首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The generation of morphological, such as left-right, asymmetry during development is an integral part of the establishment of a body plan. Until recently, the molecular basis of left-right asymmetry was a mystery, but studies indicate that Nodal and the Lefty proteins, transforming growth factor-beta-related molecules, have a central role in generating asymmetric signals. Although the initial mechanism of symmetry breaking remains unknown, developmental biologists are beginning to analyse the pathway that leads to left-right asymmetry establishment and maintenance.  相似文献   

2.
3.
Every cartilage and bone in the vertebrate skeleton has a precise shape and position. The head skeleton develops in the embryo from the neural crest, which emigrates from the neural ectoderm and forms the skull and pharyngeal arches. Recent genetic data from mice and zebrafish suggest that cells in the pharyngeal segments are specified by positional information in at least two dimensions, Hox genes along the anterior-posterior axis and other homeobox genes along the dorsal-ventral axis within a segment. Many zebrafish and human mutant phenotypes indicate that additional genes are required for the development of groups of adjacent pharyngeal arches and for patterning along the mediolateral axis of the skull. The complementary genetic approaches in humans, mice and fish reveal networks of genes that specify the complex morphology of the head skeleton along a relatively simple set of coordinates.  相似文献   

4.
5.
6.
7.
Handed asymmetry of the shape and position of the internal organs is found in all vertebrates, and is essential for normal cardiac development. Recent genetic and embryological experiments in mouse embryos have demonstrated that left-right asymmetry is established by directional flow of extraembryonic fluid surrounding the node, which is driven by motile monocilia.  相似文献   

8.
Limb development has become one of the model systems for studying vertebrate development. One crucial aspect in limb development is the origin, differentiation and patterning of muscle. Much progress has been made in recent years towards understanding this process. One of the general observations is that the genes involved in limb muscle development appear to be very similar to those involved in muscle development in other regions of the embryo. In this review, we summarize some of the genes and mechanisms that regulate limb muscle development and discuss various avenues along which a deeper understanding can be gained of how muscle cells originate and differentiate in different tissues during vertebrate development.  相似文献   

9.
Vertebrates exhibit evolutionarily conserved asymmetries in the pattern of internal organ placement that are essential for their normal physiological function. Left-right asymmetries in organ situs are dependent upon the formation of an intact left-right axis during embryogenesis. Recently many of the molecular components involved in the initiation and maintenance of the left-right axis have been described. These molecules and their function in promoting left-right asymmetries are reviewed.  相似文献   

10.
11.
While the various internal organs of vertebrates display many obvious left–right asymmetries in their location and/or morphology, external features exhibit a high degree of bilateral symmetry. How this external bilateral symmetry is established during development is largely unknown. In this review, we explore several mechanisms, in place during development, that regulate the final size of the limb. These mechanisms rely on the presence of positive signaling feedback loops during limb bud growth. Through the activity of these signaling loops and their eventual breakdown when the limb bud has reached a certain size, bilateral symmetry can be achieved.  相似文献   

12.
The micromeres (Mics) lineage functions as a morphogenetic signaling center in early embryos of sea urchins. The Mics lineage releases signals that regulate the specification of cell fates along the animal-vegetal and oral-aboral axes. We tested whether the Mics lineage might also be responsible for differentiation of the left-right (LR) axis by observing of the placement of the adult rudiment, which normally forms only on the left side of the larvae, after removal of the Mics lineage. When all of the Mics lineage were removed from embryos of the regular sea urchin Hemicentrotus pulcherrimus between the 16- and 64-cell stages, the LR placement of the rudiment became randomized. However, the immediate retransplantation of the Mics rescued the normal LR placement of the rudiment, indicating that the Mics lineage releases a signal that specifies LR polarity. Additionally, we investigated whether the specification of LR polarity of whole embryos in the indirect-developing sea urchin H. pulcherrimus is affected by LiCl exposure, which disturbs the establishment of LR asymmetry in a direct-developing sea urchin. Larvae derived from normal animal caps combined with LiCl-exposed Mics descendants were defective in normal LR placement of the rudiment, suggesting that LiCl interferes with the Mics-derived signal. In contrast, embryos of two sand dollar species (Scaphechinus mirabilis and Astriclypeus manni) were resistant to alteration of LR placement of the rudiment by either removal of the Mics lineage or LiCl exposure. These results indicate that the Mics lineage is involved in specification of LR polarity in the regular sea urchin H. pulcherrimus, and suggest that LiCl impairs the normal LR patterning by affecting Mics-derived signaling.  相似文献   

13.
Cellular heterogeneity during vertebrate skeletal muscle development   总被引:2,自引:0,他引:2  
Although skeletal muscles appear superficially alike at different anatomical locations, in reality there is considerably more diversity than previously anticipated. Heterogeneity is not only restricted to completely developed fibers, but is clearly apparent during development at the molecular, cellular and anatomical level. Multiple waves of muscle precursors with different features appear before birth and contribute to muscular diversification. Recent cell lineage and gene expression studies have expanded our knowledge on how skeletal muscle is formed and how its heterogeneity is generated. This review will present a comprehensive view of relevant findings in this field.  相似文献   

14.
15.
PPAR基因在脊椎动物发育过程中的功能研究   总被引:1,自引:2,他引:1  
过氧化物酶体增殖剂激活受体(peroxisome proliferstor activated receptor,PPAR)是核激素受体家族中的配体激活受体,在不同的物种中已经发现了它的3种亚型,即PPARα、PPARβ(也有称δ)和PPARγ。通过结合到相应的激活剂上,这些受体在一些重要的代谢途径中刺激靶基因的表达。本文是就PPAR在一些脊椎动物胚胎发育过程中的功能方面作一综述。PPAR的功能表现在脂肪组织、脑组织、胎盘和皮肤的分化方面。  相似文献   

16.
Kramer KL  Barnette JE  Yost HJ 《Cell》2002,111(7):981-990
The transmembrane proteoglycan syndecan-2 cell nonautonomously regulates left-right (LR) development in migrating mesoderm by an unknown mechanism, leading to LR asymmetric gene expression and LR orientation of the heart and gut. Here, we demonstrate that protein kinase C gamma (PKCgamma) mediates phosphorylation of the cytoplasmic domain of syndecan-2 in right, but not left, animal cap ectodermal cells. Notably, both phosphorylation states of syndecan-2 are obligatory for normal LR development, with PKCgamma-dependent phosphorylated syndecan-2 in right ectodermal cells and nonphosphorylated syndecan-2 in left cells. The ectodermal cells contact migrating mesodermal cells during early gastrulation, concurrent with the transmission of LR information. This precedes the appearance of monocilia and is one of the earliest steps of LR development. These results demonstrate that PKCgamma regulates the cytoplasmic phosphorylation of syndecan-2 and, consequently, syndecan-2-mediated inside-out signaling to adjacent cells.  相似文献   

17.
PPAR expression and function during vertebrate development   总被引:11,自引:0,他引:11  
The peroxisome proliferator activated receptors (PPARs) are ligand activated receptors which belong to the nuclear hormone receptor family. As with other members of this superfamily, it is thought that the ability of PPAR to bind to a ligand was acquired during metazoan evolution. Three different PPAR isotypes (PPARalpha, PPARbeta, also called 6, and PPARgamma) have been identified in various species. Upon binding to an activator, these receptors stimulate the expression of target genes implicated in important metabolic pathways. The present article is a review of PPAR expression and involvement in some aspects of Xenopus laevis and rodent embryonic development. PPARalpha and beta are ubiquitously expressed in Xenopus early embryos but become more tissue restricted later in development. In rodents, PPARalpha, PPARbeta and PPARgamma show specific time- and tissue-dependent patterns of expression during fetal development and in the adult animals. PPARs are implicated in several aspects of tissue differentiation and rodent development, such as differentiation of the adipose tissue, brain, placenta and skin. Particular attention is given to studies undertaken by us and others on the implication of PPARalpha and beta in rodent epidermal differentiation.  相似文献   

18.
Although vertebrates seem to be essentially bilaterally symmetrical on the exterior, there are numerous interior left-right asymmetries in the disposition and placement of internal organs. These asymmetries are established during embryogenesis by complex epigenetic and genetic cascades. Recent studies in a range of model organisms have made important progress in understanding how this laterality information is generated and conveyed to large regions of the embryo. Both commonalities and divergences are emerging in the mechanisms that different vertebrates use in left-right axis specification. Recent evidence also provides intriguing links between the establishment of left-right asymmetries and the symmetrical elongation of the anterior-posterior axis.  相似文献   

19.
Tight junction formation during development is critical for embryonic patterning and organization. We consider mechanisms of junction biogenesis in cleaving mouse and Xenopus eggs. Junction assembly follows the establishment of cell polarity at 8-cell (mouse) or 2-cell (Xenopus) stages, characterized by sequential membrane delivery of constituents, coordinated by embryonic (mouse) or maternal (Xenopus) expression programmes. Cadherin adhesion is permissive for tight junction construction only in the mouse. Occludin post-translational modification and membrane delivery, mediated by delayed ZO-1 alpha(+)isoform expression in the mouse, provides a mechanism for completion of tight junction biogenesis and sealing, regulating the timing of blastocoel cavitation.  相似文献   

20.
Regulation of GATA gene expression during vertebrate development   总被引:5,自引:0,他引:5  
GATA factors regulate critical events in hematopoietic lineages (GATA-1/2/3), the heart and gut (GATA-4/5/6) and various other tissues. Transgenic approaches have revealed that GATA genes are regulated in a modular fashion by sets of enhancers that govern distinct temporal and/or spatial facets of the overall expression patterns. Efforts are underway to resolve how these GATA gene enhancers are themselves regulated in order to elucidate the genetic and molecular hierarchies that govern GATA expression in particular developmental contexts. These enhancers also afford a raft of tools that can be used to selectively perturb and probe various developmental events in transgenic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号