shifts of the clock may be partly attributable to the daily change in receptor type. Accepted: 4 July 1999  相似文献   

17.
We have found that the cricket Gryllus bimaculatus shows an immobile posture, so-called thanatosis. Thanatosis was reflexly elicited by gently holding the forelegs and pronotum of the cricket. During thanatosis, the respiration rate decreased markedly while the heart rate doubled compared with the resting state. Animals in the state of extreme rigidity were unresponsive to the external disturbances but easily aroused by mechanical stimulation such as prodding. The immobile posture usually persisted for 2–4 min, but occasionally for more than 20 min, and then suddenly ended. Catalepsy was induced during thanatosis when a leg was passively forced to the extended position. For elicitation of the flexion reflex, either campaniform sensilla and femoral chordotonal organs (FCOs) in the forelegs, and spine-like sensilla on the pronotum were necessary. Among these receptors, however, only the FCOs were involved in inducing the immobile state. Centrally, the brain was indispensable for thanatosis to be maintained. In semi-natural conditions the thanatotic state did occur spontaneously while the cricket struggled to get into a small crevice according to the nature of this species. This sudden immobilization could help the cricket get out of danger of predators like reptiles and amphibians in the natural habitat.Abbreviations FCO femoral chordotonal organ - F-T femorotibial - N nerve  相似文献   

18.
19.
Serotonin (5-HT) suppresses the photo-responsiveness of medulla bilateral neurons (MBNs) that are involved in the coupling mechanism of the bilaterally paired optic lobe circadian pacemakers in the cricket, Gryllus bimaculatus. We found that forskolin, a highly specific activator of adenylate cyclase, mimicked the effects of serotonin on the MBNs. This fact suggests the involvement of cyclic 3', 5'-adenosine monophosphate (cAMP) in mediating the action of serotonin. We therefore tested the effects of various 5-HT receptor agonists and antagonists that are coupled to adenylate cyclase to specify the receptor involved. Application of 8-OH-DPAT that has affinity for both 5-HT(1A) and 5-HT(7) receptors suppressed the photo-responsiveness, like forskolin. The inhibitory effect of 8-OH-DPAT was effectively blocked by clozapine, a high affinity 5-HT(7) receptor antagonists with a very low affinity for 5-HT(2). Ketanserin, a selective 5-HT(2) antagonist, and NAN-190, a 5-HT(1A) antagonist, did not block it. These results suggest that serotonergic suppression of the photo-responsiveness of the MBNs is mediated by 5-HT(7)-like receptor subtypes.  相似文献   

20.
1. Medulla interneurons of the optic lobe of P. americana were studied to determine their spectral properties. These neurons exhibited tonic firing which changed with monochromatic broadfield illumination of the ipsilateral eye. The response patterns of these neurons were analyzed by inferring their relation to the ultraviolet (UV) and green (G) photoreceptor groups of the eye. Their anatomy was described after injection of Lucifer yellow. 2. Broadband neurons received either excitatory or inhibitory input from both UV and G receptors. These neurons were not strictly sensitive to luminosity levels and had large cell bodies in the central rind of the medulla and wide dendritic arbors in the medulla neuropil. 3. Narrow band neurons received input from predominantly one receptor type. Their spectral sensitivity curves were more finely tuned than those of the primary receptors presumably due to neural interactions within the optic lobe. 4. Color opponent neurons were inhibited by UV and excited by G inputs in their sustained response. Under certain conditions, some of these neurons also showed G inhibition. These neurons suggested the presence of a subsystem involved in color vision. 5. Broadband, narrow band and color opponent properties were seen in some single neurons when tested over a 5-6 log unit range of intensity. The responses of some of these neurons changed when stimulus duration was increased. These findings indicated that functional classification for these neurons was dependent on stimulus intensity and duration. 6. Polarizational sensitivity was tested in preliminary experiments. Two neurons responded to the movement and direction of polarized light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号