首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of cell growth and Cyclosporin A (Cyc A) production by Tolypocladium inflatum were studied in shake flasks and bioreactors under controlled and uncontrolled pH conditions. In the case of the shake flask, the production time was extended to 226 h and the maximal antibiotic concentration was 76 mg/l. When scaling up the cultivation process to a bioreactor level, the production time was reduced to only 70 h with a significant increase in both the cell growth and the antibiotic production. The maximal dry cell weights in the case of the controlled pH and uncontrolled pH cultures in the bioreactor were 22.4 g/l and 14.2 g/l, respectively. The corresponding maximal dry cell weight values did not exceed 7.25 g/l with the shake flask cultures. The maximal values for Cyc A production were 144.72 and 131.4 mg/l for the controlled and uncontrolled pH cultures, respectively. It is also worth noting that a significant reduction was observed in both the dry cell mass and the antibiotic concentration after the Cyc A production phase, whereas the highest rate of antibiotic degradation was observed in the stirred tank bioreactor with an uncontrolled pH. Morphological characterization of the micromorphological cell growth (mycelial/pellet forms) was also performed during cultivation in the bioreactor.  相似文献   

2.
In this study, we have conducted kinetics and modelling studies ofCentella asiatica cell growth and substrate uptake, in an attempt to evaluate cell growth for a better understanding and control of the process. In our bioreactor cultivation experiment, we observed a growth rate of 0.18/day, a value only 20% higher than was seen in the shake flask cultivation trial. However, the observed maximum cell dry weight in the shake flask, 10.5 g/L, was 14% higher than was achieved in the bioreactor. Ninety seven percentage confidence was achieved via the fitting of three unstructured growth models; the Monod, Logistic, and Gompertz equations, to the cell growth data. The Monod equation adequately described cell growth in both cultures. The specific growth rate, however, was not effectively predicted with the Logistic and Gompertz equations, which resulted in deviations of up to 73 and 393%, respectively. These deviations in the Logistic and Gompertz models may be attributable to the fact that these models were developed for substrate-independent growth and fungi growth, respectively.  相似文献   

3.
4.
Summary Plant hairy root cultures of Lithospermum erythrorhizon were carried out to produce shikonin derivatives by employing in situ extraction with n-hexadecane in a shake flask and a bubble column bioreactor. Over 95 % shikonin produced was recovered in the n-hexadecane layer. In flask cultures the maximum concentration of shikonin with n-hexadecane extraction was 3 times higher than that obtained without extraction. In the two phase bubble column reactor, 572.6 mg/L of shikonin and 15.6 g/L of dry cell mass were obtained after 54 days. Shikonin was produced at a constant level of 10.6 mg/L day during this period.  相似文献   

5.
The effect of pH on the production of cellulases and xylanases by Penicillium echinulatum S1M29 was evaluated in a shake flask and in a bioreactor. To control the pH in a shake flask, a buffer made with citric acid and disodium phosphate was used. The buffer was capable of maintaining the culture pH values for the first 48 h. In the bioreactor, the pH was controlled automatically by the addition of NaOH and H2SO4. In the shake flask, the highest activities of xylanases (18.5 IU/mL) and endoglucanases (8.2 IU/mL), as well as the highest filter paper activity (FPA) (0.9 IU/mL), were obtained at initial pH values of between 6.0 and 7.0. In the bioreactor, the highest activities of these enzymes were obtained in a pH range of 5.5 to 6.5. Different isoforms of the endoglucanases were found in the various cultures depending on the pH. More acidic pH ranges favored the production of β-glucosidases in both the shake flask and the bioreactor.  相似文献   

6.
A method to quantify the impact of proteolysis on accumulation of recombinant proteins in E. coli is described. A much smaller intracellular concentration of staphylococcal protein A (SpA) (14.7 mg · g−1) compared to the fusion protein SpA-βgalactosidase (138 mg · g−1) is explained by a very high proteolysis rate constant of SpA. The SpA synthesis rate reached a maximum one hour after induction and gradually decreased to half of this value at the end of the cultivation. The decrease of the synthesis rate and the 1st order kinetics of proteolysis lead to an equilibrium between synthesis and degradation of SpA from 2 h after induction. This resulted in no further SpA accumulation in cells, though synthesis continued for at least 10 h. Similar experiments with recombinant protein ZZT2 also revealed that most of the synthesized product was degraded. The order of proteolysis kinetics depended on the concentration of the recombinant protein: at low concentrations both SpA and ZZT2 were degraded according to first order kinetics, while at high concentrations ZZT2 was degraded according to zero order kinetics. In a protease Clp mutant the degradation rate decreased and intracellular concentration of ZZT2 increased from 50 mg · g−1 to 120 mg · g−1. The measurements of proteolysis rate throughout the cultivation enabled calculation of a hypothetical accumulation of the product assuming complete stabilization. In this case the concentration would have increased from 50 to 280 mg · g−1 in 11 h. Thus, this method reveals the potential to increase the productivity by eliminating proteolysis.  相似文献   

7.
Culture conductivity and on-line NADH fluorescence were used to measure cellular growth in plant cell suspension cultures ofPodophyllum hexandrum. An inverse correlation between dry cell weight and medium conductivity was observed during shake flask cultivation. A linear relationship between dry cell weight and culture NADH fluorescence was obtained during the exponential phase of batch cultivation in a bioreactor under the pH stat (pH 6) conditions. It was observed that conductivity measurement were suitable for biomass characterisation under highly dynamic uncontrolled shake flask cultivation conditions. However, if the acid/alkali feeding is done for pH control the conductivity measurement could not be applied. On the other hand the NADH fluorescence measurement allowed online-in situ biomass monitoring of rather heterogenous plant cell suspension cultures in bioreactor even under the most desirable pH stat conditions.  相似文献   

8.
 The production of anthraquinones by Frangula alnus Mill. plant cells was used as a model system to evaluate the performance of a liquid-liquid extractive product-recovery process. The shake flask experiments have shown higher production of anthraquinones in cell suspension and flask cultures of calcium-alginate-immobilized cells when silicone oil was incorporated into the medium, compared to a control without silicone oil. An external-loop air-lift bioreactor, developed and designed for the production and simultaneous extraction of extracellular plant cell products, was regarded as a four-phase system, with dispersed gas, non-aqueous solvent and calcium-alginate-immobilized plant cells in Murashige and Skoog medium. Continuous extraction of anthraquinones by silicone oil and n-hexadecane inside the bioreactor resulted in 10–30 times higher cell productivity, compared to that of immobilized cells in a flask. Based on the mixing pattern, immobilized biocatalyst extraparticle and intraparticle diffusional constraints and the kinetics of growth, substrate consumption and product formation, a mathematical model was developed to describe the time course of a batch plant cell culture. The model showed satisfactory agreement with four sets of shake flask experiments and three bioreactor production cycles. Received: 18 March 1994/Received revision: 20 September 1994/Accepted: 28 September 1994  相似文献   

9.
High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanella oneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research.  相似文献   

10.
The effect of scaleup on he production of ajmalicine by a Catharanthus roseus cell suspension culture in a selected induction medium were studied. In preliminary experiments it was observed that the culture turned brown and the production was inhibited upon transfer from a shake flask to a stirred bioreactor with forced aeration. Two factors were recognized as the potential origin of the differences between shake flask and bioreactor cultures: gas composition and mechanical shear forces. These factors were studied separately.By recirculating a large part of the exhaust gas, a comparable gas regime was obtained in a bioreactor as occurred in a shake flask cultures. This resulted in the absence of browning and a similar pattern of ajmalicine production as observed in shake flasks. The effect of shear forces could not be demonstrated. However, the experiments showed that the culture may be very sensitive to liquid phase concentrations of gaseous compounds. The effects of k(L)a, aeration rate, CO(2) production rate, and influent gas phase CO(2) concentration on the liquid phase CO(2) concentration are discussed. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
The productivity of a cell culture for the production of a secondary metabolite is defined by three factors: specific growth rate, specific product formation rate, and biomass concentration during production. The effect of scaling-up from shake flask to bioreactor on growth and production and the effect of increasing the biomass concentration were investigated for the production of ajmalicine by Catharanthus roseus cell suspensions. Growth of biomass was not affected by the type of culture vessel. Growth, carbohydrate storage, glucose and oxygen consumption, and the carbon dioxide production could be predicted rather well by a structured model with the internal phosphate and the external glucose concentration as the controlling factors. The production of ajmalicine on production medium in a shake flask was not reproduced in a bioreactor. The production could be restored by creating a gas regime in the bioreactor comparable to that in a shake flask. Increasing the biomass concentration both in a shake flask and in a stirred fermenter decreased the ajmalicine production rate. This effect could be removed partly by controlling the oxygen concentration in the more dense culture at 85% air saturation.  相似文献   

12.
Aggregation of baby hamster kidney (BHK) cells cultivated in perfusion mode for manufacturing recombinant proteins was characterized. The potential impact of cultivation time on cell aggregation for an aggregating culture (cell line A) was studied by comparing expression profiles of 84 genes in the extracellular adhesion molecules (ECM) pathway by qRT‐PCR from 9 and 25 day shake flask samples and 80 and 94 day bioreactor samples. Significant up‐regulation of THBS2 (4.4‐ to 6.9‐fold) was seen in both the 25 day shake flask and 80 and 94 day bioreactor samples compared to the 9 day shake flask while NCAM1 was down‐regulated 5.1‐ to 8.9‐fold in the 80 and 94 day bioreactor samples. Subsequent comparisons were made between cell line A and a non‐aggregating culture (cell line B). A 65 day perfusion bioreactor sample from cell line B served as the control for 80 and 94 day samples from four different perfusion bioreactors for cell line A. Of the 84 genes in the ECM pathway, four (COL1A1, COL4A1, THBS2, and VCAN) were consistently up‐regulated in cell line A while two (NCAM1 and THBS1) were consistently down‐regulated. The magnitudes of differential gene expression were much higher when cell lines were compared (4.1‐ to 44.6‐fold) than when early and late cell line B samples were compared (4.4‐ to 6.9‐fold) indicating greater variability between aggregating and non‐aggregating cell lines. Based on the differential gene expression results, two mechanistic models were proposed for aggregation of BHK cells in perfusion cultures. Biotechnol. Bioeng. 2013; 110: 483–490. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
An optimized cultivation condition is needed to maximize the functional green fluorescent protein (GFP) production. Six process variables (agitation rate, temperature, initial medium pH, concentration of inducer, time of induction, and inoculum density) were screened using the fractional factorial design. Three variables (agitation rate, temperature, and time of induction) exerted significant effects on functional GFP production in E. coli shake flask cultivation and were optimized subsequently using the Box–Behnken design. An agitation rate of 206 rpm at 31°C and induction of the protein expression when the cell density (OD600nm) reaches 1.04 could enhance the yield of functional GFP production from 0.025 g/L to 0.241 g/L, which is about ninefold higher than the unoptimized conditions. Unoptimized cultivation conditions resulted in protein aggregation and hence reduced the quantity of functional GFP. The model and regression equation based on the shake flask cultivation could be applied to a 2-L bioreactor for maximum functional GFP production.  相似文献   

14.
The production of an intermediate temperature-stable (ITS) α-amylase from Aspergillus oryzae was studied by using a central composite design with three independent variables, viz., starch, yeast extract, and K2HPO4. The model equation provided a suitable model for the response surface for α-amylase production, and, from the optimal concentrations of the medium components, a model was predicted, which was then used for enzyme production in a 150-L bioreactor. In the bioreactor studies, the enzyme yields (161 U/ml) were similar to that of the shake flask (133 U/ml); however, the time required for maximum α-amylase production in the bioreactor was reduced to 48 h compared with 120 h in shake flask cultures. An increased level of phosphate in the medium and low inoculum size were necessary to control the excessive foaming in the bioreactor; however, control of the pO2 level and agitation was not mandatory for enzyme production. The peak enzyme production coincided with the increase in pH of the fermentation broth and was maximal when the pH of the system was above 7.5. Thus, in the present study, pH acted as an indicator of the initiation or end of the enzyme synthesis or of the fermentation cycle. Received: 20 November 2001 / Accepted 31 December 2001  相似文献   

15.
The purpose of this study was to develop a cell culture process in a bioreactor for the production of a viral insecticide for the spruce budworm, Choristoneura fumiferana . Several cell lines were tested for their growth in serum-free medium suspension cultures. One cell line, CF-124T-2C1 (CF-2C1), was successfully adapted to grow in suspension cultures in SFM. Serum-free Ex-Cell 405 medium produced a much higher cell density (6.3 x 10 6 cells ml -1 ) than the Grace's medium supplemented with 10% fetal bovine serum (2.5 x 10 6 cells ml -1 ). Also, a higher yield of virus was obtained in the former medium. Ex-Cell 405, was used to study the growth of CF-2C1 cells and the production of C. fumiferana nucleopolyhedrovirus (CfMNPV) in a 3 l bioreactor. Under these conditions, a specific growth rate ( μ) of 0.027 h -1 was obtained during the exponential growth phase, and the specific carbon dioxide evolution rate, as determined by on-line measurement, was 0.9 x 10 -16 mol cell -1 s -1 and 1.78 x 10 -16 mol cell -1 s -1 during growth and infection phases, respectively. Virus production in bioreactor cultures infected at 1.3 x 10 6 cells ml -1 was consistently lower than that obtained in Erlenmeyer shake flasks. Only 26% of the cells were infected in the bioreactor compared to 44% in the shake flasks. However, a higher yield of occluded virus was obtained in the bioreactor cultures than in shake flasks. The production of occlusion bodies (OB) achieved in bioreactor cultures was 2 x 10 6 OB ml -1 .  相似文献   

16.
A Panax notoginseng cell culture was successfully scaled up from shake flask to 1.0-L bubble column reactor and concentric-tube airlift reactor. High-density bioreactor batch cultivation was carried out using a modified MS medium. The maximum cell density in batch cultures reached 20.1, 21.0 and 24.1 g/L in the shake flask, bubble column and airlift reactors, respectively, and their corresponding biomass productivity was 950, 1140 and 1350 mg/(L x d) for each. The productivity of ginseng saponin was 70, 96 and 99 mg/(L x d) in the flask, bubble column and airlift reactors, respectively; and the polysaccharide productivity reached 104, 119 and 151 mg/(L x d) for each. Furthermore, a fed-batch cultivation strategy was developed on the basis of specific oxygen uptake rate (SOUR), i.e., sucrose feeding before a sharp decrease of SOUR, and the highest cell density of 29.7 g/L was successfully achieved in the airlift bioreactor on day 17 with a very high biomass productivity of 1520 mg/(L x d). The concentrations of ginseng saponin and polysaccharide reached about 2.1 and 3.0 g/L, respectively, and their productivity was 106 (saponin) and 158 mg/(L x d) (polysaccharide). This work successfully demonstrated the high-density bioreactor cultivation of P. notoginseng cells in pneumatically agitated bioreactors and the reproduction of the shake flask culture results in bioreactors. The cell density, biomass productivity, production titer and productivity of both ginseng saponin and polysaccharide obtained here were the highest that have been reported on a reactor scale for all the ginseng species.  相似文献   

17.
为提高重组毕赤酵母(P.pastoris KM71/pPIC9K-bgl)生产β-葡萄糖苷酶的产量,在摇瓶条件下对重组P.pastoris产β-葡萄糖苷酶的发酵过程进行了优化,得到最佳的条件:生长阶段甘油浓度为30 g/L,接种量为10%,诱导阶段甲醇的初浓度为4%,过程补加甲醇0.5%,诱导温度30℃,pH7.5,诱导周期120 h,酶活可达到245 U/mL。在此基础上,在3 L发酵罐上进行初步放大,流加甘油提高细胞密度至OD_(600)为170,开始流加甲醇诱导,最终BGL酶活达到1 175 U/mL。比摇瓶提高了4.8倍,为β-葡萄糖苷酶工业化生产打下了坚实的基础。  相似文献   

18.
Summary A transformed root culture of Cichorium intybus L. cv. Lucknow Local grown in different configurations of bioreactors was examined. The roots grown in an acoustic mist bioreactor showed the best performance in terms of increased specific growth rate (0.072d−1) and esculin content (18.5gl−1), the latter of which was comparable to that of shake flask data. C. intybus hairy root cultures grown in an acoustic mist bioreactor produced nearly twice as much esculin as compared to roots grown in bubble column and nutrient sprinkle bioreactors. Studies relating to on-line estimation of conductivity and osmolarity to predict the growth of hairy root cultures are also discussed. The results demonstrate the efficacy and the advantages of an acoustic mist bioreactor for the cultivation of hairy root cultures, especially with reference to C. intybus hairy roots.  相似文献   

19.
为了提高重组菌的淀粉酶表达量,以可分泌表达米根霉α-淀粉酶的甲醇快速利用型巴斯德毕赤酵母重组菌为基础,采用摇瓶发酵方式对影响重组菌表达淀粉酶的多个因素进行了研究和优化。摇瓶发酵条件确定为:温度为30℃,pH值为6.0,接种量为2.0(OD_(600)),甲醇补加方式采用前72 h发酵时间内每隔12h添加至终浓度为1.0%,72 h以后每隔24 h添加至终浓度为1.0%,在此条件下获得的淀粉酶最高表达量为47.5 U/mL,且在无机盐培养基中和有机氮源培养基中获得的淀粉酶发酵单位相当。以摇瓶发酵数据为基础确定15 L发酵罐放大实验条件为:无机盐培养基,温度为30℃,pH值为6.0,接种量为10%,甲醇流加方式采用DO—Start法控制,在此发酵条件下获得的淀粉酶表达量为440 U/mL,约为摇瓶发酵方式获得的淀粉酶表达量的9倍。  相似文献   

20.
The production of rifamycins B and SV using glucose as main C-source by Amycolatopsis mediterranei in batch and fed-batch culture was investigated. Fed-batch culture using glucose as mono feeding substrate either in the form of pulse addition, in case of shake flask, or with constant feeding rate, in bioreactor level, proved to be an alternative production system with a significant increase in both volumetric and specific antibiotic production. The maximal concentrations of about 1146 mg/l and 2500 mg/l of rifamycins B and SV, respectively, was obtained in fed-batch culture in bioreactor level under non-oxygen limitation. On the other hand, the rate of rifamycins production was increased from 6.58 to 12.13 mg/l x h for rifamycin B and from 9.47 to 31.83 mg/l x h for rifamycin SV on the bioprocess transfer and improvement from the conventional batch cultivation in shake flask to fed-batch cultivation in stirred tank bioreactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号