首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ants use their mandibles for almost any task, including prey-catching, fighting, leaf-cutting, brood care and communication. The key to the versatility of mandible functions is the mandible closer muscle. In ants, this muscle is generally composed of distinct muscle fiber types that differ in morphology and contractile properties. Fast contracting fibers have short sarcomeres (2-3 microm) and attach directly to the closer apodeme, that conveys the muscle power to the mandible joint. Slow but forceful contracting fibers have long sarcomeres (5-6 microm) and attach to the apodeme either directly or via thin thread-like filaments. Volume proportions of the fiber types are species-specific and correlate with feeding habits. Two biomechanical models explain why species that rely on fast mandible strikes, such as predatory ants, have elongated head capsules that accommodate long muscle fibers directly attached to the apodeme at small angles, whereas species that depend on forceful movements, like leaf-cutting ants, have broader heads and many filament-attached fibers. Trap-jaw ants feature highly specialized catapult mechanisms. Their mandible closing is known as one of the fastest movements in the animal kingdom. The relatively large number of motor neurons that control the mandible closer reflects the importance of this muscle for the behavior of ants as well as other insects.  相似文献   

2.
Ants use their mandibles to manipulate many different objects including food, brood and nestmates. Different tasks require the modification of mandibular force and speed. Besides normal mandible movements the trap-jaw ant Odontomachus features a particularly fast mandible reflex during which both mandibles close synchronously within 3 ms. The mandibular muscles that govern mandible performance are controlled by four opener and eight closer motor neurons. During slow mandible movements different motor units can be activated successively, and fine tuning is assisted by co-activation of the antagonistic muscles. Fast and powerful movements are generated by the additional activation of two particular motor units which also contribute to the mandible strike. The trap-jaw reflex is triggered by a fast trigger muscle which is derived from the mandible closer. Intracellular recording reveals that trigger motor neurons can generate regular as well as particularly large postsynaptic potentials, which might be passively propagated over the short distance to the trigger muscle. The trigger motor neurons are dye-coupled and receive input from both sides of the body without delay, which ensures the synchronous release of both mandibles.  相似文献   

3.
The physiological and ultrastructural properties of muscle fiber.s comprising three motor units in the gastric mill of blue crabs are described. In their contractile properties muscle fibers in all motor units are similar and resemble the slow type fibers in crustacean limb muscles. The majority of fibers generate large excitatory post-synaptic potentials which do not facilitate strongly. Structurally two types of fibers are found. The one type has long sarcomeres (greater than 6 mum), thin to thick myofilament ratios of 5-6:1 and diads located near the ends of the A-band. The other type has shorter sarcomeres (less than 6 mum), thin to thick myofilament ratios of 3:1 and diads located at mid sarcomere level. Both types of fibers occur within a single motor unit and this differs from the vertebrate situation. Furthermore, the finding of fibers with a low thin to thick myofilament ratio of 3:1 demonstrates that they are not exclusive to fast type crustacean muscle but also occur in slow stomach muscles.  相似文献   

4.
The antennal movements of eight ant species (subfamilies Ponerinae, Myrmicinae, and Formicinae) are examined by high-frequency videography. They show a wide range of antennal velocities which is generated by antennal muscles composed of particularly diverse muscle fibers. Fiber diameter, sarcomere length and histochemically assessed myosin ATPase activity suggest that some thin fibers are fairly slow, while the bulk of antennal muscle fibers show intermediate or fast properties. These morphological properties correlate with the antennal movement velocities measured for the respective species. Based on their morphology, the fibers that generate the fast antennal retraction in some trap-jaw ants appear particularly fast and comprise the shortest sarcomeres yet described (1.1 μm). Accepted: 2 January 1997  相似文献   

5.
Summary The fine structure of single identified muscle fibers and their nerve terminals in the limb closer muscle of the shore crab Eriphia spinifrons was examined, using a previous classification based on histochemical evidence which recognizes a slow (Type-I) fiber and three fast (Type-II, Type-III, Type-IV) fibers. All four fiber types have a fine structure characteristic of crustacean slow muscle, with 10–12 thin filaments surrounding each thick filament and sarcomere lengths of 6–13 m. Type-IV fibers have sarcomere lengths of 6 m while the other three types have substantially longer sarcomeres (10–13 m). Structural features of nerve terminals revealed excitatory innervation in all four fiber types but inhibitory innervation in Type-I, Type-II, and Type-III fibers only. Thus fibers with longer sarcomeres receive the inhibitor axon but those with shorter sarcomeres do not. Amongst the former, synaptic contact from an inhibitory nerve terminal onto an excitatory one, denoting presynaptic inhibition, was seen in Type-I and Type-II fibers but not in Type-III and Type-IV fibers. Inhibitory innervation of the walking leg closer muscle is therefore highly differentiated: some fibers lack inhibitory nerve terminals, some possess postsynaptic inhibition, and some possess both postsynaptic and presynaptic inhibition.  相似文献   

6.
Abstract.Ants of the genus Acanthognathus stalk small insects and catch their prey by a strike with their long, thin mandibles. The mandibles close in less than 2.5 ms and this movement is controlled by a specialized closer muscle. In Acanthognathus , unlike other insects, the mandible closer muscle is subdivided into two distinct parts: as in a catapult, a large slow closer muscle contracts in advance and provides the power for the strike while the mandibles are locked open. When the prey touches specialized trigger hairs, a small fast closer muscle rapidly unlocks the mandibles and thus releases the strike. The fast movement is steadied by large specialized surfaces in the mandible joint and the sensory‐motor reflex is controlled by neurones with particularly large, and thus fast‐conducting, axons.  相似文献   

7.
In the pristine claws of adult crayfish the muscle fibers of the closer are all of slow type as judged by sarcomere lengths of greater than 6 micron, and a uniform degree of myofibrillar ATPase activity. In regenerating claws of mature and immature crayfish, the muscle has a central band of fast type fibers as characterized by shorter sarcomeres (less than 6 micron) and a higher degree of ATPase activity than the surrounding slow fibers. During primary development, the closer muscle has a fiber composition similar to that of the regenerating muscle except for a smaller proportion of fast fibers. Thus the reappearance of fast fibers during regeneration recapitulates ontogeny while their enhanced proportions may reflect epigenetic influences such as restriction of nerve-mediated muscle activity in the limb bud.  相似文献   

8.
The cDNA sequence of troponin I (TnI), one of the subunits of the skeletal muscle regulatory protein, differs between slow-twitch muscle and fast-twitch muscle. We prepared monoclonal antibodies td the slow and fast isoforms of human TnI for the purpose of differentiating muscle fiber types in human neuromuscular disorders. Slow TnI antibody was labeled with tetramethylrhodamine isothiocyanate while fast TnI antibody was labeled with fluorescein isothiocyanate; then these two antibodies were mixed. This mixture was then used to stain biopsied muscle from patients with neuromuscular disorders. It was possible to differentiate muscle fibers into slow, fast and intermediate fibers having various contents of slow and fast TnI. In tissue composed of small muscle fibers, this method facilitated differentiation of types of muscle fibers by allowing staining of only a single section. The usefulness of our technique using slow and fast TnI antibodies is discussed in comparison with ATPase staining. Because our staining method can distinguish slow and fast fiber components, it is useful for clinical application.  相似文献   

9.
Contractile properties differ between skeletal, cardiac and smooth muscles as well as between various skeletal muscle fiber types. This functional diversity is thought to be mainly related to different speeds of myosin head pulling cycles, with the molecular mechanism of force generation being essentially the same. In this study, force-generating attachments of myosin heads were investigated by applying small perturbations of myosin head pulling cycles in stepwise stretch experiments on skeletal muscle fibers of different type. Slow fibers (frog tonic and rat slow-twitch) exhibited only a ‘slow-type’ of myosin head attachment over the entire activation range, while fast fibers (frog and rat fast-twitch) displayed a ‘slow-type’ of myosin head attachment at low levels of activation, and an up to 30-times faster type at high levels of activation. These observations indicate that there are qualitative differences between the mechanisms of myosin head attachment in slow and fast vertebrate skeletal muscle fibers.  相似文献   

10.
Contractile protein populations were determined, using gel electrophoresis, during development of the claw closer muscles of the lobster Homarus americanus. In the adult the paired claw closer muscles are asymmetric, consisting of a crusher muscle with all slow fibers and a cutter muscle with a majority of fast and a few slow fibers. The electrophoretic banding pattern of these adult fast and slow fibers shows a similarity in the major proteins including myosin, actin, and tropomyosin which are common to both fiber types. Paramyosin is slightly heavier in fast fibers than in slow. However, fast fibers have three proteins and slow fibers have four proteins which are unique to themselves. Several of these unique proteins belong to the regulatory troponin complexes. In juvenile 4th stage lobster, where the paired closer muscles are undifferentiated, the banding pattern reveals the presence of proteins common to both fiber types including myosin, actin, and tropomysin but the conspicuous absence of all unique fast fiber proteins as well as one unique slow fiber protein. By the juvenile 10th stage most of these unique proteins are present except for one unique slow fiber protein. Thus lobster fast and slow fiber differentiation entails coordinate gene activation to add unique contractile proteins.  相似文献   

11.
12.
Fast and slow contracting fibers in neonatal mammalian skeletal muscle are each innervated in a highly specific manner by motor neurons of the corresponding type, even at an age when polyinnervation is widespread. Chemospecific recognition is a possible mechanism by which this pattern of innervation could be established. We have investigated this possibility by studying the degree of specificity during reinnervation of rabbit soleus muscle following nerve crush on Postnatal Day 1 or 4. We assayed fiber type composition by measuring the twitch rise times of motor units within 2 days of the onset of functional reinnervation (5-6 days after nerve crush). In contrast to the broad, bimodal distribution of single motor unit twitch rise times seen in normal muscles, motor units in reinnervated muscles yielded a narrower, unimodal distribution of rise times. Rise times of reinnervated units were intermediate to those of normal fast and slow units, suggesting that reinnervated units were composed of a mixture of fast and slow contracting fibers. An alternative possibility, that specific reinnervation was masked by contractile dedifferentiation of muscle fibers, was examined by maintaining a transmission blockade induced by botulinum toxin poisoning for an equivalent interval. Twitch rise times of treated motor units exhibited the distinctly bimodal distribution characteristic of normal muscles, suggesting that muscle fibers can retain contractile diversity during a transient period of denervation. We carried out computer simulations to estimate the amount of rise time diversity induced by varying degrees of specificity during reinnervation. Based on this analysis, we conclude that there is little if any selective reinnervation of muscle fiber types at the ages studied.  相似文献   

13.
There are two pairs of muscles in each abdominal segment of the crab; one pair of flexors and one pair of extensors. In the early larval stages the muscles have short sarcomeres--a property of fast fibers--and high thin to thick filament ratios--a property of slow fibers. In the adult the abdominal muscles are intermediate and slow, since they have fibers with intermediate and long sarcomeres, high thin to thick filament ratios, low myofibrillar ATPase activity, and high NADH diaphorase activity. The different fiber types are regionally distributed within the flexor muscle. Microelectrode recordings from single flexor muscle fibers in the adult showed that most fibers are supplied by three excitatory motor axons, although some are supplied by as many as five efferents. One axon supplies all of the flexor muscle fibers in its own hemisegment, and the evoked junctional potentials exhibit depression. This feature together with the innervation patterns of the fibers are similar to those reported for the deep flexor muscles of crayfish and lobsters. Therefore, in the adult crab, the abdominal flexor muscles have some features in common with the slow superficial flexors of crayfish and other features in common with the fast deep flexor muscles.  相似文献   

14.
VAChT‐Cre.Fast and VAChT‐Cre.Slow mice selectively express Cre recombinase in approximately one half of postnatal somatic motor neurons. The mouse lines have been used in various studies with selective genetic modifications in adult motor neurons. In the present study, we crossed VAChT‐Cre lines with a reporter line, CAG‐Syp/tdTomato, in which synaptophysin‐tdTomato fusion proteins are efficiently sorted to axon terminals, making it possible to label both cell bodies and axon terminals of motor neurons. In the mice, Syp/tdTomato fluorescence preferentially co‐localized with osteopontin, a recently discovered motor neuron marker for slow‐twitch fatigue‐resistant (S) and fast‐twitch fatigue‐resistant (FR) types. The fluorescence did not preferentially co‐localize with matrix metalloproteinase‐9, a marker for fast‐twitch fatigable (FF) motor neurons. In the neuromuscular junctions, Syp/tdTomato fluorescence was detected mainly in motor nerve terminals that innervate type I or IIa muscle fibers. These results suggest that the VAChT‐Cre lines are Cre‐drivers that have selectivity in S and FR motor neurons. In order to avoid confusion, we have changed the mouse line names from VAChT‐Cre.Fast and VAChT‐Cre.Slow to VAChT‐Cre.Early and VAChT‐Cre.Late, respectively. The mouse lines will be useful tools to study slow‐type motor neurons, in relation to physiology and pathology.  相似文献   

15.
Bilateral asymmetry of the paired snapper/pincer claws may be reversed in adult snapping shrimps (Alpheus heterochelis). Removal of the snapper claw triggers transformation of the contralateral pincer claw into a snapper and the regeneration of a new pincer claw at the old snapper site. During this process the pincer closer muscle is remodeled to a snapper-type, and these alterations have been examined with the electron microscope. There is selective death of the central band of fast fibers, accompanied by an accumulation of electron-dense crysttaline bodies in the degenerating fibers. Two principal types of hemocytes (amebocytes and coagulocytes) invade the area and the degenerating muscle fibers. New myotubes also appear in this central site. The myotubes are characterized by a prolific network of presumptive sarcoplasmic reticulum and transverse tubules, nascent myofibrils, and crystalline bodies. The myotubes are innervated by many motor nerve terminals, and they subsequently differentiate into long-sarcomere (8–12 m), slow muscle fibers. Remodeling of the central band, therefore, occurs by degeneration of the fast fibers and their replacement by new slow fibers. Remnants of the degenerating fast fibers act as scaffolding for the myotubes which originate from adjacent satellite cells. The crystalline bodies may represent protein stores from the degeneration of the fast fibers, recycled for use in the genesis of new fibers. The invading hemocytes appear to play several roles, initially phagocytosing the fast muscle fibers, transporting the crystalline bodies into the new myotubes, and acting as stem cells for the new muscle fibers. Apart from the central band of fibers, the remaining pincer-type slow fibers with sarcomere lengths of 5–7 m are transformed via sarcomere lengthening into snapper-type slow fibers with sarcomere lengths of 7–12 m. Thus, during claw transformation in adult snapping shrimps, the pincer closer muscle is remodeled into a snapper closer muscle by selective death of the fast-fiber band, replacement of the fast-fiber band by new slow fibers, and transformation of the existing slow fibers to an even-slower variety. Note. This paper is dedicated to the fond memory of Professor M.S. Laverack whose enjoyment of biological research and gentle encouragement of such endeavours touched all those who knew him.  相似文献   

16.
Longo, M.V., Goldemberg, A.L. and Díaz, A.O. 2011. The claw closer muscle of Neohelice granulata (Grapsoidea, Varunidae): a morphological and histochemical study. —Acta Zoologica (Stockholm) 92 : 126–133. The claw closer muscle of Neohelice granulata was studied according to histological, histochemical, and morphometrical criteria. Adult male crabs in intermoult stage were collected from Mar Chiquita Lagoon (Buenos Aires, Argentina). Muscle fibers show evident striations and oval‐elongated nuclei with loose chromatin. The loose connective tissue among muscle fibers consists of cells and fibers embedded in an amorphous substance. Muscle histochemistry reveals two slow fiber types: ‘A’ and ‘B’. Prevailing A fibers are larger, and they usually show, with respect to B type, a weaker reaction to whole techniques. Fibers with short (SS), intermediate (IS), and long sarcomeres (LS) appear in the claw closer muscle, being the LS fibers predominant. Concluding, the histochemical and morphometrical characteristics of the claw closer muscle fibers of N. granulata are indicative of slow fibers. The slow A type (low resistant to fatigue) prevails.  相似文献   

17.
In the crickets Gryllus bimaculatus and Gryllus campestris, the two intrinsic antennal muscles in the scape (first antennal segment) control antennal movements in the horizontal plane. Of the 17 excitatory antennal motoneurons, three motoneurons, two fast and one slow, can be stimulated selectively and their effect on muscle contraction, i.e. antennal movement, measured. Simultaneously, either a common inhibitor (CI) neuron or two DUM neurons can be stimulated and the effect on the slow and/or fast muscle contraction measured. The activity of the common inhibitor affected only slow muscle contractions. It decreased contraction rate, increased relaxation rate and suppressed prolonged muscle tension. This effect was blocked by picrotoxin. DUM neuron stimulation affected both slow and fast contractions. It reduced slow and enhanced fast contractions but in only 10% of the experiments could this effect be detected. DUM neuron activity could be mimicked by octopamine application. Proctolin application enhanced both slow and fast contractions but did not increase muscle tension in the absence of motoneuron activity. The results are discussed in relation to the large variability of possible antennal movements during behaviors.Abbreviations CI common inhibitor neuron - DUM dorsal unpaired median neuron  相似文献   

18.
Histological examination of the skeletal muscle of the slow loris, which displays slow movement and locomotion among the prosimians, revealed a muscle fiber composition which differed from the general condition in mammals. Three types of muscle fiber cells were therefore analyzed quantitatively in order to elucidate their specificity. The skeletal muscle of the limbs of the slow loris was predominantly composed of red muscle fibers (type I) showing persistent tonic contraction.  相似文献   

19.
Skeletal muscles can be classified as flexors or extensors according to their function, and as dorsal or ventral according to their position. The latter classification evokes their embryological origin from muscle masses initially divided during limb development, and muscles sharing a given position do not necessarily perform the same function. Here, we compare the relative proportions of different fiber types among six limb muscles in the lizard Tropidurus psammonastes. Individual fibers were classified as slow oxidative (SO), fast glycolytic (FG) or fast oxidative-glycolytic (FOG) based on mitochondrial content; muscles were classified according to position and function. Mixed linear models considering one or both effects were compared using likelihood ratio tests. Variation in the proportion of FG and FOG fibers is mainly explained by function (flexor muscles have on average lower proportions of FG and higher proportions of FOG fibers), while variation in SO fibers is better explained by position (they are less abundant in ventral muscles than in those developed from a dorsal muscle mass). Our results clarify the roles of position and function in determining the relative proportions of the various muscle fibers and provide evidence that these factors may differentially affect distinct fiber types.  相似文献   

20.
Tension responses to ramp stretches of 1-3% Lo (fiber length) in amplitude were examined in resting muscle fibers of the rat at temperatures ranging from 10 degrees C to 36 degrees C. Experiments were done using bundles of approximately 10 intact fibers isolated from the extensor digitorum longus (a fast muscle) and the soleus (a slow muscle). At low temperatures (below approximately 20 degrees C), the tension response consisted of an initial rise to a peak during the ramp followed by a complex tension decay to a plateau level; the tension decay occurred at approximately constant sarcomere length. The tension decay after a standard stretch at approximately 3-4.Lo/s contained a fast, an intermediate, and a (small amplitude) slow component, which at 10 degrees C (sarcomere length approximately 2.5 microns) were approximately 2000.s-1, approximately 150.s-1, and approximately 25.s-1 for fast fibers and approximately 2000.s-1, approximately 70.s-1 and approximately 8.s-1 for slow fibers, respectively. The fast component may represent the decay of interfilamentary viscous resistance, and the intermediate component may be due to viscoelasticity in the gap (titin, connectin) filament. The two- to threefold fast-slow muscle difference in the rate of passive tension relaxation (in the intermediate and the slow components) compares with previously reported differences in the speed of their active contractions; this suggests that "passive viscoelasticity" is appropriately matched to contraction speed in different muscle fiber types. At approximately 35 degrees C, the fast and intermediate components of tension relaxation were followed by a delayed tension rise at approximately 10.s-1 (fast fibers) and 2.5.s-1 (slow fibers); the delayed tension rise was accompanied by sarcomere shortening. BDM (5-10 mM) reduced the active twitch and tetanic tension responses and the delayed tension rise at 35 degrees C; the results indicate stretch sensitive activation in mammalian sarcomeres at physiological temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号