首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally mevalonate-resistant acetogen Clostridium sp. MT1243 produced only 425 mM acetate during syngas fermentation. Using Clostridium sp. MT1243 we engineered biocatalyst selectively producing mevalonate from synthesis gas or CO2/H2 blend. Acetate production and spore formation were eliminated from Clostridium sp. MT1243 using Cre-lox66/lox71-system. Cell energy released via elimination of phosphotransacetylase, acetate kinase and early stage sporulation genes powered mevalonate accumulation in fermentation broth due to expression of synthetic thiolase, HMG-synthase, and HMG-reductase, three copies of each, integrated using Tn7-approach. Recombinants produced 145 mM mevalonate in five independent single-step fermentation runs 25 days each in five repeats using syngas blend 60 % CO and 40 % H2 (v/v) (p < 0.005). Mevalonate production was 97 mM if only CO2/H2 blend was fed instead of syngas (p < 0.005). Mevalonate from CO2/H2 blend might serve as a commercial route to mitigate global warming in proportion to CO2 fermentation scale worldwide.  相似文献   

2.
A time- and cost-efficient two-step gene elimination procedure was used for acetogen Clostridium sp. MT1834 capable of fermenting CO2/H2 blend to 245 mM acetate (p < 0.005). The first step rendered the targeted gene replacement without affecting the total genome size. We replaced the acetate pta-ack cluster with synthetic bi-functional acetaldehyde-alcohol dehydrogenase (al-adh). Replacement of pta-ack with al-adh rendered initiation of 243 mM ethanol accumulation at the expense of acetate production during CO2/H2 blend continuous fermentation (p < 0.005). At the second step, al-adh was eliminated to reduce the genome size. Resulting recombinants accumulated 25 mM mevalonate in fermentation broth (p < 0.005). Cell duplication time for recombinants with reduced genome size decreased by 9.5 % compared to Clostridium sp. MT1834 strain under the same fermentation conditions suggesting better cell energy pool management in the absence of the ack-pta gene cluster in the engineered biocatalyst. If the first gene elimination step was used alone for spo0A gene replacement with two copies of synthetic formate dehydrogenase in recombinants with a shortened genome, mevalonate production was replaced with 76.5 mM formate production in a single step continuous CO2/H2 blend fermentation (p < 0.005) with cell duplication time almost nearing that of the wild strain.  相似文献   

3.
The cell energy fraction that powered maintenance and expression of genes encoding pro-phage elements, pta-ack cluster, early sporulation, sugar ABC transporter periplasmic proteins, 6-phosphofructokinase, pyruvate kinase, and fructose-1,6-disphosphatase in acetogen Clostridium sp. MT871 was re-directed to power synthetic operon encoding isobutanol biosynthesis at the expense of these genes achieved via their elimination. Genome tailoring decreased cell duplication time by 7.0 ± 0.1 min (p < 0.05) compared to the parental strain, with intact genome and cell duplication time of 68 ± 1 min (p < 0.05). Clostridium sp. MT871 with tailored genome was UVC-mutated to withstand 6.1 % isobutanol in fermentation broth to prevent product inhibition in an engineered commercial biocatalyst producing 5 % (674.5 mM) isobutanol during two-step continuous fermentation of CO2/H2 gas blend. Biocatalyst Clostridium sp. MT871RG11IBR6 was engineered to express six copies of synthetic operon comprising optimized synthetic format dehydrogenase, pyruvate formate lyase, acetolactate synthase, acetohydroxyacid reductoisomerase, 2,3-dihydroxy-isovalerate dehydratase, branched-chain alpha-ketoacid decarboxylase gene, aldehyde dehydrogenase, and alcohol dehydrogenase, regaining cell duplication time of 68 ± 1 min (p < 0.05) for the parental strain. This is the first report on isobutanol production by an engineered acetogen biocatalyst suitable for commercial manufacturing of this chemical/fuel using continuous fermentation of CO2/H2 blend thus contributing to the reversal of global warming.  相似文献   

4.
The dechlorinating Dehalococcoides mccartyi species requires acetate as carbon source, but little is known on its growth under acetate limiting conditions. In this study, we observed growth and dechlorination of a D. mccartyi-containing mixed consortium in a fixed-carbon-free medium with trichloroethene in the aqueous phase and H2/CO2 in the headspace. Around 4 mM formate was produced by day 40, while acetate was constantly below 0.05 mM. Microbial community analysis of the consortium revealed dominance by D. mccartyi and Desulfovibrio sp. (57 and 22% 16S rRNA gene copies, respectively). From this consortium, Desulfovibrio sp. strain F1 was isolated and found to produce formate and acetate (1.2 mM and 48 µM, respectively, by day 24) when cultivated alone in the above mentioned medium without trichloroethene. An established co-culture of strain F1 and D. mccartyi strain 195 demonstrated that strain 195 could grow and dechlorinate using acetate produced by strain F1; and that acetate was constantly below 25 µM in the co-culture. To verify that such low level of acetate is utilizable by D. mccartyi, we cultivated strain 195 alone under acetate-limiting conditions and found that strain 195 consumed acetate to below detection (5 µM). Based on the acetate consumption and cell yield of D. mccartyi, we estimated that on average 1.2?×?108 acetate molecules are needed to supply carbon for one D. mccartyi cell. Our study suggests that Desulfovibrio may supply a steady but low amount of fixed carbon to dechlorinating bacteria, exhibiting important implications for natural bio-attenuation when fixed carbon is limited.  相似文献   

5.
The regulation of C1-metabolism in Xanthobacter strain 25a was studied during growth of the organism on acetate, formate and methanol in chemostat cultures. No activity of methanol dehydrogenase (MDH), formate dehydrogenase (FDS) or ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisC/O) could be detected in cells grown on acetate alone over a range of dilution rates tested. Addition of methanol or formate to the feed resulted in the immediate induction of MDH and FDH and complete utilization (D=0.10 h-1) of acetate and the C 1-substrates. The activities of these enzymes rapidly dropped at the higher growth rates, which suggests that their synthesis is further controlled via repression by heterotrophic substrates such as acetate. Synthesis of RuBisC/O already occurred at low methanol concentrations in the feed, resulting in additive growth yields on acetate/methanol mixtures. The energy generated in the oxidation of formate initially allowed an increased assimilation of acetate (and a decreased dissimilation), resulting in enhanced growth yields on the mixture. RuBisC/O activity could only be detected at the higher formate/acetate ratios in the feed. The data suggest that synthesis of RuBisC/O and CO2 fixation via the Calvin cycle in Xanthobacter strain 25 a is controlled via a (de)repression mechanism, as is the case in other facultatively autotrophic bacteria. Autotrophic CO2 fixation only occurs under conditions with a diminished supply of heterotrophic carbon sources and a sufficiently high availability of suitable energy sources. The latter point is further supported by the clearly more pronounced derepressing effect exerted by methanol compared to formate.Abbreviations FDH formate dehydrogenase - FBPase fructose-1,6-bisphosphatase - ICDH isocitrate dehydrogenase - MDH methanol dehydrogenase - PQQ pyrrolo quinoline quinone - PRK phosphoribulokinase - RuBisC/O ribulose-1,5-bisphosphate carboxylase/oxygenase - RuMP ribulose monophosphate - TCA tricarboxylic acid cycle  相似文献   

6.
Extracts of Pseudomonas C grown on methanol as sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts.The addition of d-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when d-ribulose 5-phosphate was present in the assay mixtures.The amount of radioactivity found in CO2, was 6.8-times higher when extracts of methanol-grown Pseudomona C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate.These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

7.
Methanogenic activity was investigated in a petroleum hydrocarbon-contaminated aquifer by using a series of four push-pull tests with acetate, formate, H2 plus CO2, or methanol to target different groups of methanogenic Archaea. Furthermore, the community composition of methanogens in water and aquifer material was explored by molecular analyses, i.e., fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes amplified with the Archaea-specific primer set ARCH915 and UNI-b-rev, and sequencing of DNA from dominant DGGE bands. Molecular analyses were subsequently compared with push-pull test data. Methane was produced in all tests except for a separate test where 2-bromoethanesulfonate, a specific inhibitor of methanogens, was added. Substrate consumption rates were 0.11 mM day−1 for methanol, 0.38 mM day−1 for acetate, 0.90 mM day−1 for H2, and 1.85 mM day−1 for formate. Substrate consumption and CH4 production during all tests suggested that at least three different physiologic types of methanogens were present: H2 plus CO2 or formate, acetate, and methanol utilizers. The presence of 15 to 20 bands in DGGE profiles indicated a diverse archaeal population. High H2 and formate consumption rates agreed with a high diversity of methanogenic Archaea consuming these substrates (16S rRNA gene sequences related to several members of the Methanomicrobiaceae) and the detection of Methanomicrobiaceae by using FISH (1.4% of total DAPI [4′,6-diamidino-2-phenylindole]-stained microorganisms in one water sample; probe MG1200). Considerable acetate consumption agreed with the presence of sequences related to the obligate acetate degrader Methanosaeata concilii and the detection of this species by FISH (5 to 22% of total microorganisms; probe Rotcl1). The results suggest that both aceticlastic and CO2-type substrate-consuming methanogens are likely involved in the terminal step of hydrocarbon degradation, while methanogenesis from methanol plays a minor role. DGGE profiles further indicate similar archaeal community compositions in water and aquifer material. The combination of hydrogeological and molecular methods employed in this study provide improved information on the community and the potential activity of methanogens in a petroleum hydrocarbon-contaminated aquifer.  相似文献   

8.
Syntrophococcus sucromutans is the predominant species capable of O demethylation of methoxylated lignin monoaromatic derivatives in the rumen. The enzymatic characterization of this acetogen indicated that it uses the acetyl coenzyme A (Wood) pathway. Cell extracts possess all the enzymes of the tetrahydrofolate pathway, as well as carbon monoxide dehydrogenase, at levels similar to those of other acetogens using this pathway. However, formate dehydrogenase could not be detected in cell extracts, whether formate or a methoxyaromatic was used as electron acceptor for growth of the cells on cellobiose. Labeled bicarbonate, formate, [1-14C] pyruvate, and chemically synthesized O-[methyl-14C]vanillate were used to further investigate the catabolism of one-carbon (C1) compounds by using washed-cell preparations. The results were consistent with little or no contribution of formate dehydrogenase and pointed out some unique features. Conversion of formate to CO2 was detected, but labeled formate predominantly labeled the methyl group of acetate. Labeled CO2 readily exchanged with the carboxyl group of pyruvate but not with formate, and both labeled CO2 and pyruvate predominantly labeled the carboxyl group of acetate. No CO2 was formed from O demethylation of vanillate, and the acetate produced was position labeled in the methyl group. The fermentation pattern and specific activities of products indicated a complete synthesis of acetate from pyruvate and the methoxyl group of vanillate.  相似文献   

9.
A novel mesophilic, methylotrophic, methanogenic archaeon, designated strain EK1T, was enriched and isolated from wetland sediment. Phylogenetic analysis showed that strain EK1T was affiliated with the genus Methanomethylovorans within the family Methanosarcinaceae, and shared the highest 16S rRNA and methyl-coenzyme M reductase alpha-subunit gene sequence similarity with the type strain of Methanomethylovorans hollandica (98.8 and 92.6 %, respectively). The cells of strain EK1T were observed to be Gram-negative, non-motile and irregular cocci that did not lyse in 0.1 % (w/v) sodium dodecyl sulfate. Methanol, mono-, di- and trimethylamine, dimethyl sulfide and methanethiol were found to be used as catabolic and methanogenic substrates, whereas H2/CO2, formate, 2-propanol and acetate were not. Growth was observed at 25–40 °C (optimum, 37 °C), at pH 5.5–7.5 (optimum, pH 6.0–6.5) and in the presence of 0–0.1 M NaCl (optimum, 0 M). Growth and methane production rates were stimulated in the presence of H2/CO2 although methane production and growth yields were not significantly affected; acetate, formate, 2-propanol and CO/CO2/N2 did not affect methane production. CoCl2 (0.6–2.0 μM) and FeCl2 (25 mg/l) stimulated growth, while yeast extract and peptone did not. The DNA–DNA hybridization experiment revealed a relatedness of <20 % between EK1T and the type strains of the genus Methanomethylovorans. The DNA G+C content of strain EK1T was determined to be 39.2 mol%. Based on the polyphasic taxonomic study, strain EK1T represents a novel species belonging to the genus Methanomethylovorans, for which the name Methanomethylovorans uponensis sp. nov. is proposed. The type strain is strain EK1T(=NBRC 109636T = KCTC 4119T = JCM 19217T).  相似文献   

10.
The carboxylase activities of crude carboxysome preparations obtained from the wild-type Synechococcus elongatus strain PCC 7942 strain and the mutant defective in the carboxysomal carbonic anhydrase (CA) were compared. The carboxylation reaction required high concentrations of bicarbonate and was not even saturated at 50 mM bicarbonate. With the initial concentrations of 50 mM and 25 mM for bicarbonate and ribulose-1,5-bisphosphate (RuBP), respectively, the initial rate of RuBP carboxylation by the mutant carboxysome (0.22 μmol mg?1 protein min?1) was only 30 % of that observed for the wild-type carboxysomes (0.71 μmol mg?1 protein min?1), indicating the importance of the presence of CA in efficient catalysis by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the mutant defective in the ccmLMNO genes, which lacks the carboxysome structure, could grow under aeration with 2 % (v/v) CO2 in air, the mutant defective in ccaA as well as ccmLMNO required 5 % (v/v) CO2 for growth, indicating that the cytoplasmically localized CcaA helped utilization of CO2 by the cytoplasmically localized Rubisco by counteracting the action of the CO2 hydration mechanism. The results predict that overexpression of Rubisco would hardly enhance CO2 fixation by the cyanobacterium at CO2 levels lower than 5 %, unless Rubisco is properly organized into carboxysomes.  相似文献   

11.
We examined the unitrophic metabolism of acetate and methanol individually and the mixotrophic utilization of these compounds by using detailed 14C-labeled tracer studies in a strain of Methanosarcina barkeri adapted to grow on acetate as the sole carbon and energy source. The substrate consumption rate and methane production rate were significantly lower on acetate alone than during the unitrophic or mixotrophic metabolism of methanol. Cell yields (in grams per mole of substrate) were identical during exponential growth on acetate and exponential growth on methanol. During unitrophic metabolism of acetate, the methyl moiety accounted for the majority of the CH4 produced, but 14% of the CO2 generated originated from the methyl moiety. This correlated with the concurrent reduction of equivalent amounts of the C-1 of acetate to CH4. 14CH4 was also produced from added 14CO2, although to a lesser extent than from reduction of the C-1 of acetate. During mixotrophic metabolism, methanol and acetate were catabolized simultaneously. The rates of 14CH4 and 14CO2 generation from [2-14C]acetate were logarithmic and higher in mixotrophic than in unitrophic cultures at substrate concentrations of 50 mM. A comparison of the oxidoreductase activities in cell extracts of the acetate-adapted strain grown on acetate and of strain MS grown on methanol or on H2 plus CO2 indicated that the pyruvate, α-ketoglutarate, and isocitrate dehydrogenase activities remained constant, whereas the CO dehydrogenase activity was significantly higher (5,000 nmol/min per mg of protein) in the acetate-adapted strain. These results suggested that a significant intramolecular redox pathway is possible for the generation of CH4 from acetate, that energy metabolism from acetate by M. barkeri is not catabolite repressed by methanol, and that the acetate-adapted strain is a metabolic mutant with derepressed CO dehydrogenase activity.  相似文献   

12.
The metabolic pathways of one-carbon compounds utilized by colorless sulfur bacterium Beggiatoa leptomitoformis D-402 were revealed based on comprehensive analysis of its genomic organization, together with physiological, biochemical and molecular biological approaches. Strain D-402 was capable of aerobic methylotrophic growth with methanol as a sole source of carbon and energy and was not capable of methanotrophic growth because of the absence of genes of methane monooxygenases. It was established that methanol can be oxidized to CO2 in three consecutive stages. On the first stage methanol was oxidized to formaldehyde by the two PQQ (pyrroloquinolinequinone)-dependent methanol dehydrogenases (MDH): XoxF and Mdh2. Formaldehyde was further oxidized to formate via the tetrahydromethanopterin (H4MPT) pathway. And on the third stage formate was converted to CO2 by NAD+-dependent formate dehydrogenase Fdh2. Finally, it was established that endogenous CO2, formed as a result of methanol oxidation, was subsequently assimilated for anabolism through the Calvin–Benson–Bassham cycle. The similar way of one-carbon compounds utilization also exists in representatives of another freshwater Beggiatoa species—B. alba.  相似文献   

13.
14.
In a medium containing a trace element solution and 10-4 M ferrous ions the growth yield ofClostridium formicoaceticum on fructose was 5.5 g of weight per l; in the absence of metal ion solution it was 1 g per l. The specific activity of methyl viologen dependent formate dehydrogenase under both conditions was 0.28 and 0.03 units per mg of protein, respectively. It could be increased to 9.75 units when the growth medium contained 10-4 M tungstate and 10-5 M selenite in addition. Molybdate was only about 40% as effective as tungstate. Tungstate or molybdate could not be replaced by vanadate, selenite not by sulfide. The formate dehydrogenase catalyzed also the reduction of CO2 to formate. The highest rate of formate synthesis was observed when pyruvate served as the reductant. No pyruvate: formate exchange but rapid pyruvate: CO2 exchange could be observed with cell-free extracts ofC. formicoaceticum. Pyruvate is fermented byC. formicoaceticum to yield up to 1.16 mole acetate per mole of pyruvate. Resting cells accumulated some formate in addition to acetate.  相似文献   

15.
Respiration and calcification rate were estimated to quantify the effect of Zhikong scallop Chlamys farreri on marine CO2 system in Sanggou Bay, China. The C. farreri population in Sanggou Bay sequestered 78.06?±?5.76 g C m?2 y?1 for shell formation, while the CO2 fluxes due to calcification and respiration were 53.95?±?3.98 and 71.69?±?6.51 g C m?2 y?1, respectively. In order to eliminate the additional CO2 released from calcification and respiration process of C. farreri, Gracilaria lemaneiformis were introduced into the integrated system and its role was validated by in situ mesocosm methods. Eight mesocosms (1,000 L) were deployed over 42-h period and consisted of four treatments: seaweed-only, scallop-only (SP), seaweed integrated with scallop (SS), and control (C). The aqueous CO2 concentration and partial pressure of CO2 in SP treatments were significantly higher than the other three treatments (p?<?0.01), while there were no difference between SS treatments and C treatments (p?>?0.05). Furthermore, compared with the SP treatments, the presence of the G. lemaneiformis can keep the seawater pH stable. These findings suggest that seaweed and shellfish integrated aquaculture practice cannot only reduce dissolved inorganic carbon but also can alleviate ocean acidification.  相似文献   

16.
A pathway for conversion of the metabolic intermediate phosphoenolpyruvate (PEP) and the formation of acetate, succinate, formate, and H2 in the anaerobic cellulolytic bacterium Ruminococcus flavefaciens FD-1 was constructed on the basis of enzyme activities detected in extracts of cells grown in cellulose- or cellobiose-limited continuous culture. PEP was converted to acetate and CO2 (via pyruvate kinase, pyruvate dehydrogenase, and acetate kinase) or carboxylated to form succinate (via PEP carboxykinase, malate dehydrogenase, fumarase, and fumarate reductase). Lactate was not formed even during rapid growth (batch culture, µ = 0.35/h). H2 was formed by a hydrogenase rather than by cleavage of formate, and 13C-NMR and14 C-exchange reaction data indicated that formate was produced by CO2 reduction, not by a cleavage of pyruvate. The distribution of PEP into the acetate and succinate pathways was not affected by changing extracellular pH and growth rates within the normal growth range. However, increasing growth rate from 0.017/h to 0.244/h resulted in a shift toward formate production, presumably at the presence of H2. This shift suggested that reducing equivalents could be balanced through formate or H2 production without affecting the yields of the major carbon-containing fermentation endproducts.  相似文献   

17.
In several sulfate-reducing bacteria capable of complete oxidation of acetate (or acetyl CoA), the citric acid cycle is not operative. No 2-oxoglutarate dehydrogenase activity was found in these organisms, and the labelling pattern of oxaloacetate excludes its synthesis via 2-oxo-glutarate. These sulfate-reducers contained, however, high activities of the enzymes carbon monoxide dehydrogenase and formate dehydrogenase and catalyzed an isotope exchange between CO2 and the carboxyl group of acetate (or acetyl CoA), showing a direct C-C-cleavage of activated acetic acid. These findings suggest that in the investigated sulfate-reducers acetate is oxidized to CO2 via C1 intermediates. The proposed pathway provides a possible explanation for the reported different fluoroacetate sensitivity of acetate oxidation by anaerobic bacteria, for mini-methane formation, as well as for the postulated anaerobic methane oxidation by special sulfate-reducers.  相似文献   

18.
Nutritional Requirements of Methanosarcina sp. Strain TM-1   总被引:2,自引:1,他引:1       下载免费PDF全文
Methanosarcina sp. strain TM-1, an acetotrophic, thermophilic methanogen isolated from an anaerobic sludge digestor, was originally reported to require an anaerobic sludge supernatant for growth. It was found that the sludge supernatant could be replaced with yeast extract (1 g/liter), 6 mM bicarbonate-30% CO2, and trace metals, with a doubling time on methanol of 14 h. For growth on either methanol or acetate, yeast extract could be replaced with CaCl2 · 2H2O (13.6 μM minimum) and the vitamin p-aminobenzoic acid (PABA, ca. 3 nM minimum), with a doubling time on methanol of 8 to 9 h. Filter-sterilized folic acid at 0.3 μM could not replace PABA. The antimetabolite sulfanilamide (20 mM) inhibited growth of and methanogenesis by Methanosarcina sp. strain TM-1, and this inhibition was reversed by the addition of 0.3 μM PABA. When a defined medium buffered with 20 mM N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid was used, it was shown that Methanosarcina sp. strain TM-1 required 6 mM bicarbonate-30% CO2 for optimal growth and methanogenesis from methanol. Cells growing on acetate were less dependent on bicarbonate-CO2. When we used a defined medium in which the only organic compounds present were methanol or acetate, nitrilotriacetic acid (0.2 mM), and PABA, it was possible to limit batch cultures of Methanosarcina sp. strain TM-1 for nitrogen at NH4+ concentrations at or below 2.0 mM, in marked contrast with Methanosarcina barkeri 227, which fixes dinitrogen when grown under NH4+ limitation.  相似文献   

19.
Anaerobic Degradation of Uric Acid by Gut Bacteria of Termites   总被引:1,自引:2,他引:1       下载免费PDF全文
A study was done of anaerobic degradation of uric acid (UA) by representative strains of uricolytic bacteria isolated from guts of Reticulitermes flavipes termites. Streptococcus strain UAD-1 degraded UA incompletely, secreting a fluorescent compound into the medium, unless formate (or a formicogenic compound) was present as a cosubstrate. Formate functioned as a reductant, and its oxidation to CO2 by formate dehydrogenase provided 2H+ + 2e needed to drive uricolysis to completion. Uricolysis by Streptococcus UAD-1 thus corresponded to the following equation: 1UA + 1formate → 4CO2 + 1acetate + 4NH3. Urea did not appear to be an intermediate in CO2 and NH3 formation during uricolysis by strain UAD-1. Formate dehydrogenase and uricolytic activities of strain UAD-1 were inducible by growth of cells on UA. Bacteroides termitidis strain UAD-50 degraded UA as follows: 1UA → 3.5 CO2 + 0.75acetate + 4NH3. Exogenous formate was neither required for nor stimulatory to uricolysis by strain UAD-50. Studies of UA catabolism by Citrobacter strains were limited, because only small amounts of UA were metabolized by cells in liquid medium. Uricolytic activity of such bacteria in situ could be important to the carbon, nitrogen, and energy economy of R. flavipes.  相似文献   

20.
Methanosarcina barkeri grew on methanol plus H2. Both substrates were consumed in equimolar amounts. Growth was strictly dependent on the presence of acetate, which was required for the biosynthesis of cellular constituents. Only about 0.4% of the methane produced originated from acetate. By using deuterated methanol, it was demonstrated that methanogenesis from this compound under H2 did not occur via oxidation of methanol to CO2 and subsequent reduction but by direct reduction with H2. Growth yields with methanol plus H2 and with methanol alone were not significantly different: 2.8 g of cells per mol of methanol in mineral medium and 4.6 g of cells per mol of methanol in complex medium, respectively. Growth of M. barkeri on methanol plus H2 depended strictly on the presence of sodium ions in the medium. In the presence of 50 mM K+ the Ks for Na+ was 5 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号