首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specificity of the alkaline proteinase from Aspergillus sojae was investigated. In the specificity studies with synthetic substrates, the enzyme hydrolyzed the peptide linkages involving the carboxyl group of leucine, tyrosine, phenylalanine, arginine and lysine. In the hydrolysis of natural proteins, the enzyme liberated relatively large peptides and traces of free amino acids, suggesting that the enzyme is of a typical endo-type.

N- and C-Terminal amino acid residues appearing during time course digestion of various proteins were determined. Considering the influence of amino acid composition of substrates on the frequencies of appearance of the terminal amino acids, it was estimated that the susceptibility of peptide bonds of substrate to the enzyme depends mainly on the carboxyl side residues, and, to far less extent, on the amino side residues of the peptide bonds. The enzyme showed relatively high specificity for lysine, tyrosine, histidine, arginine and phenylalanine residues at the carboxyl side of the susceptible linkages.  相似文献   

2.
Substrate specificity of human pancreatic elastase 2   总被引:4,自引:0,他引:4  
The substrate specificity of human pancreatic elastase 2 was investigated by using a series of peptide p-nitroanilides. The kinetic constants, kcat and Km, for the hydrolysis of these peptides revealed that this serine protease preferentially hydrolyzes peptides containing P1 amino acids which have medium to large hydrophobic side chains, except for those which are disubstituted on the first carbon of the side chain. Thus, human pancreatic elastase 2 appears to be similar in peptide bond specificity to the recently described porcine pancreatic elastase 2 [Gertler, A., Weiss, Y., & Burstein, Y. (1977) Biochemistry 16, 2709] but differs significantly in specificity from porcine elastase 1. The best substrates for human pancreatic elastase 2 were glutaryl-Ala-Ala-Pro-Leu-p nitroanilide and succinyl-Ala-Ala-Pro-Met-p-nitroanilide. However, there was little difference among substrates with leucine, methionine, phenylalanine, tyrosine, norvaline, or norleucine in the P1 position. Changes in the hydrolysis rate of peptides with differing P5 residues indicate that this enzyme has an extended binding site which interacts with at least five residues of peptide substrates. The overall catalytic efficiency of human pancreatic elastase 2 is significantly lower than that of porcine elastase 1 or bovine chymotrypsin with the compounds studied.  相似文献   

3.
The substrate specificity of an intracellular proteinase from Streptococcus lactis was investigated in an effort to understand the role of the enzyme in the cell. Peptides in which the N-terminal residue was glycine were not hydrolyzed by the enzyme (exceptions were glycyl-alanine, glycyl-aspartic acid, and glycyl-asparagine), but the peptide was hydrolyzed if the N-terminal residue was alanine. The enzyme also showed activity toward peptides containing aspartic acid or asparagine. Hydrolysis of only the peptide bonds of alanyl, aspartyl, or asparaginyl residues was confirmed by the action of the enzyme on oxidized bovine ribonuclease A- and B- chain insulin. The N-terminal residues of the peptide fragments liberated were identified. The enzyme attacked both substrates only at alanyl, aspartyl, and asparaginyl residues, releasing these as free amino acids. In addition to alanine, aspartic acid, and asparagine, certain other amino acids were liberated from ribonuclease A, but these were accounted for by the relation of their position to alanine, aspartic acid, and asparagine residues.  相似文献   

4.
Tryptic peptides from hemoglobin (Hb) beta-chains were used as model substrates for limited proteolysis by prolyl endopeptidase (EC 3.4.21.26) from porcine muscle. From the physicochemical and enzymatic properties of prolyl endopeptidase the conditions for routine digestion were established as follows: the molar ratio of enzyme to substrate was 1 to 100, and the reaction was carried out in sodium phosphate buffer (pH 6.4) at 37 degrees C for 4 h. Under these conditions the peptide bonds on the carboxyl terminal sides of proline and alanine residues in the tryptic peptides from Hb beta-chains (with Mr values of less than 2100) were hydrolyzed by the enzyme with the exception of the amino terminal alanyl bond and aminoacyl alanyl bond. In addition, one of five seryl bonds was cleaved by the enzyme. However, the Hb beta-chain itself, Mr 16,600, and its two CNBr-peptides with Mr 10,200 and Mr 6400, respectively, were not hydrolyzed. Under the same conditions a prolyl bond in oxidized B-chains of insulin, Mr 3400, was partially digested, and an alanyl bond was not hydrolyzed. The data indicate that the prolyl endopeptidase is useful for the limited proteolysis of peptides with relative masses of less than 3000 at both prolyl and alanyl bonds.  相似文献   

5.
Rarobacter faecitabidus protease I, a yeast-lytic serine protease, was characterized in order to elucidate the mechanism of lysis of yeast cells by this enzyme. The N-terminal amino acid sequence of the enzyme was found to be homologous to those of Lysobacter enzymogenes alpha-lytic protease and Streptomyces griseus proteases A and B around the catalytic His residue, showing that it is a mammalian type serine protease. In a study of its substrate specificity, it preferentially hydrolyzed the ester of alanine among amino acid p-nitrophenylesters. It also efficiently hydrolyzed succinyl Ala-Pro-Ala p-nitroanilide, the specific synthetic substrate for pancreatic elastase. With oxidized insulin B-chain, it hydrolyzed almost exclusively the peptide bond between valine 18 and cysteic acid 19 in the early step of the reaction, and thereafter it partially hydrolyzed Val12-Glu13, Ala14-Leu15, and Leu15-Tyr16. These results indicate that Rarobacter protease I is elastase-like in its substrate specificity, preferentially hydrolyzing the peptide bond of aliphatic amino acids. Its affinity for yeast cells was also investigated, and while Rarobacter protease I was adsorbed by yeast cells, pancreatic elastase was not. This difference was thought to account for the failure of pancreatic elastase to lyse yeast cells, even though its specificity is similar to that of the yeast-lytic enzyme. Rarobacter protease I was adsorbed by a mannose-agarose column and specifically eluted from the column with a buffer containing D-mannose or D-glucose. These monosaccharides also inhibited its yeast-lytic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The action of serine (and cysteine) proteases on peptide esters proceeds, as a generalization, orders of magnitude faster than the corresponding enzymatic hydrolysis of peptide bonds or peptide amides. Esterolysis liberates an alcohol while generating a free carboxyl group on the peptide; the proton produced can be detected by the use of an appropriate indicator. The action of trypsin on benzyloxycarbonylalanylarginine methyl ester was used as a model for the development of a simple microtiter plate assay procedure that takes advantage of the speed of these reactions and the ease of detection afforded by the color change of the indicator. A family of ester substrates of the form benzyloxycarbonylalanyl-X-methyl ester, in which X is one of the 20 common amino acids, was synthesized to allow the determination of the primary specificity profiles of serine proteases. Using a 96-well microtiter plate the specificity profiles of four enzymes with all 20 substrates can be carried out in approximately 4 h per enzyme, including setting up and data processing. The primary substrate preferences of trypsin, chymotrypsin, thrombin, pancreatic elastase, α-lytic protease, subtilisin, and proteinase K were determined to demonstrate the method and were found to be in good general agreement with reported specificities established by more conventional means.  相似文献   

7.
The kinetic properties of the human granulocyte elastase /EC 3.4.21.11/ were investigated with 24 tripeptidyl-pNA substrates. By the regression analysis of the kinetic data obtained with 15 substrates a relatively hydrophobic compound, Boc-D-Phe-Ala-Nle-pNA, was predicted as the optimal substrate sequence. The compound was synthesized, assayed and the predicted Km = 4.2 uM was confirmed experimentally. The substrate-binding site of granulocyte elastase appeared to be hydrophobic and very much similar to that of the pancreatic enzyme at the S2–S4 subsites, but the S1 subsite, which determines the primary specificity, could accomodate bulkier residues and it was less selective than that in the pancreatic enzyme.  相似文献   

8.
The hydrolysis of alanine oligomers by P. aeruginosa proteinases, thermolysin and porcine pancreatic elastase was studied. The concentrations of substrates and cleavage products were determined using reverse phase high pressure liquid chromatography. Tetraalanine was the shortest oligomer for which we could demonstrate hydrolysis by all the proteinases, except for porcine pancreatic elastase which only significantly hydrolyzed peptides longer than hexaalanine. Porcine pancreatic elastase hydrolyzes hexaalanine at a single site, whereas the other enzymes may split it either into two trialanine molecules, or into di- and tetraalanine, the latter being further cleavable to dialanine. A kinetic model based on first-order kinetic rate constants is proposed and the individual constants determined. Although P. aeruginosa elastase and thermolysin are closely similar in structure, they have shown a marked difference in their hydrolysis of either elastin or tetraalanine. Elastolytic activity of thermolysin was higher than that of elastase but tetraalanine was hydrolyzed more slowly by thermolysin.  相似文献   

9.
Characterization of a maize root proteinase.   总被引:1,自引:0,他引:1       下载免费PDF全文
The major proteinase in maize (Zea mays) roots behaves as a serine endopeptidase. A possible physiological role of this enzyme could be in the turnover of nitrate reductase (NR) and, as such, it could be of great importance in regulating the assimilation of nitrate. The objective of this research was to elucidate the specificity and uniqueness of maize root proteinase. When bovine serum albumin and an NR purified from Chlorella vulgaris were used as substrates, the maize root proteinase exhibited a preference for cleavages such that the amino acid on the amino side of the scissile bond was alanine. This information was established by microsequence analysis of the N termini of proteolytic fragments, and carboxypeptidase Y analysis of the C termini of proteolytic fragments of substrates hydrolyzed by the proteinase. Cleavage occurred at the sequence Ala/Ala-Ala-Ala-Pro-Glu in Chlorella NR, and at the sequence Ala-Asp-Glu-Ser-His-Ala-Gln in bovine serum albumin. When bovine serum albumin was the substrate, the maize root proteinase yielded a peptide map that is unique relative to those created with the other serine endopeptidases elastase, trypsin, or chymotrypsin. Based on our data, the maize root proteinase appears to cleave peptide bonds at the carboxy side of alanine. Because of its specificity, it should have useful applications in protein chemistry.  相似文献   

10.
The lysosome-like granules of human and canine granulocytes contain an enzyme with elastinolytic activity. The enzymatic behaviour of these elastases was further characterized using the protein substrates elastin-orcein and azocasein and the synthetic substrates tert.-butyloxycarbonyl-alanine p-nitrophenylester (Boc-Ala-ONp) and 3-carboxypropionyl-L-alanyl-L-alanyl-L-alanine p-nitroanilide (Suc-Ala3-NHNp) in photometric assays. The affinities of the granulocyte elastases and of porcine pancreatic elastase to these substrates are very similar, e.g. human granulocyte elastase: KM (Boc-Ala-ONp) = 0.35mM, KM (Suc-Ala3-NHNp) = 1.25mM, porcine pancreatic elastase: KM (Boc-Ala-ONp) = 0.3mM, KM (Suc-Ala3-NHNp) - 1.15mM. The most convenient substrate for the assay of human and dog granulocyte elastases and for kinetic measurements with these enzymes is Suc-Ala3-NHNp. Using this substrate, the dissociation constant of the complex of human granulocyte elastase with human alpha1-antitrypsin could be determined (Ki = 3.5 x 10(-10)M).  相似文献   

11.
Eleven N-peptidyl-O-aroyl hydroxylamines have been synthesized and their hydrolytic stability, acidity and properties during reaction with dipeptidyl peptidase IV (E.C. 3.4.14.5) investigated. N-peptidyl-O-(4-nitrobenzoyl) hydroxylamines act as irreversible inhibitors of serine proteases. The serine enzyme, dipeptidyl peptidase IV (DP IV), is inactivated by substrate analog derivatives of this class by a suicide inactivation mechanism. During the enzyme reaction of DP IV with the suicide substrates most molecules are hydrolyzed but some irreversibly inactivate the target enzyme. In contrast to porcine pancreatic elastase and thermitase, DP IV exhibits a high ratio for hydrolysis of the compounds versus inhibition during their interaction with the enzyme. Variation of the leaving aroyl residue lowers this ratio. Variation of the substrate analog peptide moieties of the DP IV-inhibitors increases their ability to inhibit the enzyme to a remarkable extent. Possible reaction pathways are discussed.  相似文献   

12.
Elastolytic strains of Prevotella intermedia were isolated from pus samples of adult periodontal lesions. Elastase was found to associate with envelope, and it could be solubilized with guanidine-HCl. The enzyme was purified to homogeneity by sequential procedures including ion-exchange chromatography, gel filtration, and hydrophobic interaction chromatography. This elastase was a serine protease, and its mass was 31 kDa. It hydrolyzed elastin powder, but collagen and azodye-conjugated proteins were not degraded by this enzyme. Both synthetic substrates for human pancreatic (glutaryl-L-alanyl-L-alanyl-L-prolyl-L-leucine p-nitroanilide) and leukocyte elastase (methoxy succinyl-L-alanyl-alanyl-L-prolyl-L-valine p-nitroanilide) were hydrolyzed.  相似文献   

13.
Kinetic constants for the hydrolysis by porcine tissue beta-kallikrein B and by bovine trypsin of a number of peptides related to the sequence of kininogen (also one containing a P2 glycine residue instead of phenylalanine) and of a series of corresponding arginyl peptide esters with various apolar P2 residues have been determined under strictly comparative conditions. kcat and kcat/Km values for the hydrolysis of the Arg-Ser bonds of the peptides by trypsin are conspicuously high. kcat for the best of the peptide substrates, Ac-Phe-Arg-Ser-Val-NH2, even reaches kcat for the corresponding methyl ester, indicating rate-limiting deacylation also in the hydrolysis of a peptide bond by this enzyme. kcat/Km for the hydrolysis of the peptide esters with different nonpolar L-amino acids in P2 is remarkably constant (range 1.7), as it is for the pair of the above pentapeptides with P2 glycine or phenylalanine. kcat for the ester substrates varies fivefold, however, being greatest for the P2 glycine compounds. Obviously, an increased potential of a P2 residue for interactions with the enzyme lowers the rate of deacylation. In contrast to results obtained with chymotrypsin and pancreatic elastase, trypsin is well able to tolerate a P3 proline residue. In the hydrolysis of peptide esters, tissue kallikrein is definitely superior to trypsin. Conversely, peptide bonds are hydrolyzed less efficiently by tissue kallikrein and the acylation reaction is rate-limiting. The influence of the length of peptide substrates is similar in both enzymes and indicates an extension of the substrate recognition site from subsite S3 to at least S'3 of tissue kallikrein and the importance of a hydrogen bond between the P3 carbonyl group and Gly-216 of the enzymes. Tissue kallikrein also tolerates a P3 proline residue well. In sharp contrast to the behaviour of trypsin is the very strong influence of the P2 residue in tissue-kallikrein-catalyzed reactions. kcat/Km varies 75-fold in the series of the dipeptide esters with nonpolar L-amino acid residues in P2, a P2 glycine residue furnishing the worst and phenylalanine the best substrate, whereas this exchange in the pentapeptides changes kcat/Km as much as 730-fold. This behaviour, together with the high value of kcat/Km for Ac-Phe-Arg-OMe of 3.75 X 10(7) M-1 s-1, suggests rate-limiting binding (k1) in the hydrolysis of the best ester substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The specificity of action of the lysosomal elastase of human neutrophil leucocytes on the oxidized B chain of insulin is similar to that of pig pancreatic elastase, but is more directed towards valine than alanine as the residue contributing the carboxyl group of the cleaved bond. The most susceptible bonds are Val-12-Glu-13 and Val-18-Cys(O3H)-19. Other bonds hydrolysed are Ala-14-Leu-15, Ser-9-His-10 and Cys, (O3H3)-7-Gly-8. Tables listing amino acid composition, N-terminal residue, and yields of isolated peptides have been deposited as Supplementary Publication SUP 50 075 (8 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1977) 161, 1.  相似文献   

15.
C Largman 《Biochemistry》1983,22(16):3763-3770
Proelastase has been purified to homogeneity from rat pancreatic tissue by a combination of CM-Sephadex and immobilized protease inhibitor affinity resins. Trypsin activation yields an elastolytic enzyme that possesses a specificity toward small hydrophobic residues in synthetic amide substrates, similar to those of porcine elastase 1 and canine elastase. However, the rat enzyme also rapidly hydrolyzes a substrate containing tyrosine in the P1 position. N-Terminal sequence analysis reveals that rat proelastase has an identical activation peptide with that of porcine proelastase 1 and has two conservative amino acid sequence differences from the activation peptide of canine proelastase. The sequence data established that rat proelastase corresponds to the elastase 1 mRNA clone isolated by MacDonald et al. [MacDonald, R. J., Swift, G. H., Quinto, C., Swain, W., Pictet, R. L., Nikovits, W., & Rutter, W. J. (1982) Biochemistry 21, 1453]. The sequence and substrate data obtained for rat and canine elastases suggest that there is a family of pancreatic elastases with properties similar to those of the classically described porcine elastase 1.  相似文献   

16.
G Cs-Szabó  E Széll  P El?di 《FEBS letters》1986,195(1-2):265-268
The kinetic features of human granulocyte elastase, chymotrypsin, porcine pancreatic elastase and elastomucoproteinase were compared. Amino acyl ester substrates were assayed and Km and kcat values were defined. Aldehyde analogues of the p-nitroanilide substrates designed for granulocyte elastase as optimal for Km appeared to be potent inhibitors. Suc-D-Phe-Pro-valinal (Ki = 40 microM) was found to inhibit granulocyte elastase competitively and specifically when measured with synthetic substrates, and the Ki was 3 microM with the natural protein substrate, elastin.  相似文献   

17.
Abstract A lysine-specific protease hydrolysing peptide bonds at the carboxyl side of lysine residues in Porphyromonas gingivalis was purified from culture supernatant by a combination of ion-exchange chromatography, gel filtration, and affinity chromatography. The molecular mass was 48 kDa and the p I value was 7.3. The enzyme hydrolysed the peptide bonds at the carboxyl side of lysine residues in synthetic substrates and natural proteins.  相似文献   

18.
A crucial enzyme in the pathway for protein degradation in Escherichia coli is protease La, an ATP-hydrolyzing protease encoded by the lon gene. This enzyme degrades various proteins to small polypeptides containing 10-20 amino acid residues. To learn more about its energy requirement, we determined the number of ATP molecules hydrolyzed by the purified protease for each peptide bond cleaved. The enzyme hydrolyzed about 2 molecules of ATP for each new amino group generated with casein, bovine serum albumin, glucagon, or guanidinated casein as substrates, even though these proteins differ up to 20-fold in size and 3-4 fold in rates of hydrolysis of peptide bonds. Similar values for the stoichiometry (from 1.9 to 2.4) were obtained using fluorescamine or 2,4,6-trinitrobenzene sulfonic acid to estimate the appearance of new amino groups. These values appeared lower at 1 mM than at 10 mM Mg2+. The coupling between ATP and peptide bond hydrolysis appeared very tight. However, when the protease was assayed under suboptimal conditions (e.g. at lower pH or with ADP present), many more ATP molecules (from 3.5 to 12) were consumed per peptide bond cleaved. Our data would indicate that the early steps in protein degradation consume almost as much energy (2 ATPs for each cleavage) as does the formation of peptide bonds during protein synthesis.  相似文献   

19.
Protease La is an ATP-dependent protease that catalyzes the rapid degradation of abnormal proteins and certain normal polypeptides in Escherichia coli. In order to learn more about its specificity and the role of ATP, we tested whether small fluorogenic peptides might serve as substrates. In the presence of ATP and Mg2+, protease La hydrolyzes two oligopeptides that are also substrates for chymotrypsin, glutaryl-Ala-Ala-Phe-methoxynaphthylamine (MNA) and succinyl-Phe-Leu-Phe-MNA. Methylation or removal of the acidic blocking group prevented hydrolysis. Closely related peptides (glutaryl-Gly-Gly-Phe-MNA and glutaryl-Ala-Ala-Ala-MNA) are cleaved only slightly, and substrates of trypsin-like proteases are not hydrolyzed. Furthermore, several peptide chloromethyl ketone derivatives that inhibit chymotrypsin and cathepsin G (especially benzyloxycarbonyl-Gly-Leu-Phe-chloro-methyl ketone), inhibited protease La. Thus its active site prefers peptides containing large hydrophobic residues, and amino acids beyond the cleavage site influence rates of hydrolysis. Peptide hydrolysis resembles protein breakdown by protease La in many respects: 1) ADP inhibits this process rapidly, 2) DNA stimulates it, 3) heparin, diisopropyl fluorophosphate, and benzoyl-Arg-Gly-Phe-Phe-Leu-MNA inhibit hydrolysis, 4) the reaction is maximal at pH 9.0-9.5, 5) the protein purified from lon- E. coli or Salmonella typhymurium showed no activity against the peptide, and that from lonR9 inhibited peptide hydrolysis by the wild-type enzyme. With partially purified enzyme, peptide hydrolysis was completely dependent on ATP. The pure protease hydrolyzed the peptide slowly when only Mg2+, Ca2+, or Mn2+ were present, and ATP enhanced this activity 6-15-fold (Km = 3 microM). Since these peptides cannot undergo phosphorylation, adenylylation, modification of amino groups, or denaturation, these mechanisms cannot account for the stimulation by ATP. Most likely, ATP and Mg2+ affect the conformation of the enzyme, rather than that of the substrate.  相似文献   

20.
The specificities of human neutrophile elastase and chymotrypsin-like protease towards oxidized insulin B chain were studied. The neutrophile elastase was found to differ from porcine pancreatic elastase in its specificity towards insulin B chain. The neutrophile elastase preferred mostly valine near the cleaved bond in contrast to pancreatic elastase which preferred alanine as well as valine near the cleaved bond. Human neutrophile chymotrypsin-like protease was found to cleave mostly bonds involving leucine and phenylalanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号