首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to optimize the expression of human CB2 cannabinoid receptors in methylotrophic yeast Pichia pastoris (P. pastoris). Two major species of expressed CB2 proteins were seen on Western blot, i.e., a 42 kDa band which matches the calculated molecular weight for tagged CB2, and a 52/55 kDa doublet. Treatment of membranes with N-glycosidase F or inclusion of tunicamycin in the culture medium during induction resulted in the disappearance of the 55 kDa, but not the 52 kDa band, suggesting that the 3 kDa extra in the 55 kDa band is due to N-glycosylation, but the 10 kDa extra in the 52 kDa band is not due to N-glycosylation. Anti-FLAG M1 antibody had a much higher preference for the 42 kDa band over the 52/55 kDa doublet, and a 10 kDa fragment recognized by anti-FLAG M2 antibody was generated by CNBr digestion of the 52/55 doublet. These data strongly support the hypothesis that the 10 kDa increase in molecular weight was due to unprocessed alpha-factor sequence. This conclusion was further validated by finding several peptide sequences for alpha-factor fragments at the N-terminal of the CB2 receptor using pepsin/chymotrypsin digestion and LC/MS/MS approaches. Importantly, unprocessed alpha-factor was found to be associated with poor ligand binding. In addition, controlling the level of CB2 protein expression was found to be critical for minimizing the presence of unprocessed alpha-factor sequence. The information gained from this study should aid the proper expression of not only CB2 receptor but also other members of the GPCR family in P. pastoris.  相似文献   

2.
The rat peripheral cannabinoid receptor (rCB2) was cloned from a Sprague-Dawley rat spleen cDNA library and when translated, encodes a protein of 410 amino acids. Alignment of rCB2 with mouse (mCB2) and human (hCB2) peripheral cannabinoid receptors reveals a high degree of homology except in the carboxy terminus where rCB2 is 50 and 63 residues longer than hCB2 and mCB2, respectively. PCR screening and sequencing of rat genomic DNA showed that rCB2 is encoded by three exons interrupted by two introns, one of which is polymorphic and contains a 209 base pair B2 (SINE) element. By Northern hybridization and ribonuclease protection assay (RPA), rCB2 mRNA was detected in rat spleen, testis, thymus and lung but not in rat brain, heart, kidney or liver. Like hCB2 and mCB2 receptors, rCB2 activates mitogen-activated protein kinase when it is stably expressed in Chinese Hamster Ovary (CHO) cells. The importance of the carboxy terminus in regulating CB2 receptor desensitization and internalization is well-established. Thus, the profound differences identified in this region of the CB2 receptor between species mandates caution when extrapolating experimental results from non-human models to the effects of chronic CB2 receptor stimulation in humans.  相似文献   

3.
Gliomas are the most important group of malignant primary brain tumors and one of the most aggressive forms of cancer. During the last years, several studies have demonstrated that cannabinoids induce apoptosis of glioma cells and inhibit angiogenesis of gliomas in vivo. As the effects of cannabinoids rely on CB1 and CB2 receptors activation, the aim of the present study was to investigate both receptors protein expression in cellular membrane homogenates of human glial tumors using specific antibodies raised against these proteins. Additionally, we studied the functionality of the cannabinoid receptors in glioblastomas by using WIN 55,212-2 stimulated [35S]GTPγS binding.Western blot analysis showed that CB1 receptor immunoreactivity was significantly lower in glioblastoma multiforme (?43%, n = 10; p < 0.05) than in normal post-mortem brain tissue (n = 16). No significant differences were found for astrocytoma (n = 6) and meningioma (n = 8) samples. Conversely, CB2 receptor immunoreactivity was significantly greater in membranes of glioblastoma multiforme (765%, n = 9; p < 0.05) and astrocytoma (471%, n = 4; p < 0.05) than in control brain tissue (n = 10). Finally, the maximal stimulation of [35S]GTPγS binding by WIN 55,212-2 was significantly lower in glioblastomas (134 ± 4%) than in control membranes (183 ± 2%; p < 0.05). The basal [35S]GTPγS binding and the EC50 values were not significantly different between both groups.The present results demonstrate opposite changes in CB1 and CB2 receptor protein expression in human gliomas. These changes may be of interest for further research about the therapeutic effects of cannabinoids in glial tumors.  相似文献   

4.
The cannabinergic system is present in a variety of organs and tissues that perform a wide range of essential physiologic functions making it an inherently important therapeutic target for drug discovery. In order to augment our knowledge regarding the interactions between cannabinoid receptors (CBs) and their ligands, efficient and effective tools are essential for robust expression and purification of these membrane-bound proteins. In this report, we describe a suitable method for purification of the human cannabinoid receptor 2 (CB2) to a qualitative and quantitative level sufficient for mass spectral analysis. We utilized a baculovirus expression system, incorporating several epitope tags to facilitate purification and to ameliorate the effect the tags have on CB2 expression and function. Expressed protein encoded by a carboxy (C)-terminal His-tagged CB2 construct displayed a B(max) value of 9.3 pmol/mg with a K(D) of 7.30 nM using [3(H)]CP-55(940), a standard cannabinoid radioligand, and was selected for subsequent purification experiments. Western blot analysis of purified membrane protein yielded several forms of CB2, the most abundant being a 41 kDa peptide. A second protein species was observed with an apparent molecular weight of 46 kDa representing a glycosylated form of CB2. In addition, a CB2 homodimer was also identified. The purified receptor was subjected to mass spectroscopic analysis to confirm its identity and purity. Mass spectra corresponding to the intracellular, extracellular and transmembrane domains were obtained. These experiments exemplify the importance of high-level expression systems when developing membrane-bound protein purification strategies. This work will aid in the identification of receptor-ligand binding sites, the characterization of molecular features involved in receptor activation, and the elucidation of the CB2 receptor tertiary structure.  相似文献   

5.
For the purpose of purification and structural characterization, the CB1 cannabinoid receptors are expressed in methylotrophic yeast Pichia pastoris. The expression plasmid was constructed in which the CB1 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase I gene. To facilitate easy detection and purification, a FLAG tag was introduced at the N-terminal, a c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB1. In membrane preparations of CB1 gene transformed yeast cells, Western blot analysis detected the expression of CB1 proteins. Radioligand binding assays demonstrated that the tagged CB1 receptors expressed in P. pastoris have a pharmacological profile similar to that of the untagged CB1 receptors expressed in mammalian systems. Furthermore, the tagged CB1 receptors were purified by anti-FLAG M2 affinity chromatography and the identity of the purified CB1 receptor proteins was confirmed by Western blot analysis. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions of purified CB1 preparations detected 17 peptide fragments derived from the CB1, thus further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope tagged, functional CB1 cannabinoid receptors can be expressed in P. pastoris for purification and mass spectrometry characterization.  相似文献   

6.
Integral membrane G protein-coupled receptors (GPCR) regulate multiple physiological processes by transmitting signals from extracellular milieu to intracellular proteins and are major targets of pharmaceutical drug development. Since GPCR are inherently flexible proteins, their conformational dynamics can be studied by spectroscopic techniques such as electron paramagnetic resonance (EPR) which requires selective chemical labeling of the protein. Here, we developed protocols for selective chemical labeling of the recombinant human cannabinoid receptor CB2 by judiciously replacing naturally occurring reactive cysteine residues and introducing a new single cysteine residue in selected positions. The majority of the 47 newly generated single cysteine constructs expressed well in E. coli cells, and more than half of them retained high functional activity. The reactivity of newly introduced cysteine residues was assessed by incorporating nitroxide spin label and EPR measurement. The conformational transition of the receptor between the inactive and activated form were studied by EPR of selectively labeled constructs in the presence of either a full agonist CP-55,940 or an inverse agonist SR-144,528. We observed evidence for higher mobility of labels in the center of internal loop 3 and a structural change between agonist vs. inverse agonist-bound CB2 in the extracellular tip of transmembrane helix 6. Our results demonstrate the utility of EPR for studies of conformational dynamics of CB2.  相似文献   

7.
To facilitate purification and structural characterization, the CB2 cannabinoid receptor is expressed in methylotrophic yeast Pichia pastoris. The expression plasmids were constructed in which the CB2 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase 1 gene. A c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB2 to permit easy detection and purification. In membrane preparations of CB2 gene transformed yeast cells, Western blot analysis detected the expression of CB2 proteins. Radioligand binding assays demonstrated that the CB2 receptors expressed in P. pastoris have a pharmacological profile similar to that of the receptors expressed in mammalian systems. Furthermore, the epitope-tagged receptor was purified by metal chelating chromatography and the purified CB2 preparations were subjected to digestion by trypsin. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions detected 14 peptide fragments derived from the CB2 receptor. ESI mass spectrometry was used to sequence one of these peptide fragments, thus, further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope-tagged, functional CB2 cannabinoid receptor can be expressed in P. pastoris for purification.  相似文献   

8.
Sulfamoyl benzamides were identified as a novel series of cannabinoid receptor ligands. Starting from a screening hit 8 that had modest affinity for the cannabinoid CB2 receptor, a parallel synthesis approach and initial SAR are described, leading to compound 27 with 120-fold functional selectivity for the CB2 receptor. This compound produced robust antiallodynic activity in rodent models of postoperative pain and neuropathic pain without traditional cannabinergic side effects.  相似文献   

9.
Cannabinoid receptors, CB1 and CB2, are therapeutic targets in the treatment of anxiety, obesity, movement disorders, glaucoma, and pain. We have developed an on-line screening method for CB1 and CB2 ligands, where cellular membrane fragments of a chronic myelogenous leukemia cell line, KU-812, were immobilized onto the surface of an open tubular (OT) capillary to create a CB1/CB2–OT column. The binding activities of the immobilized CB1/CB2 receptors were established using frontal affinity chromatographic techniques. This is the first report that confirms the presence of functional CB1 and CB2 receptors on KU-812 cells. The data from this study confirm that the CB1/CB2–OT column can be used to determine the binding affinities (Ki values) for a single compound and to screen individual compounds or a mixture of multiple compounds. The CB1/CB2–OT column was also used to screen a botanical matrix, Zanthoxylum clava-herculis, where preliminary results suggest the presence of a high-affinity phytocannabinoid.  相似文献   

10.
The cannabinoid receptor 1 (CB1) cannabinoid receptor is an essential component of the cannabinergic system. It has been recognized as a therapeutic target for treating numerous diseases and is currently receiving considerable attention by the pharmaceutical community. Target-based drug design, utilizing three-dimensional information of receptor structure and ligand-binding motifs, requires significant amounts of purified protein. To facilitate the purification of CB1, we have expressed the receptor fused to various epitope tags using the baculovirus expression system. In addition, expression levels and ligand-binding profiles corresponding to the expressed fusion proteins have been compared. C-terminal histidine (His)-tagged CB1 gave a Bmax higher than most other systems previously reported in the literature, and was selected for subsequent metal affinity chromatography purification and mass spectroscopic (MS) analysis. Moreover, cells expressing C-terminal His-tagged CB1 were shown to inhibit forskolin-stimulated cyclic adenosine 3',5'-monophosphate (cAMP) production in a concentration-dependent manner in the presence of CP-55,940, confirming the expressed receptor's functional characteristics. A Western blot analysis of the purified receptor showed several forms of CB1, the most abundant being a 57 kDa monomeric protein. The purified CB1 preparations were subjected to protein digestion followed by MS. Fragments corresponding to >70% of the receptor were identified by this method, confirming the identity and purity of the expressed protein. The work presented here demonstrates that epitope-tagged CB1 can be expressed in sufficient amounts and purified to homogeneity for MS analysis. Moreover, these results will serve as a basis for future experiments aimed at characterizing the ligand-binding domains using covalently reacting receptor probes.  相似文献   

11.
A biotin-protein ligase recognition site (BRS) was inserted into a polypeptide comprised of the maltose-binding protein, the peripheral cannabinoid receptor (CB2), thioredoxin A, and a polyhistidine tag at the carboxy terminus. Expression levels of the recombinant receptor in Escherichia coli BL21(DE3) cells were approximately 1mg per liter of bacterial culture. The biotinylated CB2-fusion fully retained its ligand-binding capacity. Introduction of the BRS at the C-terminus of the CB2 fusion protein (construct CB2-109) resulted in its complete in vivo biotinylation; the biotinylated protein was streptavidin-binding competent. Positioning of the BRS near the N-terminus of CB2 (CB2-112) resulted in a very low level of biotinylation in vivo. However, the detergent solubilized and purified CB2-112 fusion protein were successfully biotinylated in vitro by action of a BirA biotin-protein ligase. The biotinylated CB2-112 fusion protein was cleaved by the tobacco etch virus protease at specifically inserted sites, and deposited onto monomeric avidin agarose beads. Biotinylation of the recombinant CB2 receptor enabled not only purification but also immobilization of the GPCR on a solid support in homogeneous orientation which is beneficial for subsequent structural characterization.  相似文献   

12.
Xie XQ  Chen JZ  Billings EM 《Proteins》2003,53(2):307-319
The potential for therapeutic specificity in regulating diseases and for reduced side effects has made cannabinoid (CB) receptors one of the most important G-protein-coupled receptor (GPCR) targets for drug discovery. The cannabinoid (CB) receptor subtype CB2 is of particular interest due to its involvement in signal transduction in the immune system and its increased characterization by mutational and other studies. However, our understanding of their mode of action has been limited by the absence of an experimental receptor structure. In this study, we have developed a 3D model of the CB2 receptor based on the recent crystal structure of a related GPCR, bovine rhodopsin. The model was developed using multiple sequence alignment of homologous receptor sub-types in humans and mammals, and compared with other GPCRs. Alignments were analyzed with mutation scores, pairwise hydrophobicity profiles and Kyte-Doolittle plots. The 3D model of the transmembrane segment was generated by mapping the CB2 sequence onto the homologous residues of the rhodopsin structure. The extra- and intracellular loop regions of the CB2 were generated by searching for homologous C(alpha) backbone sequences in published structures in the Brookhaven Protein Databank (PDB). Residue side chains were positioned through a combination of rotamer library searches, simulated annealing and minimization. Intermediate models of the 7TM helix bundles were analyzed in terms of helix tilt angles, hydrogen-bond networks, conserved residues and motifs, possible disulfide bonds. The amphipathic cytoplasmic helix domain was also correlated with biological and site-directed mutagenesis data. Finally, the model receptor-binding cavity was characterized using solvent-accessible surface approach.  相似文献   

13.
To facilitate purification and structural characterization, the CB2 cannabinoid receptor is expressed in methylotrophic yeast Pichia pastoris. The expression plasmids were constructed in which the CB2 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase 1 gene. A c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB2 to permit easy detection and purification. In membrane preparations of CB2 gene transformed yeast cells, Western blot analysis detected the expression of CB2 proteins. Radioligand binding assays demonstrated that the CB2 receptors expressed in P. pastoris have a pharmacological profile similar to that of the receptors expressed in mammalian systems. Furthermore, the epitope-tagged receptor was purified by metal chelating chromatography and the purified CB2 preparations were subjected to digestion by trypsin. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions detected 14 peptide fragments derived from the CB2 receptor. ESI mass spectrometry was used to sequence one of these peptide fragments, thus, further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope-tagged, functional CB2 cannabinoid receptor can be expressed in P. pastoris for purification.  相似文献   

14.
Recruitment of leukocytes to inflammatory sites is crucial in the pathogenesis of chronic inflammatory diseases. The aim of this study was to investigate if activation of CB2 cannabinoid receptors would modulate the chemotactic response of human monocytes. Human monocytes treated with the CB2 agonist JWH-015 for 12-18 h showed significantly reduced migration to chemokines CCL2 and CCL3, associated with reduced mRNA and surface expression of their receptors CCR2 and CCR1. The induction of ICAM-1 in response to IFN-gamma was inhibited by JWH-015. Moreover, JWH-015 cross-desensitized human monocytes for migration in response to CCL2 and CCL3 by its own chemoattractant properties. The CB2-selective antagonist SR-144528, but not the CB1 antagonist SR-147778, reversed JWH-015-induced actions, whereas the CB2 agonist JWH-133 mimicked the effects of JWH-015. The investigation of underlying pathways revealed the involvement of phosphatidylinositol 3-kinase/Akt and ERK1/2 but not p38 MAPK. In conclusion, selective activation of CB2 receptors modulates chemotaxis of human monocytes, which might have crucial effects in chronic inflammatory disorders such as atherosclerosis or rheumatoid arthritis.  相似文献   

15.
Cannabinoid receptors are expressed in macrophages, but little is known of their roles. We here examined their involvement in phagocytosis. The presence of 2-arachidonylglycerol, an endocannabinoid, augmented the phagocytosis of zymosan by mouse macrophages, while the phagocytosis of Escherichia coli, Staphylococcus aureus, apoptotic cells or latex beads remained unaffected. An agonist of the cannabinoid receptors CB1 and CB2 also stimulated the phagocytosis of zymosan. The stimulatory effect of 2-arachidonylglycerol was abolished when phagocytosis reactions were carried out in the presence of an antagonist of CB2 but not of CB1. Furthermore, the phagocytosis of zymosan in the presence of 2-arachidonylglycerol was severely inhibited by the addition of a beta-glucan-containing carbohydrate or antibody neutralizing dectin-1, a beta-glucan-recognizing phagocytosis receptor. These results suggested that the activation of CB2 in macrophages leads to the stimulation of dectin-1-mediated phagocytosis.  相似文献   

16.
In the present study, 11 novel N-(3,3-diphenyl)propyl-2,2-diphenylacetamide derivatives (4a-d and 9a-g) and six triphenylacetamides (10a-c and 11a-c) were synthesized and tested as ligands of cannabinoid CB(1) and CB(2) receptors. All compounds exhibited affinity for CB(1) and CB(2) receptors. Four compounds (4b, 9a, 9b, and 11a) showed selectivity for CB(1) versus CB(2) receptors, although only the N-(3,3-diphenyl)propyl-2,2-diphenylacetamide (4b) can be considered a potent CB(1) ligand (K(i)=58 nM). It was 140-fold selective over CB(2) receptors (K(i)=7800 nM) and behaved as an inverse agonist by stimulating forskolin-induced cAMP formation in mouse N18TG2 neuroblastoma cells. This compound is the first of a novel class of tetraphenyl CB(1) ligands that, in view of its easy synthesis and high affinity for CB(1) receptors and despite its sterical hindrance, will be useful for the design of new blockers of this therapeutically exploitable receptor type.  相似文献   

17.
Cannabinoid CB-1 receptors have been the focus of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and obesity-related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed and efficiently prepared a series of pentacycle derivatives. Five of the new compounds which displayed high in vitro rCB1 binding affinities were assayed for binding to hCB2 receptor. Noticeably, 2-(5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-(5-methyl-1,3,4-thiadiazol-2-yl)-1H-pyrazol-3-yl)-5-(1-(trifluoromethyl)cyclopropyl)-1,3,4-oxadiazole (16l) demonstrated good binding affinity and decent selectivity for rCB1 receptor (IC50 = 1.72 nM, hCB2/rCB1 = 142).  相似文献   

18.
Cannabinoid CB1 receptors have been the focus of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed a new series of tetrazole-biarylpyrazoles. The various analogues were efficiently prepared and bio-assayed for binding to cannabinoid CB1 receptor. Six of the new compounds which displayed high in vitro CB1 binding affinities were assayed for binding to CB2 receptor. Noticeably, cyclopentyl-tetrazole (9a) demonstrated good binding affinity and selectivity for CB1 receptor (IC(50)=11.6nM and CB2/CB1=366).  相似文献   

19.
Cannabinoid CB1 receptors have been the avenue of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and obesity-related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed and efficiently prepared a series of substituted pyrimidines based on chemical structure of Merck’s taranabant, a cannabinoid CB1 receptor inverse agonist. Noticeably, N4-((2S,3S)-3-(3-bromophenyl)-4-(4-chlorophenyl)butan-2-yl)-N6-butylpyrimidine-4,6-diamine (13b) demonstrated good binding affinity and decent selectivity for CB1 receptor (IC50 = 16.3 nM, CB2/CB1 = 181.6).  相似文献   

20.
Obtaining sufficient amount of purified G-protein coupled receptors (GPCRs) is almost always one of the major challenges for their structural studies. CB2271–326, a human cannabinoid receptor 2 (CB2) fragment comprising part of the third extracellular loop (EL3), the seventh transmembrane domain (TM7) and C-terminal juxtamembrane region of the receptor, was over-expressed as a fusion protein into inclusion body (IB) of Escherichia coli. The fusion protein was purified by histidine-selected nickel affinity chromatography under denaturing conditions. Then, the fusion protein IBs were solubilized in detergent (Brij58) and the expression fusion leader sequence (TrpLE) was specifically cleaved with tobacco etch virus (TEV) protease. The target fragment, CB2271–326, was subsequently purified by reverse-phase HPLC and confirmed by SDS–PAGE and mass spectrometry. This hydrophobic fragment can refold in mild detergents digitonin and Brij58. Circular dichroism (CD) spectroscopy of CB2271–326 in digitonin and Brij58 micelles showed that the fragment adopts a more than 75% α-helical structure, with the remainder having β-strand structure. Fluorescence spectroscopy and quenching studies suggested that the C-terminal region lies near the surface of the digitonin micelles and the TM7 region is folded relatively close to the center of the micelles. This study may provide an alternative strategy for the production and structure/functional studies of GPCRs such as CB2 receptor protein produced in the form of IBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号