首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of GTP-binding proteins (G proteins) was examined during the course of differentiation of neuroblastoma N1E-115 cells. N1E-115 cell membranes possess three Bordetella pertussis toxin (PTX) substrates assigned to alpha-subunits (G alpha) of Go (a G protein of unknown function) and "Gi (a G protein inhibitory to adenylate cyclase)-like" proteins and one substrate of Vibrio cholerae toxin corresponding to an alpha-subunit of Gs (a G protein stimulatory to adenylate cyclase). In undifferentiated cells, only one form of Go alpha was found, having a pI of 5.8 Go alpha content increased by approximately twofold from the undifferentiated state to 96 h of cell differentiation. This is mainly due to the appearance of another Go alpha form having a pI of 5.55. Both Go alpha isoforms have similar sizes on sodium dodecyl sulfate-polyacrylamide gels, are recognized by polyclonal antibodies to bovine brain Go alpha, are ADP-ribosylated by PTX, and are covalently myristylated in whole N1E-115 cells. In addition, immunofluorescent staining of N1E-115 cells with Go alpha antibodies revealed that association of Go alpha with the plasma membrane appears to coincide with the expression of the most acidic isoform and morphological cell differentiation. In contrast, the levels of both Gi alpha and Gs alpha did not significantly change, whereas that of the common beta-subunit increased by approximately 30% over the same period. These results demonstrate specific regulation of the expression of Go alpha during neuronal differentiation.  相似文献   

2.
Expression of Go alpha mRNA and protein in bovine tissues   总被引:4,自引:0,他引:4  
Go alpha is a 39-kDa guanine nucleotide-binding protein (G protein) similar in structure and function to Gs alpha and Gi alpha of the adenylate cyclase complex and to transducin (Gt alpha) of the retinal photon receptor system. Although expression of Go alpha protein has been reported to be tissue-specific, other workers have found Go alpha mRNA in all rat tissues examined. In order to clarify this contradiction, studies to verify the distribution of Go alpha mRNA and protein in bovine and rat tissues were performed. Tissues were screened for the presence of Go alpha mRNA by use of a series of restriction fragments of a bovine retinal cDNA clone, lambda GO9, and oligonucleotide probes complementary to sequences specific among G alpha subunits for the 5' untranslated and coding regions of Go alpha. These probes hybridized predominantly with mRNA of 4.0 and 3.0 kb in bovine brain and retina. A 2.0-kb mRNA in retina also hybridized strongly with the cDNA but weakly with the oligonucleotide probes. In bovine lung, two mRNAs of 1.6 and 1.8 kb hybridized with the cDNA while only the 1.6-kb species hybridized with the coding-region oligonucleotide. In bovine heart, only a 4.0-kb mRNA was detected and in amounts much less than those in the other tissues. A similar distribution of Go alpha mRNAs was seen in rat tissues. In bovine tissues, Go alpha protein was identified with rabbit polyclonal antibodies directed against purified bovine brain Go alpha. An immunoreactive 39-kDa membrane protein was found principally in retina and brain, and in a lesser amount in heart.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
G proteins are heterotrimeric proteins that play a key role in signalling transduction conveying signals from cell surface receptors to intracellular effector proteins. In particulate preparations from Drosophila melanogaster embryos, only one substrate of 39,000-40,000 molecular weight could be ADP-ribosylated with pertussis toxin. This substrate reacted in immunoblotting and immunoprecipitation experiments with a polyclonal antibody directed against the carboxy-terminal sequence of the alpha subunit of the mammalian Go protein. The Drosophila Go alpha protein was present at all stages of embryonic development; however, its expression markedly increased after 10 h embryogenesis, a period of time during which there is an active development of axonal tracts. Immunolocalization on whole mount embryos has indicated that this protein is principally localized in the CNS and is mainly restricted to the neuropil without any labelling of the cell bodies. In contrast, all the axon tracts of the CNS appeared to be highly labelled. The distribution of the Go alpha protein was also examined in several neurogenic mutants. The Go alpha protein expression was not altered in any of them but the pattern of labelling was disorganized as was the neuronal network. These results suggest a possible role for the Go protein during axonogenesis.  相似文献   

5.
6.
A cDNA corresponding to a known G protein alpha subunit, the alpha subunit of Go (Go alpha), was isolated and sequenced. The predicted amino acid sequence of C. elegans Go alpha is 80-87% identical to other Go alpha sequences. An mRNA that hybridizes to the C. elegans Go alpha cDNA can be detected on Northern blots. A C. elegans protein that crossreacts with antibovine Go alpha antibody can be detected on immunoblots. A cosmid clone containing the C. elegans Go alpha gene (goa-1) was isolated and mapped to chromosome I. The genomic fragments of three other C. elegans G protein alpha subunit genes (gpa-1, gpa-2, and gpa-3) have been isolated using the polymerase chain reaction. The corresponding cosmid clones were isolated and mapped to disperse locations on chromosome V. The sequences of two of the genes, gpa-1 and gpa-3, were determined. The predicted amino acid sequences of gpa-1 and gpa-3 are only 48% identical to each other. Therefore, they are likely to have distinct functions. In addition they are not homologous enough to G protein alpha subunits in other organisms to be classified. Thus C. elegans has G proteins that are identifiable homologues of mammalian G proteins as well as G proteins that appear to be unique to C. elegans. Study of identifiable G proteins in C. elegans may result in a further understanding of their function in other organisms, whereas study of the novel G proteins may provide an understanding of unique aspects of nematode physiology.  相似文献   

7.
Guanine nucleotide-binding proteins (G proteins) mediate signals between activated cell-surface receptors and cellular effectors. A bovine G-protein alpha-subunit cDNA has been used to isolate similar sequences from Drosophila genomic and cDNA libraries. One class, which we call DG alpha 0, hybridized to position 47A on the second chromosome of Drosophila. The nucleotide sequence of the protein coding region of one cDNA has been determined, revealing an alpha subunit that is 81% identical with rat alpha 0. The cDNA hybridizes strongly to a 3.8 kb mRNA and weakly with a 5.3 kb message. Antibodies raised against a trp-E-DG alpha 0 fusion protein recognized a 39,000 Da protein in Drosophila extracts. In situ hybridization to adult Drosophila sections combined with immunohistochemical studies revealed expression throughout the optic lobes and central brain and in the thoracic and abdominal ganglia. DG alpha 0 message and protein were also detected in the antennae, oocytes, and ovarian nurse cells. The neuronal expression of this gene is similar to mammalian alpha 0, which is most abundantly expressed in the brain.  相似文献   

8.
9.
G proteins couple receptors for extracellular signals to several intracellular effector systems and play a key role in signalling transduction mechanisms. In particulate preparations of Drosophila melanogaster heads, only one substrate for pertussis toxin at 39-40 kd was detected. This substrate, which showed only one isoform when analysed by isoelectric focusing, was recognized by immunoblotting and immunoprecipitation techniques using a polyclonal antibody against the alpha subunit of the Go protein purified from bovine brain and can be thus considered as a Go-like protein. Antibodies obtained against a carboxy-terminal sequence of the alpha subunit of Go (but not of Gi1 or Gi2) and against an internal sequence shared by all the alpha subunits, were also able to cross-react with the alpha subunit of this protein in insects. We have also studied the Go-like protein in several D.melanogaster mutants, primarily in memory and learning mutants. In these mutants there was a sex-dependent enhancement in pertussis toxin-catalysed ADP-ribosylation with respect to the wild-type. This increase could be attributed in part to an increase in the alpha subunit of the Go-like protein, as revealed by immunoblotting with anti-Go alpha polyclonal antibody. This report constitutes the first evidence for the participation of a Go protein in learning and memory.  相似文献   

10.
Pretreatment of striatal neurons from mouse embryos in primary culture with 17 beta-estradiol (10(-9) M, 24 h) enhanced the ADP-ribosylation of G alpha o,i proteins catalyzed by pertussis toxin (PTX). As estimated by quantitative ADP-ribosylation of G alpha s with cholera toxin and immunoblot experiments using anti-G alpha o and anti-G beta sera, 17 beta-estradiol pretreatment did not modify the levels of the major GTP-binding protein (G protein) constituent subunits G alpha s, G alpha o, and G beta. Thus, 17 beta-estradiol should induce a qualitative modification of these G proteins, perhaps by stabilizing the association of the heterotrimers G alpha o,i beta gamma, which are the targets of PTX. Such a hypothesis is in agreement with observations indicating that 17 beta-estradiol both suppressed the D2 dopamine- and opiate receptor-induced inhibitions of adenylate cyclase activity and enhanced the positive coupling between biogenic amine receptors (D1 dopamine, beta-adrenergic, and A2 adenosine) and adenylate cyclase. In addition, PTX pretreatment, which is known to uncouple receptors associated with Go,i proteins and thus to impair the dissociation of the heterotrimers G alpha o,i beta gamma, mimicks the effects of the steroid on the responses of adenylate cyclase to inhibitory and stimulatory agonists. Finally, the chemical specificity of the steroids was the same in the ADP-ribosylation as in the adenylate cyclase experiments: Testosterone (10(-9) M) mimicked the effects of 17 beta-estradiol, whereas 17 alpha-estradiol, progesterone, and dexamethasone did not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Calcium currents can be modulated by receptor activation of the GTP-binding protein G(o). We have determined whether the two forms of G(o), Go1 and Go2, differentially regulate calcium current magnitude. Using identified neurons of the pond snail Helisoma, we demonstrate that a high-voltage-activated (HVA) calcium current is reduced by addition of the neuropeptide Phe-Met-Arg-Phe-amide (FMRFamide) and that this inhibition is mediated by a pertussis toxin (PTX)-sensitive G protein pathway. Using this calcium current as an assay for G protein activity, we microinjected GTP gamma S-activated alpha-subunits of G proteins into neuronal somata. We demonstrate that the calcium current is differentially regulated by the two forms of alpha o. Microinjection of alpha o2*, but not alpha o1*, reduces calcium current magnitude.  相似文献   

12.
High efficiency transient transfection was used to introduce cDNA corresponding to various G protein alpha subunits into Cos-7 cells. The proteins that were subsequently synthesized were detected with specific G protein alpha subunit antipeptide antiserum and were localized in the membrane fraction of the cell. Cells that were prelabeled with the [3H]inositol and transfected with G alpha q and G alpha 11 cDNA showed marked increases in formation of [3H]inositol phosphates after stimulation with aluminum fluoride. Co-transfection with cDNAs corresponding to phosphoinositide specific phospholipase C beta 1 (PI-PLC beta 1) and to G alpha q or G alpha 11 resulted in even higher levels of inositol phosphate formation. The introduction of mutations that convert residue glutamine 209 to leucine in G alpha q and G alpha 11 resulted in persistent activation of PI-PLC and high steady state levels of inositol phosphates. On the other hand, transfection with a variety of other G alpha subunit cDNAs, i.e. G alpha Z, G alpha OA, G alpha OB, transducin, and the glutamine 205 to leucine mutants of G alpha Z and of G alpha OA did not increase inositol phosphate formation. To further test the specificity of G protein activation of PI-PLC, a cell-free system was prepared by using washed membranes of transiently transfected cells and purified PI-PLC beta 1. Membranes derived from G alpha q and G alpha 11, but not G alpha OA transfected cells, showed guanosine 5-O-thiotriphosphate (GTP gamma S)-stimulated PIP2 hydrolysis. The activity seen in the system reconstituted with membranes derived from G alpha 11-transfected cells was blocked by preincubation with specific G alpha 11 antipeptide antibodies. All of these results are consistent with the conclusion that G alpha q and G alpha 11 cDNA encode proteins that in the presence of GTP gamma S specifically activate PI-PLC.  相似文献   

13.
In muscle, it has been established that guanosine 5'-[gamma-thio]triphosphate (GTP[S]), a non-hydrolysable GTP analogue, elicits a rise in tension in chemically skinned fibres, and that pretreatment with Bordetella pertussis toxin (PTX) decreases GTP[S]-induced tension development [Di Virgilio, Salviati, Pozzan & Volpe (1986) EMBO J. 5, 259-262]. In the present study, G-proteins were analysed by PTX-catalysed ADP-ribosylation and by immunoblotting experiments at cellular and subcellular levels. First, the nature of the G-proteins present in neural and aneural zones of rat diaphragm muscle was investigated. PTX, known to catalyse the ADP-ribosylation of the alpha subunit of several G-proteins, was used to detect G-proteins. Three sequential extractions (low-salt-soluble, detergent-soluble and high-salt-soluble) were performed, and PTX was found to label two substrates of 41 and 40 kDa only in the detergent-soluble fraction. The addition of pure beta gamma subunits of G-proteins to the low-salt-soluble extract did not provide a way to detect PTX-catalysed ADP-ribosylation of G-protein alpha subunits in this hydrophilic fraction. In neural as well as in aneural zones, the 39 kDa PTX substrate, very abundant in the nervous system (Go alpha), was not observed. We then studied the nature of the G alpha subunits present in membranes from transverse tubules (T-tubules) purified from rabbit skeletal muscle. Only one 40 kDa PTX substrate was found in T-tubules, known to be the key element of excitation-contraction coupling. The presence of a G-protein in T-tubule membranes was further confirmed by the immunoreactivity detected with an anti-beta-subunit antiserum. A 40 kDa protein was also detected in T-tubule membranes with an antiserum raised against a purified bovine brain Go alpha. The presence of two PTX substrates (41 and 40 kDa) in equal amounts in total muscle extracts, compared with only one (40 kDa) found in purified T-tubule membranes, suggests that this 40 kDa PTX substrate might be involved in excitation-contraction coupling.  相似文献   

14.
Multiple forms of Go alpha mRNA: analysis of the 3'-untranslated regions   总被引:3,自引:0,他引:3  
Go, a guanine nucleotide binding protein found predominantly in neural tissues, interacts in vitro with rhodopsin, muscarinic, and other receptors and has been implicated in the regulation of ion channels. Despite the virtual identity of reported cDNA sequences for the alpha subunit of Go (Go alpha), multiple molecular weight forms of mRNA have been identified in tissues from all species examined. To investigate the molecular basis for the size heterogeneity of Go alpha mRNAs, four cDNA clones were isolated from the same retinal lambda gt10 cDNA library that was used earlier to isolate lambda GO9, a clone encompassing the complete coding region of Go alpha. These clones were identified as Go alpha clones based on nucleotide sequence identity with lambda GO9 in the coding region; they diverge, however, from lambda GO9 in the 3'-untranslated region 28 nucleotides past the stop codon. An oligonucleotide probe complementary to a portion of the 3'-untranslated region of lambda GO9 that differs from the newly isolated clones hybridized with 3.0- and 4.0-kb mRNAs present in bovine brain and retina whereas a similar probe for the unique region of the new clones hybridized with a 4.0-kb mRNA in both tissues and with a 2.0-kb mRNA found predominantly in retina. A similar hybridization pattern was observed when brain poly(A+) RNA from other species was hybridized with the different 3'-untranslated region probes. It appears that differences in the 3'-untranslated regions could, in part, be the basis for the observed heterogeneity in Go alpha mRNAs.  相似文献   

15.
Existence of two gamma subunits of the G proteins in brain   总被引:15,自引:0,他引:15  
Although amino acid sequences have been determined for the alpha and beta subunits of Gs, Gi, and Go, sequences have not been reported for the gamma subunits of these G proteins. In the present paper, we determined the sequences of peptides prepared by partial proteolysis of two different forms of the gamma subunit of Gs, Gi, and Go from bovine brain. Using oligonucleotide probes based on the sequences of two of these peptides, a cDNA clone was isolated from a bovine adrenal cDNA library. This clone contained a 0.9-kilobase cDNA insert that included an open reading frame of 213 bases encoding a 71-amino acid polypeptide with an estimated Mr of 7850. The amino acid sequence predicted for the adrenal cDNA clone was identical to that determined for one form of the gamma subunit from brain. In addition, an antibody to a peptide based on the predicted amino acid sequence of this cDNA clone reacted specifically with one of the brain gamma subunits, indicating the adrenal cDNA clone encodes a gamma subunit present in both adrenal gland and brain. Also, evidence is presented, demonstrating the existence of a second, structurally distinct, form of the gamma subunit of Gs, Gi, and Go in brain.  相似文献   

16.
Rat adipose tissue possesses two Bordetella pertussis toxin (PTX) substrates and, in the same 39-41 kDa molecular mass range, positive immunoreactivity has also been reported with antibodies against the alpha subunit of Go, the major brain GTP-binding protein (G-protein). In this study, the presence of the brain Go alpha subunit at 39 kDa in adipocytes was reassessed, since direct correspondence between PTX substrates and Go alpha immunoreactivity has not yet been clearly established. On resolutive SDS/polyacrylamide-gel electrophoresis, the PTX substrates of human adipocytes were compared with the three PTX substrates found in brain. No ADP-ribosylated substrate at the level of the 39 kDa brain Go alpha could be detected in adipocyte membranes. Immunoblotting of human adipocyte membranes stained with our anti-Go alpha antibodies confirmed the presence of a positive immunoreactivity in this tissue, but the apparent molecular mass of the immunoreactive polypeptide in adipocytes was higher than that found in nervous tissues. Taken together, these results indicate that the brain Go alpha subunit is not present in adipose tissue. They also suggest the existence of a G-protein in adipocytes which is immunologically related to Go alpha but having a slightly higher molecular mass.  相似文献   

17.
The steady-state levels of mRNAs for the G-proteins Gi alpha 2, Go alpha, and the G beta-subunits common to each were established in rat adipose, heart and liver. Uniformly-radiolabeled, single-stranded antisense probes were constructed from cDNAs or assembled from oligonucleotides. Direct comparison of the steady-state levels of the G-protein mRNAs was performed under identical assay conditions, and on a molar basis. In adipose, liver and heart, Gs alpha mRNA was more abundant than mRNA for Go alpha, Gi alpha, and G beta. In adipose tissue, mRNA levels were as follows: 19.4, 7.6, 7.0, and 2.3 amol mRNA per micrograms total cellular RNA for Gs alpha, G beta, Gi alpha 2, and Go alpha, respectively. In heart Gs alpha mRNA was less abundant than in adipose, but the relative trend among the G-protein subunits was the same. In liver, G beta mRNA was more abundant than either Go alpha or Gi alpha 2. Go alpha mRNA levels ranged from 1.2 to 2.3 amol/micrograms total RNA in liver and adipose, respectively. The present work demonstrates the many advantages of this strategy when applied to the study of a family of homologous, low-abundance proteins and establishes for the first time the molar levels of Gi alpha 2, Gs alpha, Go alpha, and G beta-subunit mRNAs in several mammalian tissues.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号