首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The tissue contents of vitamin D alcohol and ester were estimated in rats 5, 10, 24, 48 and 72hr. after peroral administration of [1-(3)H]cholecalciferol. 2. The total vitamin D in liver decreased in an exponential fashion from 19% of the dose at 5hr. to 0.6% at 72hr., but the ester content remained at a relatively constant low value from 5hr., so that by 72hr. it represented 67% of the total vitamin D. Vitamin D ester in kidney increased slowly to 48hr., but by 72hr. it was only 10% of the total vitamin D. 3. The small intestine, unlike liver and kidney, contained a higher content of vitamin D ester 10hr. after administration than at later times, and it is postulated that some vitamin D was esterified during absorption from the alimentary tract. 4. Plasma contained vitamin D ester at all time intervals, and it is suggested that ester found in liver and kidney could have been transported to these sites in the blood. 5. Thoracic-duct lymph was found to transport 43% of a peroral dose of vitamin D in 12hr., of which 1.4% was esterified. The fatty acid components of the lymph vitamin D ester, determined by two-dimensional thinlayer chromatography, were mainly palmitate (31%), stearate (25%), oleate (16%) and linoleate (16%). This pattern was similar to that previously found in liver.  相似文献   

2.
1. Mucosal cells of the small intestine obtained from rats deprived of vitamin D or given excessive amounts of the vitamin accumulated significantly more calcium than did cells from control animals. 2. Mucosal cells from vitamin D-deficient rats released less calcium than did cells from normal or hypervitaminotic D animals. 3. Studies in vivo showed that the transfer of (45)Ca from the intestine to the blood was delayed in vitamin D deficiency, but was accelerated in hypervitaminosis D. 4. The findings support the thesis that vitamin D is involved in the release of calcium rather than in its uptake by mucosal cells. 5. Further evidence is presented suggesting that uptake of calcium by intestinal mucosal cells at 0 degrees is primarily passive, whereas at 38 degrees uptake and release are effected by an active process that depends on energy derived from glycolytic activity.  相似文献   

3.
1. Specific lipoproteins binding alpha-tocopherol but not its known metabolites have been isolated and identified from cytosol of rat intestinal mucosa and from serum. 2. A timestudy of the appearance of the orally administered alpha-[(3)H]tocopherol with these lipoproteins indicates that very-low-density lipoprotein of serum acts as a carrier of the vitamin. 3. The involvement of the mucosal lipoprotein in the absorption of the vitamin from the intestine has been inferred from observations on the amounts of alpha-tocopherol in serum of orotic acid-fed rats where release of lipoproteins from the liver to serum is completely inhibited. A considerable decrease in the association of alpha-tocopherol with serum very-low-density lipoprotein under this condition is interpreted to mean that serum lipoproteins are limiting factors for the transport of the vitamin across the intestine and that this is possibly effected by exchange of alpha-tocopherol between serum very-low-density lipoprotein and mucosal lipoprotein.  相似文献   

4.
Previous studies have shown that in the absence of dietary lipid, intestinal lymph contains endogenous very low density lipoproteins (VLDL) which are identical to those in plasma in size, flotation rate, composition, and electrophoretic mobility. In order to document that these particles are produced in the mucosa of the small intestine itself, electron microscopic studies of rat and human intestinal mucosa were carried out. Small intestinal absorptive cells from rats fasted and restrained for 48 hr were rich in osmiophilic particles of the size of VLDL (300-1000 A). These particles were present in the endoplasmic reticulum and Golgi apparatus, and in intercellular spaces and lacteals; they were most abundant in mucosa from mid-jejunum. Similar particles were seen in jejunal mucosal biopsy specimens obtained from normal human volunteers after a 40-hr fast. After 6 hr of bile diversion or cholestyramine administration to fasted rats, the VLDL-sized particles virtually disappeared from the mucosa, suggesting that they were produced in the mucosa itself and depended upon the absorption of endogenous intralumenal lipid. These studies provide further evidence for the production of VLDL in absorptive cells of fasting rat and human intestine, and support the concept that the small intestine is a source of endogenous plasma VLDL.  相似文献   

5.
All-trans-[11-3H]retinoyl beta-glucuronide (RAG) was synthesized in a single step from all-trans-[11-3H]retinoyl fluoride, with a 24% yield. After its intraperitoneal injection into rats, RAG was detected in the blood, liver, intestine and kidney during the following 24 h period. Although the concentration of radiolabelled metabolites decreased with time, RAG predominated at nearly all times in nearly all tissues. Small amounts of retinoic acid (RA) were also universally present, together with unidentified polar metabolites and small amounts of non-polar esters of RA. The major excretion products of RAG in faeces and urine were RA and polar metabolites. Thus RAG, although converted in part to RA in vivo, persists as a major component in blood and tissues for at least 24 h. These observations support the concept that the retinoid beta-glucuronides might serve a physiologically significant role in the function of vitamin A.  相似文献   

6.
Retinyl ester concentrations in plasma from fasting humans, rabbits and rats are usually negligible. In contrast, plasma from fasting dogs contains appreciable amounts of retinyl esters, associated almost entirely with the low-density lipoproteins. This study was undertaken to gather additional information about the nature and origin of canine retinyl ester-containing lipoproteins. We examined the metabolism of endogenous lipoprotein retinyl esters in adult mongrel dogs with moderate vitamin A deficiency. Four animals were fed a diet of oatmeal and tuna fish that provided only 4% of the vitamin A contained in their control rations (15 vs. 367% of the canine recommended daily intake). There was an initial rapid decline in plasma retinyl esters. However, measurable concentrations persisted in plasma for up to 1 year of restricted vitamin A intake. Total plasma retinyl ester concentrations after 6 months of vitamin A deprivation, extrapolated from best-fit monoexponential decay curves for each animal, ranged from 11 to 89% of control, suggesting that there was sustained secretion of retinyl esters from endogenous stores. Density gradient ultracentrifugation of plasma from fasting vitamin A-deprived dogs showed retinyl esters in the very-low- and low-density lipoproteins. After fat and vitamin A feeding retinyl esters appeared among the very-low-, intermediate- and low-density lipoproteins, consistent with the suggestion that chylomicron retinyl esters are first taken up by the liver, and then resecreted as density less than 1.006-1.063 g/ml lipoproteins. Maximal incorporation of dietary retinyl esters into low-density lipoproteins was not reached until 24-48 h. Intermediate-density and beta-migrating low-density lipoprotein retinyl esters were increased markedly in fasting animals maintained on cholesterol- and saturated fat-enriched diets. These observations provide further evidence for the proposal that the canine liver secretes retinyl ester-containing particles, in amounts governed by dietary composition and vitamin A content. What selective advantage this unusual transport pathway might provide is not apparent.  相似文献   

7.
Highly purified sinusoidal (fat-storing, Kupffer and endothelial cells) and parenchymal cells were isolated to assess the cellular distribution of vitamin A in liver of adult vitamin A-sufficient rats. A modified simple procedure was developed for the purification of fat-storing cells from rat liver. This was achieved by a single centrifugation step in a two-layer density Nycodenz gradient. Endothelial and Kupffer cells were obtained from the same gradient and further purified by centrifugal elutriation. Reverse-phase HPLC analysis showed that fat-storing cells contained about 300-fold the amount of retinyl esters present in parenchymal cells on a mg cell protein basis. In fat-storing cells, the same retinyl esters, viz. retinyl palmitate, retinyl stearate and retinyl oleate, were present as in whole liver. It was also observed that, within 12 h after intravenous injection of chylomicron [3H]retinyl ester, most of the radioactivity had accumulated in the fat-storing cells. It is concluded that fat-storing cells are the main storage sites for vitamin A in rat liver.  相似文献   

8.
1. Vitamin A deficiency led to an increase in the oligonucleotide fraction of testes and intestinal mucosa of rats at the expense of high-molecular-weight RNA and 4S RNA, but no such changes were observed in the liver. Retinyl acetate supplementation reversed these effects in both tissues, whereas retinoic acid supplementation was almost equally effective in the mucosa but virtually ineffective in the testes. The ribonuclease activities of all the tissues remained unaffected by the above treatments. 2. The effect of vitamin A deprivation on the acceptor activity of the tRNA of the testes and intestinal mucosa was more pronounced than on the liver tRNA. The testes and mucosal tRNA of the retinoic acid-supplemented rats showed significantly lower charging capacity as compared with the retinyl acetate-supplemented ones. Here also no significant effect was observed on the liver tRNA. 3. Vitamin A deficiency caused a decrease in the percentage of poly(A) in RNA of the mucosa and testes, but not in the liver RNA. The poly(A) contents of both tissues were brought to normal by retinyl acetate supplementation; treatment with retinoic acid led to an appreciable increase in poly(A) in the mucosa, but considerably less increase in poly(A) in the testes. 4. The incorporation of H332PO4 into the rRNA and tRNA of the testes was lowered by vitamin A deficiency, but no such effects was observed in the liver RNA.  相似文献   

9.
As to earlier observations that beta-carotene prevents the development of gastric mucosal injury produced by different noxious agent, however, its cytoprotective effect can be abolished by acute surgical vagotomy. The aim of this study was to evaluate the possible correlation between the gastric mucosal cytoprotective effect of beta-carotene and its gastric mucosal level in rats treated with IND. The gastric mucosal damage was produced by the administration of IND (20 mg/kg s.c.). The instillation of beta-carotene and acute surgical vagotomy (ASV) or SHAM operation were carried out 30 min before IND treatment. The rats were sacrificed 4 h after IND application, and the number and severity of gastric mucosal erosions were noted. The blood rats was collected quantitatively, the liver and the gastric mucosa were removed, and the beta-carotene and vitamin A level of the gastric mucosa, serum and liver were measured with HPLC. It was found that: 1. Beta-carotene induced gastric cytoprotection in SHAM-operated rats treated with IND but its effect disappeared after ASV. 2. Although the beta-carotene level of the gastric mucosa increased its concentration was not elevated in the serum of intact and vagotomized animals either. 3. Vitamin A Formation was not detected in the liver of animals with or without ASV. It was concluded that the lack of intake of beta-carotene into the gastric mucosa can not play etiologic role in the failure of gastric cytoprotection of rats with acute bilateral surgical vagotomy.  相似文献   

10.
1. Vitamin D-deficient rachitic rats were given [1-(3)H]cholecalciferol by gastric intubation. After 24hr., diethyl ether extracts of liver and kidney contained 5-11% and 4.5-20% respectively of total vitamin D apparently esterified with long-chain fatty acids. 2. A two-dimensional thin-layer chromatographic technique was devised that completely separated seven synthetic vitamin D esters according to the chain length and number of double bonds in the fatty acid component. When the ;vitamin D ester' fraction from liver or kidney was co-chromatographed with the standard esters, radioactivity appeared mainly in vitamin D palmitate, stearate, oleate and linoleate regions. The proportion of radioactivity in the saturated fatty acid esters was higher in kidney than in liver. 3. The same percentage of tissue vitamin D in the esterified form was found at each of two dosages of vitamin D. 4. The possible specificity of a vitamin D esterification mechanism is discussed.  相似文献   

11.
Enzyme studies on the esterification of vitamin D in rat tissues   总被引:2,自引:2,他引:0       下载免费PDF全文
1. The mechanism of vitamin D esterification in the rat was studied with liver, small-intestinal mucosa, pancreatic juice and blood plasma as enzyme sources and [1-(3)H]cholecalciferol, [U-(14)C]ergocalciferol and [4-(14)C]cholesterol as substrates. 2. No esterification of vitamin D could be detected with liver preparations nor with homogenates or acetone-dried powder extracts of intestinal mucosa. 3. Pancreatic juice esterified [1-(3)H]cholecalciferol with oleic acid, and specificity studies indicated that a cholesterol-esterifying enzyme was using vitamin D as substrate. 4. Plasma cholesterol-esterifying enzyme also esterified vitamin D. 5. The specificity of the esterification reaction is discussed in relation to (a) the molecular structure of the substrates and (b) their availability, in a micellar solution, to the enzyme. 6. It is concluded that cholesterol-esterifying enzymes esterify vitamin D in vivo during absorption from the small intestine and while it is transported in blood.  相似文献   

12.
In rats, at day 20 of pregnancy, the placenta and the fetal intestine contain calcium-binding proteins (CaBPs) which closely resemble the vitamin D-dependent CaBP of the adult rat duodenal mucosa. A significant and specific increase of the dam intestinal CaBP likely synthesized as a result of pregnancy, is observed. A 5 week-vitamin D-depletion promoted a decrease of the CaBP content of the dam intestine and of its calcemia. No changes were detected in the non-pregnant animals. Likewise, neither fetal calcemia nor CaBP contents of the feto-placental unit were affected. Such findings suggest i) that pregnancy elicits the vitamin D-sensitivity of rats and ii) that a slight vitamin D-deficiency acts only on the maternal compartment. Although the vitamin D-dependence of placental and fetal CaBPs remains to be demonstrated, our results suggest that these proteins act in concert with the maternal CaBP, to favour a mother to fetus transfer of calcium in order to satisfy the needs of the mineralizing fetal skeleton.  相似文献   

13.
These experiments were designed to test the hypothesis that the vitamin A fat-storage cell removes chylomicron remnant cholesterol from hepatic portal venous blood; A modified Ficoll density gradient ultracentrifugation procedure was used to isolate from rat liver cellular fractions that were enriched in vitamin A. In rats fed a normal diet and in rats fed excess vitamin A isolated hepatocytes were fractionated 15 min after the intravenous injection of chylomicrons labelled in vivo with radioactive cholesterol. The results showed that cholesterol radioactivity was not concentrated in the vitamin A enriched cellular fractions, so it was concluded that the vitamin A fat-storage cell is not implicated in clearance of chylomicron remnants by the liver.  相似文献   

14.
Because only retinol and not all-trans-retinoic acid (atRA) can satisfy all of the functions of vitamin A, we have investigated the retinol metabolites in tissues of vitamin A-deficient (VAD) rats responding to a radioactive dose of [20-(3)H]all-trans-retinol. As expected, atRA is the major vitamin A metabolite present in the target tissues of VAD rats given a physiological dose (1 microg) of [20-(3)H]all-trans-retinol (atROL). Both atROL and atRA were detected by high-performance liquid chromatographic (HPLC) analysis of the radioactivity extracted from the liver, kidney, small intestine, lung, spleen, bone, skin, or testis of these animals. Novel retinol metabolites were observed in the aqueous extracts from the testis, lung, and skin. However, these metabolites were detected in very small amounts and were not characterized further. Importantly, neither 9-cis-retinoic acid (9cRA), 9-cis-retinol (9cROL), nor 13-cis-retinoic acid (13cRA) was present in detectable amounts. The amounts of atRA varied in each tissue, ranging from 0.29 +/- 0.05 fmol of RA/g of tissue in the femurs to 12.9 +/- 4.3 fmol of RA/g of tissue in the kidneys. The absence of 9cRA in vivo was not due to degradation of this retinoid during the extraction procedure or HPLC analysis of the extracted radioactivity. As atROL completely fulfills all of the physiological roles of vitamin A, and 9cRA is not detected in any of the tissues analyzed, these results suggest that 9cRA may have no physiological relevance in the rat.  相似文献   

15.
1. The changes in the net amounts of retinol, retinyl esters and retinal in both the developing chick embryo and the newly hatched chick were investigated. The embryo requires about 68nmol of the vitamin for its growth, whereas the baby chick requires about 108nmol during the first 7 days after hatching. 2. Retinal was present in the egg in fairly high concentrations at the beginning of the incubation but it virtually disappeared from the extra-embryonic tissue after day 17 of incubation. It was not found in the liver of the embryo or of the newly hatched chick up until day 7.  相似文献   

16.
Metabolism of doubly-labeled chylomicron cholesteryl esters in the rat   总被引:7,自引:0,他引:7  
Chylomicrons labeled in vitro with doubly-labeled cholesteryl esters were injected intravenously into fasted rats, and the tissue distribution and chemical form of each isotope were observed for 24 hr. The use of doubly-labeled cholesteryl esters provided information about the metabolism of both the sterol and the fatty acid moieties. Similar results were obtained with doubly-labeled cholesteryl palmitate, oleate, and linoleate. In each instance, most (80-90%) of the chylomicron cholesteryl ester was removed from the plasma by the liver; small amounts were also taken up by all other tissues examined. There was no hydrolysis during uptake. In the liver the newly absorbed cholesteryl esters underwent slow hydrolysis (60% after 1 hr and 85-90% after 3.5 hr); the rate of reesterification of the liberated cholesterol was still slower. After 24 hr only 20-28% of the labeled cholesterol present in the animal was found in the liver. Labeled fatty acid disappeared from the liver, and was redistributed among other tissues, much more rapidly than the labeled cholesterol. Most of the labeled fatty acid apparently underwent oxidation, since only 15-20% of the injected labeled fatty acid was present in the animal after 24 hr. At this time the three fatty acids were differently distributed between and within the tissues. These differences reflected some known differences of fatty acid concentration and lipid composition in the various tissues.  相似文献   

17.
In order to prove the hypothesis that humans and animals with adequate vitamin A status do not absorb and metabolize orally administered all-trans retinoyl β-glucuronide, unlabeled retinoyl glucuronide (0.1 mmol) was orally dosed to fasting well-nourished young men. Neither retinoyl glucuronide nor retinoic acid, a possible metabolite, appeared in the blood within 12 h after ingestion. Next, radiolabeled all-trans 15-[14C]-retinoyl β-glucuronide was chemically synthesized by a new procedure, and fed orally to rats of different vitamin A status. Analysis of blood and other tissues 5 or 24 h after the dose, showed the presence of radioactivity ( 0.5%) in the blood of vitamin A deficient rats, but not in sufficient rats. Livers of all rats contained small, but detectable amounts (0.3 to 1.1% of the dose) of radioactivity. The accumulation of radioactivity in the liver was highest in deficient rats. Analysis of the retinoids showed that the radioactivity in serum and liver was due to retinoic acid formed from retinoyl glucuronide. Within 24 h after the dose, 31 to 40% of the administered radioactivity was excreted in the feces, and 2 to 4.7% of the dose was excreted in the urine. Results of the present studies show that oral administration of retinoyl β-glucuronide did not give rise to detectable changes in blood retinoyl glucuronide and/or retinoic acid concentrations in humans or rats with adequate vitamin A status.  相似文献   

18.
19.
The patterns of expression of cellular retinol-binding protein (CRBP), cellular retinol-binding protein, type two [CRBP(II)], lecithin: retinol acyltransferase (LRAT), and microsomal retinal reductase were examined for rat small intestine during the perinatal period. CRBP was present (15 pmole per mg soluble protein) at the earliest time examined, the 16th day of gestation, declining by 70% by birth, maintained to adulthood. In contrast, CRBP(II) appeared 2-3 days before birth, rising to its highest level (500 pmole per mg soluble protein) by day 3 after birth, then declining by 50% during the late suckling period to the adult level. Immunohistochemistry revealed that CRBP(II) initially appeared in the epithelial cell layer in a patchy manner, resolving by birth into an even staining of all villus-associated enterocytes. In contrast, CRBP was evenly expressed in the epithelial cell layer at day 17/18 but was absent by birth. Intestinal LRAT activity increased rapidly in the 2 days prior to birth, then declined at weaning to the adult level. Microsomal retinal reductase was measurable in the intestine at birth, but not detected during the early suckling period, reappearing at day 21. Considerable increase was then observed coincident with weaning, when carotenes, from which retinal is derived, became an important source of vitamin A. The pattern of appearance of these elements appears to prepare the intestine for the necessary processing of vitamin A required after birth.  相似文献   

20.
A linear, first-order, constant-coefficient multicompartmental model is presented which describes the dynamics of [3H]retinol turnover in adult rats with normal plasma retinol concentrations but low liver stores (less than 100 micrograms of retinol equivalents). To fit plasma and tissue (liver, kidney, and rest of carcass) tracer and tracee data, eight physiological compartments were required in the model: two in plasma (proposed to correspond to the retinol transport complex, and retinyl esters in plasma lipoproteins) and two each in liver, kidneys, and other extrahepatic tissues. Extensive recycling of retinol among plasma, liver, and the rest of carcass was also required. The model predicted that 44% of whole body vitamin A (143 micrograms) was in extrahepatic tissues. The vitamin A utilization rate (system disposal rate) was 6.9 micrograms of retinol equivalents/day. The system residence time (mean sojourn time) for vitamin A was 21 days, and the fractional catabolic rate for the system was 5%/day. The mean transit time (turnover time) for vitamin A in its plasma retinol transport complex was 0.078 days (1.9 hr); the residence time was 0.98 day, versus 11 days in the liver, 9 days in carcass, and 0.54 days in kidneys. The model predicted that, of the plasma turnover, 48% recycled to the liver and 52% to extrahepatic tissues. The liver retinol secretion rate was 48 micrograms/day, more than half of which was from recycled plasma retinol. Since the plasma retinol turnover rate (87 micrograms/day) was 13 times the system disposal rate, the data suggest that this is a high response system in which changes in the dynamics of recycling of retinol allow for rapid adjustment in vitamin A distribution in response to changes in nutritional, metabolic, or physiological conditions; and in which plasma retinol levels are controlled homeokinetically by changes in hepatic and extrahepatic recycling of holo retinol-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号