共查询到20条相似文献,搜索用时 0 毫秒
1.
E Blickstad 《Applied and environmental microbiology》1983,46(6):1345-1350
Lactobacillus viridescens, Lactobacillus sp. strain 173 (homofermentative), and Brochothrix thermosphacta ATCC 11509T were studied at different pH values and temperatures in aerobic and anaerobic batch cultures. The growth rates were higher in aerobic than in anaerobic cultures. L. viridescens grew faster at pH 5.8 than at pH 6.3, whereas the opposite was true for B. thermosphacta. Lactobacillus sp. strain 173 was inhibited in air or at 8 degrees C in anaerobic culture. B. thermosphacta did not grow in anaerobic culture at pH 5.3. The following variations in growth yields were found in the different environments studied: Lactobacillus sp. strain 173, 23 to 25 g (dry weight) per mol of glucose consumed; L. viridescens, 11 to 23 g/mol; B. thermosphacta, 16 to 38 g/mol. In air, L. viridescens produced D-lactic acid, ethanol, and acetic acid, whereas no acetic acid was produced anaerobically. Acetic acid and ethanol together constituted 41 to 48% of the total product yield irrespective of pH and temperature. Lactobacillus sp. strain 173 produced a racemic mixture of D- and L-lactic acid at pH 6.3, whereas the proportion of L-lactic acid was higher than that of D-lactic acid at pH 5.3. In air, product formation of B. thermosphacta varied from a domination of L-lactic acid to increasing yields of acetoin, acetic acid, 2,3-butanediol and isovaleric acid. The effect of pH and temperature on product formation was difficult to separate from the effect of O2 availability in aerobic cultures. However, it was indicated that more 2,3-butanediol and less acetoin were produced with a decreasing temperature.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
The effects of different gaseous atmospheres were determined on the maximum specific growth rate (mumax) and end-product formation by Brochothrix thermosphacta ATCC 11509T, Lactobacillus viridescens SMRICC 174 and Lactobacillus sp. SMRICC 173 (homofermentative). The highest mumax-values for Lact. viridescens (0.47/h) and Broc. thermosphacta (0.49/h) were obtained in air. Under anaerobic conditions mumax was reduced, an atmosphere containing CO2 alone giving the greatest reduction. Lactobacillus sp. 173 did not grow in air or N2. Aerobic growth was obtained by adding peroxidase while anaerobic growth occurred in the presence of 5-20% CO2. Carbon dioxide alone reduced the growth rate. All test organisms produced mainly lactic acid anaerobically. Lactobacillus viridescens also produced ethanol while Broc. thermosphacta produced small amounts of ethanol and formic acid. With O2 present, the number of end-products increased for all organisms. Lactobacillus sp. 173 produced small amounts of acetic acid and acetoin together with lactic acid. Oxygen induced acetic acid production in Lact. viridescens and Broc. thermosphacta. Aerobically, Broc. thermosphacta also produced a large amount of acetoin and smaller amounts of 2,3-butanediol, iso-valeric acid and iso-butyric acid. The production of lactic acid by Broc. thermosphacta was completely prevented under strictly aerobic conditions. All test organisms consumed O2 during aerobic growth. Hydrogen peroxide was produced by Lact. viridescens and Lactobacillus sp. 173. 相似文献
3.
The effects of different gaseous atmospheres were determined on the maximum specific growth rate (μmax ) and end-product formation by Brochothrix thermosphacta ATCC 11509T , Lactobacillus viridescens SMRICC 174 and Lactobacillus sp. SMRICC 173 (homofermentative). The highest μmax -values for Lact. viridescens (0.47/h) and Broc. thermosphacta (0.49/h) were obtained in air. Under anaerobic conditions μmax was reduced, an atmosphere containing CO2 alone giving the greatest reduction. Lactobacillus sp. 173 did not grow in air or N2 . Aerobic growth was obtained by adding peroxidase while anaerobic growth occurred in the presence of 5–20% CO2 . Carbon dioxide alone reduced the growth rate. All test organisms produced mainly lactic acid anaerobically. Lactobacillus viridescens also produced ethanol while Broc. thermosphacta produced small amounts of ethanol and formic acid. With O2 present, the number of end-products increased for all organisms. Lactobacillus sp. 173 produced small amounts of acetic acid and acetoin together with lactic acid. Oxygen induced acetic acid production in Lact. viridescens and Broc. thermosphacta . Aerobically, Broc. thermosphacta also produced a large amount of acetoin and smaller amounts of 2,3-butanediol, iso -valeric acid and iso -butyric acid. The production of lactic acid by Broc. thermosphacta was completely prevented under strictly aerobic conditions. All test organisms consumed O2 during aerobic growth. Hydrogen peroxide was produced by Lact. viridescens and Lactobacillus sp. 173. 相似文献
4.
Elisabeth Blickstad 《Applied microbiology and biotechnology》1984,19(1):13-17
Summary The effect of water activity (aw) on the growth and end-product formation of Lactobacillus viridescens SMRICC 174, Lactobacillus SMRICC 173 (homofermentative) and Brochothrix thermosphacta ATCC 11509T was studied. All strains orginated from meat or meat products. The aw was adjusted in the range 0.94–0.99 with NaCl or glycerol. A greater reduction in growth rates was found for L. viridescens and B. thermosphacta when aw was regulated with NaCl rather than with glycerol, the opposite was true for Lactobacillus 173. L. viridescens grew at aw >-0.94. At 0.94 aw
B. thermosphacta was totally inhibited when NaCl was the solute and Lactobacillus 173 when glycerol was the solute. Only minor variations in the end-product formation of the Lactobacillus spp. were found at different aw values. In aerobic culture B. thermosphacta produced less l-lactic acid and more acetic acid as the aw was decreased with NaCl, while the yields were unaffected when glycerol was used. 相似文献
5.
We have examined the effects of acidic pH, in the range of those prevailing within phagosomes and lysosomes, on the growth and the susceptibility to different antibiotics of several strains of Salmonella spp. The minimal inhibitory concentration and the minimal bactericidal concentration of several beta-lactams were increased considerably during culture at pH 5.2. The extent of the increase was a function of: (1) the beta-lactam structure and, more particularly, the hydrophobicity of the side-chain of the molecule; and (2) the bacterial serotype. This phenotypic resistance at acid pH was not due to beta-lactamase activity or to a lower growth rate. In contrast, rifamycin SV was more active at acidic pH than at neutral pH and chloramphenicol, another highly hydrophobic drug, was equally efficacious at both pH values. Membrane lipopolysaccharide mutants, but not porin mutants, cultivated at an acidic pH were inhibited by lower concentrations of the beta-lactams. This suggests that the increased resistance to beta-lactams, and the increased susceptibility to rifamycin SV, at acidic pH, could have resulted from modified permeability of the outer membrane to antibiotics. 相似文献
6.
The free fatty acid and phospholipid composition of 5 psychrotrophic marine Pseudomonas spp. have been determined in chemostat culture with glucose as the limiting substrate over the range 0–20°C. The predominant fatty acid present in all the isolates was hexadecenoic acid (C16:1) together with lesser quantities of octadecenoic acid (C 18:1) whilst none contained acids with chain lengths exceeding 18 carbon atoms. Decreasing the growth temperature from 20°C to 0°C resulted in little significant change in fatty acid composition. The principal phospholipid components of the five psychrotrophic pseudomonads have been identified as phosphatidylserine, phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Decreasing the growth temperature did not elicit significant changes either in the total quantities of phospholipid synthesized or in the concentration of individual phospholipid components in any of the isolates. All the psychrotrophs showed maximum glucose uptake between 15°C and 20°C and the rate decreased rapidly as the temperature was decreased towards 0°C.Abbreviations PS
Phosphatidylserine
- PE
phosphatidylethanolamine
- PG
phosphatidylglycerol
- DPG
diphosphatidylglycerol 相似文献
7.
8.
J.P.P.M. Smelt G.J.M. Raatjes J.S. Crowther † C.T. Verrips 《Journal of applied microbiology》1982,52(1):75-82
Spores of Clostridium botulinum were found to initiate growth and to produce toxin in aqueous suspensions of soya protein at pH values as low as 4-2 and in skimmed milk at pH 4.4. Most of the experiments were done with mixed cultures of CI. botulinum types A and B in the presence of two strains of Bacillus subtilis. The role of the latter organism was concluded to be to lower the oxygen content and the Eh of the suspensions. Toxin was produced at pH 4-4 after 4 weeks of incubation at 30o C when either hydrochloric or citric acids were used as the acidulant and after 12 and 14 weeks when, respectively, lactic and acetic acids were used. Thus, amongst other factors the nature of the acid and not solely the pH value is an important factor in controlling the growth of Cl. botulinum at low pH. Pure cultures of Cl botulinum type A grew at 30o C under strictly anaerobic conditions and produced toxin at pH 4-3 in the presence of hydrochloric acid. 相似文献
9.
Summary In order to obtain a better understanding of the behaviour ofPediococcus pentosaceus in food products as well to facilitate the designing of industrial production processes for the organism, the growth and lactic acid production ofPediococcus pentosaceus in a complex glucose medium was followed in batch cultures at different gas environments (CO2, air, N2 and static cultures without gasflow), temperatures (10–50°C), pH (4.3–7.3) and nitrite concentrations (0–700 ppm). Optimal growth was obtained in CO2 at 40°C and pH 6.3 and resulted in a maximum specific growth rate (
max) of 1.27 h–1. In static culture at 40°C and pH 6.3 the
max was 1.21 h–1. The
max was, compared with static culture, reduced in air (12%) and nitrogen (26%). At 10°C the
max was reduced by 99% and at 50°C by 88%. The reduction at pH 4.3 and 7.3 was 65% and 57%, respectively. Nitrite did not affect the
max at any pH but increased the lag phase at pH 4.3 by a factor of 12. The lactic acid production was linked to the growth. The total amount of lactic acid produced was the same in all the tested gases and nitrite concentrations and also within the wide temperature range (15–45°C) and pH range (5.3–7.3). Mainly L(+)-lactic acid was produced during the exponential growth phase, but after this growth declined about 30% of the L(+)-lactic acid was converted to D(–)-lactic acid. The lactic acid product yield and the cellmass yied were both affected by the temperature but not by the pH. 相似文献
10.
Summary Blended 9-day-old mycelia of Aspergillus parasiticus NRRL 2999 were tested for their ability to degrade aflatoxins B1 and G1 at 7,19,28,36, and 45°C. Rates for degradation of aflatoxin B1 and G1 were maximum at 28°C. Intermediate rates of aflatoxin degradation were observed at 19 and 36°C while little aflatoxin was degraded at 7 and 45°C. Five different pH values (2.0, 3.0, 4.0, 5.0, and 6.5) were also tested to determine the effect of pH on ability of blended 9-day-old mycelia of A. parasiticus NRRL 2999 to degrade aflatoxins. The ability of mycelia to degrade aflatoxin was pH-dependent. Of the pH values tested, greatest rates of aflatoxin B1 and G1 degradation occurred when pH was in the range of 5 to 6.5. Little aflatoxin was degraded at pH 4.0 and essentially no aflatoxin was degraded by mycelia at pH 2.0 or 3.0 although some aflatoxin was degraded by acid conditions only at pH values of 4 or less. 相似文献
11.
Botulinum neurotoxins type A (BoNT/A) are highly potent toxins, but are also useful in the treatment of illnesses. We studied
the properties of BoNT/A at various temperatures and pH values in order to understand its toxicity and structure variations.
The pH values of the environment of BoNT/A are obtained by changing the protonation states of certain titratable residue groups.
Our results show that certain parts of the protein are active at acidic pH environments or at high temperatures. The protein
is more stable in neutral environments at normal human body temperature, whereas, at high temperature, the protein is more
stable in acidic environments. Also, the three domains of the protein tend to have relative motion rather than within individual
domains. 相似文献
12.
Summary The aerobic growth and metabolism of eleven homofermentative and three heterofermentative Lactobacillus strains, three Leuconostoc strains, two Brochothrix thermosphacta strains and two Carnobacterium strains were studied in batch cultures at pH 6.0 and 25°C on a complex substrate containing 10.0 g glucose per litre. All strains, except Carnobacterium divergens 69, grew well aerobically. An oxygen consumption was registered for 18 of the strains—the exceptions being Lactobacillus alimentarius DSM 20249T, Lactobacillus farciminis DSM 20284T and Lactobacillus sharpeae DSM 20505T. The homofermentative lactobacilli showed a maximal oxygen consumption during the stationary growth phase and this was coupled with a low final viable count. Leuconostoc strains, heterofermentative lactobacilli, Brochothrix thermosphacta and Carnobacterium strains showed a maximal oxygen consumption during the exponential growth phase together with a high final viable count. The maximum specific growth rate varied from 0.19 to 0.54 h-1 while the growth yield varied from 19 to 86 g dry weight per mol glucose consumed. In general, homofermentative lactobacilli produced dl-lactic acid, acetic acid and acetoin. The three heterofermentative lactobacilli produced dl-lactic acid and acetic acid, two strains also produced ethanol Leuconostoc spp. formed d-lactic acid, acetic acid, and ethanol. B. thermosphacta produced acetoin, acetic acid, formic acid, isobutyric acid and isovaleric acid but no lactic acid. Carnobacterium produced l-lactic acid, acetic acid and acetoin. All strains accumulated hydrogen peroxide except L. alimentarius DSM 20249T, Carnobacterium piscicola 3 and B. thermosphacta.née Blickstad 相似文献
13.
14.
Mira De Orduña R Patchett ML Liu SQ Pilone GJ 《Applied and environmental microbiology》2001,67(4):1657-1662
During malolactic fermentation (MLF) in grape must and wine, heterofermentative lactic acid bacteria may degrade arginine, leading to the formation of ammonia and citrulline, among other substances. This is of concern because ammonia increases the pH and thus the risk of growth by spoilage bacteria, and citrulline is a precursor to the formation of carcinogenic ethyl carbamate (EC). Arginine metabolism and growth of Lactobacillus buchneri CUC-3 and Oenococcus oeni strains MCW and Lo111 in wine were investigated. In contrast to L. buchneri CUC-3, both oenococci required a higher minimum pH for arginine degradation, and arginine utilization was delayed relative to the degradation of malic acid, the main aim of MLF. This allows the control of pH increase and citrulline formation from arginine metabolism by carrying out MLF with pure oenococcal cultures and inhibiting cell metabolism after malic acid depletion. MLF by arginine-degrading lactobacilli should be discouraged because arginine degradation may lead to the enhanced formation of acids from sugar degradation. A linear relationship was found between arginine degradation and citrulline excretion rates. From this data, strain-specific arginine-to-citrulline conversion ratios were calculated that ranged between 2.2 and 3.9% (wt/wt), and these ratios can be used to estimate the contribution of citrulline to the EC precursor pool from a given amount of initial arginine. Increasing arginine concentrations led to higher rates of growth of L. buchneri CUC-3 but did not increase the growth yield of either oenococcus. These results suggest the use of non-arginine-degrading oenococci for inducing MLF. 相似文献
15.
Summary The end product profile of starch hydrolysis by four bacterial alpha-amylases was found to be dependent on the source of the enzyme, and pH and temperature conditions of reaction. 相似文献
16.
Dodecyl sulphate/polyacrylamide-gel electrophoresis at low pH values and low temperatures. 下载免费PDF全文
A simple method is described for dodecyl sulphate/polyacrylamide-gel electrophoresis of pH- and temperature-labile biological intermediates. The method is based on a catalyst system that works at temperatures of 2--4 degrees C and pH values of 2--4 and an appropriate buffer system containing Li+ or Tris [CH2OH--C(CH2OH)2--NH3+] instead of Na+. This system does not lead to the precipitation of 1% dodecyl sulphate. 相似文献
17.
Investigation of apomyoglobin stability depending on urea and temperature at two different pH values
Baryshnikova EN Sharanov MG Kashparov IA Il'ina NB Bychkova VE 《Molekuliarnaia biologiia》2005,39(2):330-335
Equilibrium unfolding of apomyoglobin by urea was investigated in the temperature range from 5 to 25 degrees C at two pH values. The thermodynamic parameters of the apomyoglobin native-unfolded state transition were determined. Conformational changes in the protein structure were monitored by tryptophan fluorescence and far UV circular dichroism. Apomyoglobin preserves its native conformation at pH 5.7 and 6.2 in the temperature range used. It was shown that the apomyoglobin stability and its unfolding cooperativity are substantially lower at 5 degrees C than at other temperatures. This fact should be taken in account at the investigation of apomyoglobin. 相似文献
18.
J. M. H. van Diggelen A. J. P. Smolders E. J. W. Visser S. Hicks J. G. M. Roelofs L. P. M. Lamers 《Plant biology (Stuttgart, Germany)》2016,18(2):307-315
Enhanced soil ammonium () concentrations in wetlands often lead to graminoid dominance, but species composition is highly variable. Although is readily taken up as a nutrient, several wetland species are known to be sensitive to high concentrations or even suffer toxicity, particularly at low soil pH. More knowledge about differential graminoid responses to high availability in relation to soil pH can help to better understand vegetation changes. The responses of two wetland graminoids, Juncus acutiflorus and Carex disticha, to high (2 mmol·l?1) versus control (20 μmol·l?1) concentrations were tested in a controlled hydroponic set up, at two pH values (4 and 6). A high concentration did not change total biomass for these species at either pH, but increased C allocation to shoots and increased P uptake, leading to K and Ca limitation, depending on pH treatment. More than 50% of N taken up by C. disticha was invested in N‐rich amino acids with decreasing C:N ratio, but only 10% for J. acutiflorus. Although both species appeared to be well adapted to high loadings in the short term, C. disticha showed higher classic detoxifying responses that are early warning indicators for decreased tolerance in the long term. In general, the efficient aboveground biomass allocation, P uptake and N detoxification explain the competitive strength of wetland graminoids at the expense of overall biodiversity at high loading. In addition, differential responses to enhanced affect interspecific competition among graminoids and lead to a shift in vegetation composition. 相似文献
19.
《Nordic Journal of Botany》2008,25(1-2):113-118
Three species of Mallomonas ( M. crassisquama , M. elongata and M. tonsurata ) were isolated from Kachang dam in Daegu, Korea and the individual species were grown as batch cultures in the laboratory. The growth characteristics of these species were investigated at different temperatures and pH. Mallomonas crassisquama exhibited the highest growth rates (μmax ) at 18°C, whereas the maximum growth rates of M. elongata and M. tonsurata were observed at 21°C. The maximum growth rates of M. crassisquama and M. elongata were observed at pH 6, and M. tonsurata exhibited maximum growth rate at pH 5. Mallomonas crassisquama and M. tonsurata showed high growth rate between pH 4 and 6, and M. elongata showed high growth rate below pH 7. The three species showed similar growth characteristics except that M. elongata proliferated at a narrower temperature range and at a wider pH range than other two species. 相似文献
20.
Seed germination at different temperatures and seedling emergence at different depths of Rhamnus spp
Hanan El Aou-ouad Hipólito Medrano Ahmed Lamarti Javier Gulías 《Central European Journal of Biology》2014,9(5):569-578
Rhamnus alaternus and R. ludovici-salvatoris, two Mediterranean shrubs with different geographic distributions, have shown important differences in seedling recruitment capacity. The objectives of this work were to determine the ability of these species to germinate seeds under different temperature ranges, as well as the capacity of seedlings to emerge from different burial depths, in order to better understand their regeneration processes. Two different experiments were performed. In the first one, seed germination was studied in Petri dishes and in the dark at different temperature regimes: a) 5–15°C, b) 10–20°C and c) 15–25°C (12h/12h). In the second experiment, seedling emergence capacity from different burial depths (0.5, 2 and 5 cm) was tested. R. ludovici-salvatoris showed a significantly higher final germination rates, a lower dormancy period, and average time response at 10–20°C than at other temperature ranges, although differences were much greater when seeds were subjected to the 5–15°C temperature regime. By contrast, R. alaternus did not show significant differences between treatments (5–15°C and 10–20°C) in germination behavior. Seedling emergence of both species was lower and slower when seeds were buried at 5 cm. However, R. ludovici-salvatoris always showed a lower seedling emergence capacity than R. alaternus at any burial depth. The low ability of R. ludovici-salvatoris to germinate seeds and emerge between 5–15°C, even from shallow depths, is discussed in relation to its low regeneration capacity and declining geographic distribution. 相似文献